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Abstract

Broadcasting and multicasting are common operations in par-
allel and distributed programs. Some modern Network In-
terface Cards (NICs) have programmable processors which
can be used to provide support for these operations. How-
ever these processors are 5-15 times slower than the host
processor. In this paper we propose a design and an im-
plementation of a multi-send primitive to support efficient
broadcast/multicast that requires minimal assistance from the
NIC. Our scheme is designed with the idea that as much pro-
cessing as possible should be done by the host processor. This
gives us more flexibility with, for example, creating multicast
trees which would be optimal for a particular message size,
or choosing a multicast tree dynamically based on require-
ments of bandwidth versus latency for a particular message.
We have designed a multi-send primitive and implemented
it as an addition to Fast-Messages (FM) 2.1 running over a
Myrinet network. The proposed scheme does less processing
at the NIC. The impact of adding such NIC-assisted multi-
cast operation to a Tun-time system is also very small, less
than 500ns for non-multi-send packets. To fully utilize the
benefits of this primitive, we propose a method for construct-
ing an optimal multicast tree using the new primitive. We
have evaluated this scheme and obtained a speedup factor of
up to 1.85 for multicasting 16K messages with 16 nodes.

1 Introduction

Broadcasting and multicasting are common operations
in parallel and distributed programs. For example,
MPT [8] has a broadcast operation defined as part of
the standard. It would be beneficial to be able to re-
duce the latency of this operation as much as possi-
ble. Some modern network interface cards (NICs) have
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programmable processors which can be used to provide
support for collective communications such as broad-
cast/multicast.

Using programmable network interface cards
(NICs) to support broadcasting/multicasting in a clus-
ter is not a new idea. Bhoedjang [3] and Verstoep [15]
have implemented NIC-supported multicasting, and Ke-
savan [6] and Sivaram [12] have evaluated different as-
pects of NIC-supported multicasting. In each of these
schemes, the NIC is responsible for all aspects of the
operation, including creating the tree and handling flow
control. However, the processors found on current gen-
eration NICs are usually much slower than the host pro-
cessors, for example, the processors on current genera-
tion clusters are 300-500MHz while the processors on the
Myrinet NICs are 33-66MHz, this is roughly 5-15 times
slower. This limits the amount of work that can be done
by the NIC without compromising performance.

This raises a challenge whether new communica-
tion mechanisms can be developed for clusters to sup-
port broadcast/multicast with minimal NIC assistance,
while delivering good performance. In this paper we
take on such a challenge. We introduce a multidestina-
tion message passing mechanism. Such a mechanism has
been developed earlier for router-based parallel systems
[11, 10, 13] to support efficient collective communica-
tion.

In this paper we design and implement a multi-send
primitive to support efficient broadcast/multicast that
requires minimal assistance from the NIC. Our scheme
is designed with the idea that as much processing as pos-
sible should be done by the host processor. This gives
us more flexibility with, for example, creating multicast
trees which would be optimal for a particular message
size, or choosing a multicast tree dynamically based on
requirements of bandwidth versus latency for a partic-
ular message. Also, because the proposed scheme does



less processing at the NIC, the impact of adding such
NIC-assisted multicast operation to a run-time system is
very small (less than 500ns for non-multi-send packets)
when compared with others (a 5us additional per-packet
overhead in the NIC alone in [15]).

We have implemented the multi-send primitive as
an addition to Illinois Fast-Messages (FM) 2.1 [9, 7] run-
ning over a Myrinet [5] network. To fully utilize the
benefits of this primitive, we propose a method for con-
structing an optimal multicast tree using the new primi-
tive. We have evaluated this scheme and obtained a fac-
tor of improvement of up to 1.85 for multicasting 16K
messages with 16 nodes.

Section 2 describes the new multi-send primitive,
followed by Section 2 which describes broadcasting and
multicasting using the new primitive. Construction of
the optimal multicast tree is described in Section 2. The
implementation details are discussed in Section 2 fol-
lowed by our experimental results in Section 6. Related
work is discussed in Section 7. Finally we conclude and
discuss future work in Section 8.

