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Abstract—Considerable work has been done on providing fault
tolerance capabilities for different software components on large-
scale high-end computing systems. Thus far, however, these fault-
tolerant components have worked insularly and independently
and information about faults is rarely shared. Such lack of
system-wide fault tolerance is emerging as one of the biggest
problems on leadership-class systems. In this paper, we propose
a coordinated infrastructure, named CIFTS, that enables system
software components to share fault information with each other
and adapt to faults in a holistic manner. Central to the CIFTS
infrastructure is a Fault Tolerance Backplane (FTB) that enables
fault notification and awareness throughout the software stack,
including fault-aware libraries, middleware, and applications. We
present details of the CIFTS infrastructure and the interface
specification that has allowed various software programs, includ-
ing MPICH2, MVAPICH, Open MPI, and PVFS, to plug into the
CIFTS infrastructure. Further, through a detailed evaluation we
demonstrate the nonintrusive low-overhead capability of CIFTS
that lets applications run with minimal performance degradation.

I. INTRODUCTION

With processor speeds no longer doubling every 18-24

months owing to the exponentially increasing power consump-

tion and heat dissipation, modern high-end computing (HEC)

systems no longer rely on the speed of a single processing

element to achieve high performance. Instead, they utilize the

parallelism of a massive number of moderately fast processing

elements to achieve the required performance. Today, systems

with hundreds of thousands of processing elements are already

available. As we pass the era of petaflop computing and

look forward to multi-petaflop and exaflop computing, systems

with millions of processing elements (and tens to hundreds

of millions of hardware components) are expected to arrive

soon. With such massive scale systems already available and

even larger systems on the horizon, failure resilience and fault

tolerance are quickly emerging as the most relevant issues

facing HEC systems.

Recently, considerable work has focused on fault toler-

ance for system software components, including the message

passing interface (MPI), file systems, resource management

infrastructure, and applications. However, most of this work

has addressed the fault tolerance problem in an isolated and

uncoordinated manner, in which each software component

operating in the system independently detects and handles

errors. While such an approach is reasonable for certain fault

scenarios, its isolated nature typically limits the effectiveness

of fault response. Without a holistic, full-system approach, cur-

rent fault-tolerant software is ill-equipped to detect, diagnose,

and adaptively respond to faults in ultrascale environments.

In this paper, we present our approach to addressing needs

of current and emerging HEC systems by developing a coordi-

nated infrastructure for fault-tolerant systems, named CIFTS

(Coordinated Infrastructure for Fault Tolerant Systems). As

a part of this infrastructure, we propose a Fault Tolerance

Backplane (FTB), which serves as a backbone for CIFTS.

FTB provides a shared infrastructure for system software to

coordinate fault information and responses through a uniform

interface, usable throughout the HEC software stack. The

ability to share information provides FTB-enabled system

software with a basis for proactive fault management and

fault handling. In addition, the availability of fault information

in the system enables development of new software that can

respond to certain kinds of faults, especially those requiring

the coordination of multiple elements of the system, thereby

enabling the system to recover from and alleviate faults they

were unable to detect independently.

Together with the detailed description of the FTB design,

we present an interface specification that enables various soft-

ware programs—including MPICH2, MVAPICH, Open MPI,

BLCR, Cobalt, PVFS, and the SWIM IPS application—to

plug into the infrastructure. We also illustrate the nonintrusive,

low-overhead capability of the FTB through a comprehensive

empirical evaluation that involves using micro-benchmarks

as well as applications on various systems. Our experiments

demonstrate marginal overhead of FTB on applications in most

cases, with several significant optimizations still possible.