2 NIC-Assisted Multidestination
Message Passing

The basic idea is to create a multi-send primitive in
which the host writes the packet data to the NIC only
once followed by a list of destinations. The NIC would
then transmit copies of the packet to each of those des-
tinations. Figure 1 shows two diagrams where host 0
is sending packets to hosts 1 through 3. The top dia-
gram shows host 0 making three unicast (point-to-point)
sends, each of which is forwarded by the NIC to its des-
tination. The diagram on the bottom shows the host
making a single multi-send operation to the NIC which
then forwards a copy of the packet to each of the desti-
nations.

Figure 2a shows the timing diagram for a multi-send
operation sending a packet to four destinations, and the
receive time for the last destination. Figure 2b shows
the corresponding timing diagram for host-based point-
to-point operations. In the figure the interval marked
Send corresponds to the time it takes the host to as-
semble a packet and write it to the send queue on the
NIC, and the interval marked Xmit corresponds to the
time it takes the NIC to transmit the packet from the
send queue to the network. The interval marked Recv
corresponds to the combined time for the NIC to receive
the packet, (including the network latency), for the NIC
to forward the packet to the host, and for the host to
process the packet. Notice that in both diagrams the re-

ceive time for a packet at the last receiver is overlapped
with the transmission time at the sender for that same
packet. In Figure 2b, for the first three packets, the net-
work transmit time of one packet is overlapped with the
host send time of the next and so it is not shown. As in-
dicated below, timing parameters for FM over Myrinet
are such that this will always be the case, regardless of
the packet size. Though it is not shown in these figures,
packet reception can also be pipelined between the NIC
and the host.

Let us compare the latency of sending a packet to
k destinations using a multi-send operation with the la-
tency of sending a packet to k destinations using the
usual host-based point-to-point operations. The time
for the kth destination to receive the packet using a
multi-send operation would be (tsena+ (k—1) X txmit +
tReev), and (k X tsend + tReew) using host-based point-
to-point operations. We have timed the host send, the
NIC transmit and the receive operations in FM 2.1 on
our cluster consisting of 300MHz Pentium II machines
with 33MHz LANai 4.3 Myrinet cards. We estimate
the send time to be (2.7863us+0.0301usxm)?}, the NIC
transmit time to be (1.3958us+0.0075usxm) and the
receive time to be (4.2820us+0.0230usxm), where m is
the packet size in bytes. Thus for sending a 1,536 byte
packet to six destinations, tsenqg would be 49.0199us,
txmit would be 12.9158us, and tgec, would be 39.61us.
The multi-send operation would take 153.2089us and
the usual host-based point-to-point method would take
333.7294pus. This leads to a factor of improvement of

1See the Appendix on how we arrived at these estimates.
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Figure 1: Multiple host-based point-to-point operations
(top) and a NIC-assisted multi-send operation (bottom)
to four destinations.
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Figure 2: Timing diagram comparing latencies for sending one packet to four destination using a) a multi-send

operation and b) host-based point-to-point operations.

2.18. We can see that multi-send is a powerful primi-
tive.

The estimates above were made without write-
combining support?. Without write-combining, we
achieve about 31.7 megabytes per second throughput
when the host is writing a packet to the NIC. Assuming
write-combining is enabled, we could get 90 megabytes
per second throughput[1]. Then the send time would be
(2.7863us+0.0106usxm) which would be 19.0679us for
a 1,536 byte message. The multi-send operation would
then take 123.2569us while the usual host-based point-
to-point method would take 154.0174us. This would
lead to a factor of improvement of 1.25. While the im-
provement is not as great as without write-combining,
it is still significant.

3 Broadcast/Multicast with the
Multi-send Primitive

While the multi-send primitive is powerful, for cov-
ering a large number of destinations we need to perform
broadcasts and multicasts hierarchically in order to min-
imize the overall broadcast/multicast latency. This can
be done by having the host at each intermediate node
receive the message, then issue another multi-send op-
eration to forward the message to its child nodes. This
raises a challenge: how to create an optimal tree? It
is also interesting to analyze how this scheme is differ-
ent from the NIC-based multicast schemes described in

2In our configuration, the write-combining feature does not
seem to be working in the Myrinet driver supplied with the FM
distribution.

[3, 15, 12, 6].

In the NIC-based scheme [3, 15, 12, 6], the incoming
multicast packet is transmitted to the child nodes by the
NIC after it has been forwarded to the host. Figure 3
illustrates the difference in the two methods. This figure
shows two diagrams where node 0 sends a message to
multiple destinations, one of which is node 1. Node 1
then sends to nodes 2 and 3. The diagram on the top
shows a completely NIC-based scheme where the packet
coming into node 1 from node 0 is sent to nodes 2 and
3 by the NIC after being forwarded to the host. The
diagram on the bottom shows node 1 forwarding the

Host 0 ®Host 1 Host 2 Host 3

NIC NIC NIC %NC
Host 2 Host 3
NIC %NC

Figure 3: NIC-based multicast (top) and a NIC-assisted
multicast (bottom).




incoming packet to the host. The host then issues a
multi-send operation to transmit the packet to nodes 2
and 3.

While it may seem that the completely NIC-based
scheme would always be better than the method we are
proposing, we believe that that is not the case. The
completely NIC-based approach puts more responsibil-
ity on the NIC which, as previously mentioned, has a
processor 5-15 times slower than the host. We believe
that the additional processing power available at the
host will allow greater flexibility in, for instance, tree
construction. So that depending on the message size
and quality of service requirements, a tree optimal in
either bandwidth or latency, for that message size can
be used for sending the message. This could be done
on a per-message basis. This paper will examine how
to construct a multicast tree that is optimal for latency,
and study the performance of such a tree.

4 Constructing an Optimal
Multicast Tree

In this section, we show how to construct an op-
timal multicast tree using the proposed new multi-send
primitive. The basic idea is to construct a tree such that
the maximum number of nodes will be sending at any
time. Such a tree would be optimal in terms of latency.

Bar-Noy and Kipnis [2] have shown that in the
postal model, a broadcast tree optimal in terms of la-
tency is based on the following recurrence relation. In
the postal model, a broadcast to Fy(t) nodes can be
completed in ¢ time.

(1 if0<t <A,
Fi\() —{ F\t—-1)+FE(t—X) ift>\

In this recurrence relation, A is defined as the ratio of
(i) the total amount of time from when the sender of
a packet starts sending it to when the receiver receives
the complete packet and (ii) the amount of time that the
sender spends sending the packet. One unit of time is
defined as the time the sender spends sending a packet.
It then takes A time for a recipient to fully receive a
packet after the sender starts sending it. It is assumed
that as soon as a node receives a packet, it will start
sending it to its children nodes.

Intuitively, one can think of F)(t) as the number of
nodes which have received the packet at time ¢. This is
equal to the number of nodes which had already received
the packet previously (i.e. F)\(t — 1)), plus the number
of nodes which have just received the packet. The pack-
ets which were just fully received at time ¢ must have
been sent at A time before then. Since, at that time

there were F)\(t — \) nodes which would have sent these
packets, there would be that many new nodes receiving
the packet at time ¢.

In our design, the NIC will be transmitting the
packets to different nodes. So we need to apply the
postal model from the point of view of the NIC. Specifi-
cally, when a packet is sent from a node, say, node 0, to
another node, node 1, which will receive it and send it
to a third node, node 2, then X is defined as the ratio of
i) the time from when the NIC at node 0 starts trans-
mitting the packet to node 1 until the NIC at node 1 is
ready to transmit the packet to node 2 and ii) the time
it takes the NIC to finish transmitting the packet. Note
that part i) of the ratio is simply the one way latency of
a packet (i.e. the time it takes for the NIC to transmit
the packet plus the time it takes for the host to receive
it plus the time for the host to send the packet to the
NIC).

To construct the tree, we used an algorithm similar
to the “simple top-down greedy algorithm” in [4]. The
tree is stored as a list of destination lists, one per host.
The algorithm uses two queues called the new queue and
the old queue. We start with the root node and enqueue
it in the new queue with time 0. Then, for each node p
in (p1,p2,---pn-1) we do the following:

e dequeue the node ¢ that has the minimal time ¢ of
both of the queues.