II. RELATED WORK

Most HEC fault-tolerant system software attempts to han-

dle faults independently. This software handles faults either

reactively (e.g., by automatic network path migration [1], job

placement adaptation, check-pointing) or proactively (e.g., by

preemptive process migration [2]). A widely used method to

implement fault tolerance in middleware libraries and user-

level applications is through check-pointing software [3],

[4]. Various methods of checkpointing—application-level or

system-level—have been studied, along with techniques to

optimize them [5] [6]. Considerable research [7], [8], [9] has

been devoted to building fault-tolerant MPI implementations.

For example, MVAPICH [10] supports fault tolerance through

checkpoint/restart mechanisms, MPICH-V [11] supports fault

tolerance through checkpointing and message logging, FT-

MPI [12] can survive multiple MPI process crashes and

respawn MPI tasks and LA-MPI [13] supports fault tolerance

at the network level using redundant data paths. Also being

studied is fault tolerance using virtualization techniques [14],

where processes can be proactively migrated from unhealthy

nodes to healthy nodes based on health monitoring infor-

mation. Software such as FENCE [15], which performs on-

the-fly rescheduling of jobs upon detection of faults, is also

being investigated. Moreover, researchers are developing ap-

proaches [16] to provide fault tolerance through a combination

of adaptive proactive and reactive fault tolerance mechanisms

in conjunction with system health monitoring and reliability

analysis. Existing software such as Nagios [17] and IBM

Tivoli [18] aim to provide system-wide monitoring and auto-

matic fault detection and automatic diagnosis to some extent.

All these software efforts provide fault tolerance to some

degree. However, they do not share their fault information with

other software outside their stack. The FTB is complementary

to such fault-tolerant system software because such system

software can plug into the FTB and use its framework to share

fault information with other software in the system. To the best

of our knowledge, no attempt has yet been made to provide

a generic framework to coordinate between different system

software for fault tolerance on a systemwide basis.

The FTB framework and interface are based on the pub-

lish/subscribe framework. While considerable research on this

framework has been done, no existing implementation of

such a system can serve as a low-level, minimum-overhead

communication layer for exchanging fault information on HEC

systems. To meet this need, we have custom-built the FTB sys-

tem and have provided an interface, based on accepted guide-

lines and experiences published by other publish/subscribe

frameworks [19] [20] [21].

III. THE CIFTS FRAMEWORK

In this section, we discuss the CIFTS framework, the FTB

design, and the way FTB-enabled software programs interact

with each other.

The CIFTS framework is composed of the Fault Tolerance

Backplane, which forms the core of CIFTS. The FTB is an

asynchronous messaging backplane providing communication
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between system software programs, whether inherently fault-

tolerant or not. As shown in Figure 1, the FTB can be used

by system software ranging from operating systems and job

schedulers to mathematics libraries, file systems, and high-

level user applications. In addition to existing software, third-

party developers can set up automatic scripts, diagnostic rou-

tines, fault-information analysis engines, and logging systems

that can be FTB-enabled to communicate with other FTB-

enabled software.

From the FTB’s perspective, a fault event is defined as

information about any condition in the system that has caused

or can cause excessive errors or can stop the system from

working. A fault need not be an error, but it can be a warning

relevant to an end-user FTB-enabled software program, also

referred to as an FTB client. Table I shows a CIFTS scenario

with various FTB-enabled software systems where an FTB-

enabled application encounters an error (a failed I/O node)

while communicating with the FS1 file system. Instead of

silently failing, the application uses FTB to publish a fault

event detailing the error encountered. This event is received

by an FTB-enabled job scheduler, which launches further jobs

on an FS2 file system. The event is also received by other

instances of the FTB-enabled FS1 file system, which can start

an automatic recovery process (migration of the failed I/O

node to a different I/O node). Moreover, this event is received

by FTB-enabled monitoring software, which logs the event and

notifies the administrator by email. Thus, the availability of

fault information improves the overall resiliency of the system.

A. FTB Architecture

The FTB physical infrastructure is based on a distributed

architecture, as shown in Figure 2. The FTB framework

comprises a set of distributed daemons, called as FTB agents.

These agents incorporate the bulk of the FTB logic and

manage the bookkeeping as well as communication of events

throughout the FTB system.

The FTB agents, on startup, connect and organize them-

selves into a tree-based topology. The initial topology con-



FTB-Enabled Software Fault Events Action Taken

Application Publish event about error on FS1 file system

Job Scheduler Receives event about error on FS1 file system Launches next jobs on FS2 file system

File System FS1 Receives event about error on FS1 file system Starts recovery process of FS1

Monitoring Software Receives event about error on FS1 file system Logs and Emails administrator

TABLE I
SCENARIO USING THE CIFTS INFRASTRUCTURE

FTB client

FTB Agent

FTB Agent

FTB Agent

FTB Agent
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Fig. 2. The FTB Architecture

struction takes place with the assistance of the FTB bootstrap

server which provides information that helps every FTB agent

determine its parent FTB agent and position in the topology

tree. During its lifetime, if an agent loses its parent, it can

connect itself (and its children and its attached FTB clients)

to a new parent in the topology tree, making the topology tree

self-healing with a certain level of fault tolerance. The boot-

strap server can also be made fault tolerant to a certain extent

by keeping track of the topology information and specifying

redundant bootstrap servers. The FTB agents subsequently

connect to the existing agent topology tree when they startup.

An FTB client is linked to a lightweight FTB client library

that provides it with the FTB Client API (described in the

next section). The FTB client, on startup, connects to a local

FTB agent by using routines provided by the FTB Client

API. Alternatively, in the absence of a local FTB agent, the

FTB client connects to a remote FTB agent by enlisting the

assistance of the FTB bootstrap server. The FTB Client API

is influenced by and based on publish/subscribe framework

routines and semantics. Once a connection is established, the

FTB client can publish events and subscribe to receive events

using the FTB Client API.

The FTB agents keep track of all registered FTB clients.

The agents also keep track of all FTB client subscription

requests, along with the subscription criteria. They perform

incoming event matching against subscription criteria and send

events to the correct destinations and clients. In addition, they

keep track of their tree topology and metadata associated with

maintaining connections and routing information. In summary,

the majority of the FTB logic lies with the FTB agent.

B. FTB Client API

The FTB clients interact with the FTB through a small

set of simple routines provided by the FTB Client API. The

FTB API provides a routine called FTB Connect to be used

by every FTB client to initialize itself and connect to the

FTB system. The FTB client must specify various details

including the namespace in which it plans to publish its events.

The FTB Publish routine can be called by the FTB client to

publish events. Events currently can be published only in the

namespace specified during the FTB Connect call. The FTB

client also associates a severity value (values for severity are

defined by FTB to be fatal, warning, or info) with the event.

The FTB API provides a routine called FTB Subscribe

to allow an FTB client to subscribe to events. The client

also needs to specify the subscription string that specifies

the subscription criteria. For example, “jobid=47863; sever-

ity=fatal” means that the FTB client is subscribing to receive

events of severity fatal from FTB clients that are part of

jobid=47863. The FTB framework provides the clients with

two mechanisms to receive events, both of which need to

be specified in the FTB Subscribe routine. The first is a

callback mechanism. The FTB client must specify the callback

function in the FTB Subscribe call. When FTB encounters a

fault event matching a subscription string, it calls the relevant

callback function. The advantage of this approach is that it

is asynchronous and does not require intervention by the

FTB client to explicitly go and get the event. Alternatively,

the FTB client can have fault events delivered to it by the

FTB framework through a polling mechanism. In the polling

mechanism, a queue is allocated for the FTB client. The FTB

puts the fault events matching the subscription string in the

queue. The FTB client is responsible for pulling the event

from the polling queue. The FTB API provides a routine called

FTB Poll event for this purpose. While the polling mechanism

is rarely provided by publish/subscribe frameworks, it is

useful for machines where callback function threads cannot

be launched.