¢ add p to the destination list of ¢
¢ enqueue p onto the new queue with time ¢ + A

e enqueue ¢ onto the old queue with time ¢ + 1

While there are algorithms which may construct the
tree faster [4], this algorithm is simple and general. Be-
cause we were constructing the tree off-line in our test
program, we were not concerned with the running time
of this algorithm. This algorithm does, however, pro-
duce a tree that is optimal in the postal model for a
given A [4, 2.

So far we have focused on multicasting a single
packet. For multi-packet messages, there are two ways
for intermediate nodes to forward the message to it chil-
dren. One way would be for the node to receive the
whole message, then send the message to its children.
The other method would be for the node pipeline the
message in a packet-wise fashion. In other words, the
node would receive the message one packet at a time,
and forward the packets to its children as soon as they
are received rather than waiting for the whole message
to be received.

The decision on whether to pipeline the message or
not will mostly depend on whether the run-time system



supports it. FM, for instance, does not support message
pipelining in general (though we were able to do this in
a special case). In Section 6 we will show performance
results with and without pipelining.

5 Our Implementation of the
Multi-send Primitive

We used Illinois Fast Messages (FM) version 2.1
from the HPVM 1.0 distribution for the base of our ex-
periments. This version was used because it is the latest
version of FM available for Linux.

In FM 2.1, a message is associated with a stream.
In order to send a message, a stream is created be-
tween the node and the destination with the FM API
call FM_begin message(). Data can then be sent on
the stream using the FM_send piece() API call. When
enough data is sent to fill a packet, FM creates a packet
and writes it to the NIC which in turn transmits it to
the destination node. On the receiving side, FM calls a
message handler to optionally re-assemble the message,
packet by packet, into the user buffer. A stream is ter-
minated using the FM_end message () API call, at which
time any remaining data is assembled into a packet and
written to the NIC.

To avoid loosing packets due to buffer overflow at
the receiver, FM uses a flow control scheme using credit
management. One credit corresponds to one packet
buffer at the receiver. On starting FM, each sender
starts with a certain amount of credits for each re-
ceiver. Before any packet is sent FM checks if the
sender has sufficient credits for the receiving node. If
there are no available credits at the receiver, then the
sender blocks until it receives more credits, otherwise,
the sender decrements the number of credits it has for
that receiver and sends the packet. Whenever a node
receives a packet it increments a counter of the number
of credits it needs to return to the sender. These credits
are returned to the sender either by piggybacking the
credits on a data packet sent to that node, or via an
explicit credit packet.

We modified FM by adding a new API call
FM_begin message multi() which creates a stream be-
tween the sender and all destinations specified in the
destination list given as an argument. As with a reg-
ular FM stream, data is sent using FM_send piece()
and the stream is terminated with FM_end message().
The flow control mechanism was also modified. Before
a packet is sent credits are checked for every one of the
destinations. If there are not enough credits for any des-
tination, the operation blocks until there are. Basically,

rather than just verifying that we have credits for a sin-
gle destination, we check that we have enough credits
for each destination. For returning credits normal FM
unicast packets have a field for piggybacking them. In
our scheme we use piggyback credits for each destination
as described below.

When a packet is ready to be sent, the packet is
assembled for the first destination and written to the
send frame on the NIC. Next a list of information on
each additional destination is assembled and written to
a new field which is added to the send frame. Each entry
in the list holds the logical node number, the physical
node number and the returned credits for that destina-
tion. These are be used to update the corresponding
fields in the packet header so that the packet can be
sent to each destination.