Complementary to the FTB Subscribe, the FTB API pro-

vides a routine called FTB Unsubscribe that allows a client

to unsubscribe a subscription string from the FTB framework.

The FTB API also provides a routine called FTB Disconnect

that allows the FTB client to disconnect from the FTB system.
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In addition to these main routines, other routines provided

by the FTB Client API can be found in the FTB Developers

Guide [22].

C. FTB and Event Namespacing

FTB imposes no restrictions on the fault information that

an FTB client can publish. While the FTB provides the in-

frastructure for communicating events between different FTB

clients, the semantics of the events are independent of FTB

and must be understood and defined prior to using FTB. To

this end, the FTB design incorporates an event namespace,

portions of which are reserved for the different FTB-enabled

software programs. In the FTB framework, prior to publishing

any event the FTB client must specify the namespace where it

plans to publish its fault events. Similarly, FTB clients wishing

to receive events need to ensure that they have registered their

interest to receive events in the correct namespace. Conceptu-

ally, the namespace can be thought of as a hierarchical string.

The FTB framework has reserved the leading string “ftb.” to

identify events for which the semantics have been formally

agreed upon in advance by the CIFTS community. The rest

of the namespace is not formally managed, though we expect

conventions to develop, which we can codify as needed.

To understand this situation more clearly, consider a sim-

plified example of the FTB-enabled MPICH software. If an

FTB-enabled MPICH instance publishes an “MPI ABORT”

event in the “ftb.mpich” namespace, then all software that

has registered interest in getting events from the “ftb.mpich”

namespace can be assumed to have a common understanding

of the semantics of the MPI ABORT fault event. If, instead,

the same event were published in the “test.mpich” namespace,

different semantics might apply, which should be separately

agreed on by the senders and receivers.

D. FTB Software Stack

The FTB has a layered architecture, as depicted in Figure 3.

Each of the three layers—(a) FTB client layer, (b) manager

layer, and network layer—has its own functionalities.

1) The Client Layer: The FTB client layer exposes a set of

routines, that constitute the FTB Client API. This thin,

lightweight layer resolves incompatibilities and ensures

portability of the FTB Client API across various plat-

forms such as Linux, IBM Blue Gene machines, and the

Cray XTs. This layer uses the underlying FTB Manager

API (exposed by the manager layer) to communicate

with the manager layer. The FTB client layer library is

typically linked to the FTB clients, who use the exposed

FTB Client API to communicate with the FTB.

2) The Manager Layer: The FTB manager layer handles the

bulk of the FTB bookkeeping and decision making. This

layer exposes a set of routines through the FTB Manager

API. The FTB Manager API is an internal API used by

upper layers such as the FTB client layer and FTB agents

and is not exposed to FTB-enabled software developers.

The manager layer keep tracks of the FTB clients, their

subscription criteria, and subscription mechanisms. It

also includes the logic of matching published events

to requested subscriptions and routing fault events to

relevant receivers in the FTB framework, as well as

handling the internal fault tolerance of FTB itself.

3) Network Layer: The network layer is the lowest layer

of the software stack. The network layer deals with

sending and receiving of data. The network layer is

transparent to the upper layers and is designed to support

multiple modes of communication using protocols such

as TCP/IP or shared-memory communication. Current

FTB implementations use TCP/IP to create the agent tree

topology and connect FTB clients to the FTB agents.

E. Scalability Challenges

A framework such as the FTB presents many challenges

from the scalability point of view. With multiple FTB-enabled

software components publishing fault events simultaneously,

event storming becomes an important issue. While network

congestion may take place in any communication system,

some situations specific to the coordinated infrastructure

framework may lead to fault storms. Such situations occur,

for example, when an FTB client sees repeated errors with a

hardware component and sends an event over the FTB for ev-

ery error, thereby flooding the network or when multiple FTB

clients, perhaps belonging to different FTB-enabled software,

detect a single system fault and flood the network with events.

Reducing event storms on a system requires aggregation of

these events into composite events. This is a common research

topic in the area of log analysis [23] [24].

Aggregation can be handled either in the FTB framework

or in the FTB-enabled software; it is less cumbersome if the

user FTB-enabled software does not have to handle it. We

discuss below our plans to have the FTB framework handle

event aggregation.

1) Dealing with Same Symptom Fault Events: Consider a

scenario where an FTB-enabled middleware sees “Disk I/O

Write error” messages. For every message it sees, it publishes

a fault event to the FTB system. Such events are called “same



symptom fault events” because they represent the same fault.

Clearly, forwarding of rapid, repeated fault events through

the FTB to interested receivers can easily lead to network

congestion.

Such situations can potentially be handled by the FTB

framework by using time-stamps. Every fault event is time-

stamped by the FTB client at the source. Fault events origi-

nating at the same source with the same fault information (i.e.,

“Disk I/O Write error”) but narrowly different time-stamps are

assumed to represent the same fault. Such “duplicate” events

can be detected and quenched by the FTB agent connected to

that FTB client by maintaining short-duration event publishing

histories for each client.

2) Dealing with Dissimilar Symptom Fault Events: Con-

sider a scenario where a network link fails. Various FTB-

enabled software programs detect this link failure with differ-

ent symptoms. The MPI library sees a “failure to communicate

with rank r”; the FTB-enabled network protocol stack sees

“port x down”; the network monitoring agent sees “link z

down”; and the application sees “network timeout”. A single

fault manifests a variety of symptoms in different software

components. In addition to contributing to network conges-

tion, the many events produced in this scenario might evoke

multiple conflicting (or at least uncoordinated) responses from

different components if their relationship were not recognized.

Linking multiple symptoms to a single potential cause

requires root analysis, and in this aspect, FTB faces challenges

similar to those seen in the area of event log analysis and event

correlation [25] [26] [27]. Such situations can potentially be

handled by FTB by segregating every fault event in organized

hierarchical categories called event categories, which helps

FTB determine the probabilistic similarity between different

faults. For example: The above fault events would probably be

categorized as “network – link failure”. All events originating

from a common source in the same time frame and belonging

to the same category could be aggregated and replaced by

a composite event. The biggest challenge with this approach

is determining how to avoid manual categorization and move

toward automatic categorization of fault events into fault cat-

egories. More sophisticated implementations and approaches

to event aggregation are currently under development in the

FTB infrastructure.

IV. PERFORMANCE EVALUATION

In this section, we describe various experiments to un-

derstand the performance and characteristics of the current

FTB implementation on a 24-node Linux-based cluster and

the Cray XT machine at Oak Ridge National Laboratory. The

Linux cluster is a dual-processor, dual-core cluster with 4 GB

memory and 1GB cache, interconnected through a Gigabit

Ethernet network. The Cray XT4 system is a 7000+ node

system with quad-core processors and 8 GB memory each.

The Compute Node Linux (CNL) OS runs on each compute

node. Each node is connected to a Cray SeaStar router through

HyperTransport, and the SeaStars are all interconnected in a

3-D-torus topology.

A. FTB Event Publish Performance

FTB clients, on startup, attempt to connect either to a local

FTB agent or to a remote FTB agent. In this section, we

measure the time taken by an FTB client to publish an FTB

event and evaluate whether the location and number of FTB

agents on a system have any impact on the event publish

time. The micro-benchmark test consecutively publishes 2,000

events on one of the nodes of the Linux cluster and calculates

the average time taken to publish one event by a client. At the

same, the number of agents in the system is increased. For

tests with a local FTB agent, an FTB agent is present on the

same node on which the test is being run. For tests with remote

FTB agents, none of the FTB agents are present on the node on

which the test is being run. From Figure 4(a), we can see that

the location and number of FTB agents have little impact (the

small variations in time are attributed to benchmarking noise)

on the event publish time. Thus, system administrators and

users need not be concerned about the location and number

of agents if their FTB client mostly publishes events.

B. FTB Event Poll Performance

An FTB client can receive events using FTB’s event notifi-

cation mechanism or by polling for events. Figure 4(b) shows

the poll time for varying numbers of events. We measure this

time in the presence and absence of FTB traffic. In the “No

FTB” traffic scenario, FTB agents are started on two nodes

with an FTB client publishing events on one node and an

FTB-enabled monitoring software polling for events on the

second node. In the “FTB traffic” scenario, agents run on

all 24 nodes, with an FTB client publishing events on one

node and 24 instances (one on each node) of FTB-enabled

monitoring software polling for all events. The event poll

time is calculated based on the average time seen across

all the nodes. From Figure 4(b), we see that the polling

time for both cases is the same for approximately 128 events

or fewer, but increases in the presence of FTB traffic for

higher numbers of events (around 256). The reason is that

256 events are propagated by every FTB agent to the local

FTB-enabled monitoring software process as well as the other

agents connected to it through the tree topology. Thus, events

take longer to reach all the FTB-enabled monitoring software

instances, and they might not be readily available in the poll

queue, resulting in higher poll times.

C. Impact of FTB Traffic on Non-FTB Application Perfor-

mance

FTB-agnostic applications, in addition to FTB-enabled ap-

plications, will exist on any system supporting FTB. In this

section, we evaluate the impact of FTB traffic (generated

by FTB-enabled applications) on FTB-agnostic application

performance. The test environment consists of FTB agents

running on all the 24 nodes of the Linux cluster. These agents

form a tree topology. Agents that are leaves of the topology

tree are involved in less FTB communication than agents that

are intermediate nodes of the tree, because intermediate nodes

agents have to receive and forward events to their children as
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well as their parent. An FTB-enabled all-to-all application is

run on 22 nodes of the 24-node cluster. Each of the 22 nodes

involved in the all-to-all process, connect to their local FTB

agent, publish 2000 events, and poll for all events from all

nodes (i.e., 2000 events from 22 nodes = 44,000 events). This

generates an immense amount of FTB traffic because every

agent is involved in forwarding these events to its children

or parent. On the remaining two nodes of the cluster, we run

a non FTB-enabled MPI latency micro-benchmark from the

Ohio State University OMB benchmark suite.

We evaluate the impact of the FTB-enabled all-to-all appli-

cation traffic on the performance of the MPI latency micro-

benchmark. We consider two scenarios: (1) MPI latency run

on the leaf nodes of the FTB agent topology tree, and (2)

MPI latency run on the intermediate nodes of the FTB agent

topology tree. As seen from the curves in Figure 5(a)

and 5(b), we run the MPI latency test with (a) no FTB

infrastructure, (b) FTB agents but no FTB-enabled software

(labeled FTB Agents), (c) two leaf nodes of the agent topology

tree, and (d) two intermediate nodes of the agent topology

tree. The performance is the same for cases (a), (b), and (c)

for both small and large messages. For case (d), however, the

performance of the MPI latency benchmark is impacted. This

performance degradation is due to the contention arising from

a single network on a machine that is shared both by the FTB

agent and the MPI latency benchmark. In this test, we selected

the root node of the agent topology tree and its immediate

child as the two intermediate nodes to run MPI latency test.

Thus, the FTB traffic seen by agents on these two nodes was

very heavy (as they were serving multiple children and grand-

children) and consequently the network on these two machines

was also being heavily utilized leading to network contention.

D. Analysis of FTB Traffic Patterns

In this section, we study the behavior of the FTB infrastruc-

ture in dealing with FTB-enabled applications having various

communication patterns. We evaluate two traffic patterns: all-

to-all and multiple groups.
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Figure 6 shows the execution time for the all-to-all ap-

plication, running on 64 cores (16 Linux nodes with 4 cores

each), with varying numbers of agents and varying numbers

of events. Each of the 64 instances of the all-to-all benchmark

publish k events and poll for (k * 64 clients) events, with k

varying from 64 to 128 to 256. We see that execution time is

about 8 seconds (for 64 and 128 events) and 28 seconds (for

256 events) when only one agent is in the system. The reason

is that the single agent gets overloaded when multiple clients



publish large numbers of messages. In the extreme case of 256

events, the single agent receives 256 events from each of the 64

cores and forwards (256 x 64) events to each of these 64 cores.

As we increase the number of agents from 2 to 4 to 8, we see

that execution time decreases as event distribution work gets

distributed among all the agents. As we approach 16 agents

(i.e., one agent per node), we obtain the best performance,

since each agent node handles only its local FTB clients. Thus,

for FTB-enabled software with communication trends similar

to all-to-all communication, having an local FTB agent on

every node may be beneficial.

The all-to-all application has heavy FTB communication

between all the nodes in a cluster. In the next experiment,

we study the FTB infrastructure with multiple smaller groups,

each performing FTB communication only between its mem-

ber nodes. Examples of such groups in real life include FTB-

enabled file system sharing its fault events among its processes

and an FTB-enabled application sharing information with its

peer instances. The multiple groups in our experiment indi-

vidually perform all-to-all communication (with each instance

publishing 100 events) in order to simulate heavy FTB event

traffic. In our 64 core cluster (16 nodes with 4 cores each), we

evaluate the group sizes of 4 to 64. We evaluate this benchmark

under three scenarios.

1. The first scenario, labeled as “multiple groups”, consists

of FTB agents running on each of the 16 nodes of the Linux

cluster. For a group size of 4, we divide the 64-core cluster into

16 groups, which each group localized to 1 node. For a group

size of 8, we divide the 64-core cluster into 8 groups, with each

group localized to 2 nodes. Similarly, for group size of 16, 32,

and 64 we form groups of 4, 2, and 1, respectively. In Figure

7, the x-axis shows the various group sizes and the y-axis

shows the execution time (averaged across the multiple groups)

to complete the all-to-all communication for each group size

and total number of publish events as 64 and 128. Note that

since multiple groups exist on the cluster at any time (except

when the group size is 64), the FTB agents on every node are

involved in handling FTB traffic belonging to multiple groups,

in addition to serving the group their local FTB clients belong

to.

2. The second scenario, labeled as “one group”, serves

as a baseline to compare the first scenario. We measure the

execution time for the all-to-all benchmark for various group

sizes of 4, 8, 16, 32, and 64, but only one group exists on

the cluster at a given time. Thus, each agent is involved in

handling FTB traffic belonging to the group its local FTB

clients belong to.

As seen in Figure 7(a) and 7(b), execution time can be

heavily impacted when there are multiple groups performing

localized FTB communication. For example, for a group size

of 8, each process in the all-to-all test sends 100 events and

receives 800 events. When multiple groups are present (8

groups for a 64-core cluster), an FTB agent on a node of the

tree topology can receive and forward around (16 agents x 800

events) events each. Thus the test with multiple groups takes

double the amount of time (from Figure 7(a) for 64 events and

8, 16, and 32 processes) and more than double for 128 events

(from 7(b)) as compared to the all-to-all test when there is

only one group.

3. The third scenario, labeled “event aggregation”, presents

a case when event aggregation is applied to reduce the event

storming witnessed in scenario (1). In this benchmark, multiple

groups are still formed on the cluster. The agent receives

100 events from each node in the group. It aggregates the

100 events, however, and sends back only 1 composite event

for every node it received events from. Thus, for a group

size of ‘8’, every node publishes 100 events but receives

only ‘8’ events instead of ‘800’. As can be seen from the

results in Figure 7(a) and 7(b), event aggregation can

dramatically improve performance and reduce traffic overhead

in the system.

E. Impact of FTB on Applications

In this section, we evaluate the scalability and FTB overhead

on two FTB-enabled applications, running on the Linux cluster

and the Cray XT machine, respectively.

We first evaluate the Integer Sort (IS) benchmark from

the NAS Parallel Benchmarks (NPB) suite [28] on the 16-

node Linux cluster. The NPB suite consists of 5 kernels

and 3 simulated application benchmarks, which emulate the

computation and data movement characteristics of large-scale

computational fluid dynamics (CFD) applications. The Integer

Sort application is a popular MPI-based benchmark from this

suite, which performs a sorting operation that is considered

important in particle physics code. We evaluate the original

IS benchmark (version 3.3, largest class size C) with no

FTB infrastructure and compare it against the modified FTB-

enabled benchmark. In the FTB-enabled IS, every instance of

IS publishes events and polls back for those events. We test

the FTB-enabled IS with events varying from 16 to 64 to 96

events. FTB agents are present on all nodes of the cluster,

and an FTB-enabled monitoring software runs on one of the

nodes of the cluster. The presence of the monitoring software

ensures that the FTB agents are involved in forwarding events

to other agents, in addition to their attached FTB clients.

Figure 8(a) shows the results of this evaluation. The execution

time for FTB-enabled IS as well as the original non-FTB IS

is similar, barring the benchmarking noise. The original and

FTB results for the IS benchmark on 16x1 system size are

higher than 8x1 system because the communication overhead

of the IS benchmark exceeds the parallel computational benefit

obtained.

We next evaluate a parallel maximal clique enumeration

application [29] [30], a classical graph theory problem, on

the Cray XT supercomputer. This MPI-based application finds

all maximal cliques in a given graph and is used in many

fields including bioinformatics for the study of protein-protein

interaction and protein-protein homology affinity maps. A

maximal clique is a complete subgraph that is not a subset

of any larger complete subgraph. Each MPI node is given

a disjoint search space so that the entire clique enumeration

can be performed in parallel. Load balancing is achieved by
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exchanging search spaces between busy and idle nodes. The

overhead of FTB is measured by making the parallel maximal

clique enumeration code publish FTB events during its course

of run. More specifically, each MPI node publishes an FTB

event at every occurrence of search space exchange. For this

test, a graph of 4,087 vertices and 193,637 edges was used

as the input, which embeds 3,429,816 maximal cliques. The

execution times of the parallel maximal enumeration code

were measured using up to 512 nodes. The FTB system had

1 agent serving 32 nodes. Figure 8(b) shows the number of

Cray XT processes on the x-axis. As clearly delineated in the

figure the overhead imposed by the FTB is negligible in most

(if not all) cases. These results suggest that the FTB does not

affect the performance of an application in practice.

V. CONCLUSIONS

Current high-end computing system software handle faults

insularly and in an uncoordinated fashion. The lack of a co-

ordinated infrastructure prevents software from sharing fault-

related information and taking timely proactive decisions that

could improve the overall reliability of the system. The goal

of the CIFTS project is to develop a coordinated infrastructure

that enables system software to actively share fault-related

information. We achieve this by developing a fault tolerance

backplane (FTB), which provides the messaging and com-

munication infrastructure for this coordinated environment. In

addition, we provide an interface specification that enables

various system softwares to talk to each other. In this paper, we

discussed the CIFTS framework along with the FTB architec-

ture and interface specification. We also presented a detailed

evaluation of the non-intrusive, low-overhead capabilities of

CIFTS that allow applications to run with minimal perfor-

mance degradation. Future work within CIFTS includes FTB-

enabling popular and widely-used high performance comput-

ing software. In addition, the availability of fault information

within FTB can allow users to develop automatic system-

wide fault diagnosis, analysis and notification tools. More

information about current and future publicly available FTB-

enabled software can be found at [31]
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