Since the host assembles the packet such that it is
ready to be sent to the first destination, the NIC can
transmit the packet without checking whether it is a
multi-destination packet. Only after the NIC has initi-
ated the transmit DMA and is waiting for it to complete,
will it check for additional destinations. This way our
modifications add no overhead at the NIC for sending
standard FM messages. The NIC then updates the log-
ical node number, credit and route fields of the packet
for the next destination. This is done as soon as the
transmit DMA pointer has passed those fields but with-
out waiting for the entire DMA to finish. This allows the
header field updates to be overlapped with the DMA for
all but the smallest messages. After updating the fields,
the NIC waits for the DMA to finish then the DMA
is immediately initiated to transmit the packet to the
next destination. This is repeated for each additional
destination.

6 Experimental Results

The performance tests were run on a cluster of 16
300MHz Pentium IT machines each with 128 MB of RAM
running RedHat 5.2 Linux with kernel version 2.0.36.
The machines are connected by a Myrinet LAN network
with LANai 4.3 cards via a 16 port switch.

We tested the performance of the multi-send prim-
itive and compared it with multiple unicast sends. In
every iteration of our test routine, the root would send
messages to the destinations, and then the last destina-
tion would send a zero byte message back to the root
after receiving a copy of the message. This was timed
for 1,000 iterations, then the average was taken for the
result. This was done varying the message size and num-
ber of destinations. Figures 4 and 5 show the results of
this test. Notice that for messages less than 32 bytes,
our scheme performs slightly worse than the host-based



scheme. This is due to the fact that the NIC transmit
time is not smaller than the host send time and due to
the overhead of adding the multi-send primitive to FM.
However, the NIC-assisted scheme performs clearly bet-
ter than the host-based scheme for larger messages. It
can be observed that the multi-send primitive achieves a
factor of improvement of 3.51 for sending a 16K message
to 15 destinations.
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Figure 4: Latency for NIC-assisted multi-send operation
and multiple FM send operations.
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Figure 5: Speedup for NIC-assisted multi-send opera-
tion versus multiple FM send operations.

To test the performance of a multicast operation
using the multi-send primitive, we ran a test similar to
the one described above. One iteration of the test rou-
tine would send a message along a multicast tree, then
one of the leaf nodes would send a zero byte message
back to the root. This was timed for 1,000 iterations
then the average was taken. Because we couldn’t be
sure which leaf node would receive the message last, we
ran the loop several times, each time changing the leaf
node which would return the message, then taking the
maximum value. In order to cut down on the num-

ber of leaf nodes to test we only tested the leaf nodes
which were the last children of their parents. This was
then varied for message size and number of destinations.
When we were using the optimal multicast tree in our
tests, we needed to use a value for A which would pro-
duce the best performance. Since the value of A depends
on the message size, in our test program, for each mes-
sage size we constructed a new tree based on integer A
values from 1 to the number of nodes participating, and
took the minimum. So each point in our multicast per-
formance graphs is the minimum over each tree, of the
maximum for each responding leaf node in that tree, of
the average of 1,000 iterations.

Also, to study the performance impact of pipelin-
ing for multi-packet messages, we incorporated modifi-
cations to our test program as outlined in Section 2. As
soon as a packet was received by the intermediate node,
it would be sent out, rather than wait for the whole mes-
sage to arrive. To pipeline a message, the application
would have to open a stream to its destination(s), then
receive the incoming message one packet at a time until
it has received it completely, then close the stream.

This cannot normally be done in FM 2.1 because
while a stream is open, FM does not allow the ap-
plication to make a call to receive parts of a mes-
sage. This is done to avoid certain deadlock conditions.
When a stream is opened with FM_begin message ()
or FM_begin message multi(), FM sets a lock so that
any calls to receive a message return immediately with-
out receiving. To get around this, we used a version
of this call, FM_unsafe begin message multi() which
does not set a lock. This version is intended to be used
only inside a message handler. We used it outside a mes-
sage handler in our main routine. Since the lock is not
set when we open the stream, we are then able to receive
the packets of the incoming message and send them out.
Though this approach may lead to deadlock in the gen-
eral case, because our test programs ran one multicast
at a time, there were no cyclical dependencies and no
deadlock could occur. We used this method, not to show
how to pipeline messages in FM, but rather to demon-
strate the performance of our scheme when pipelining is
possible.

We will next compare NIC-assisted multicasting to
host-based multicasting. Because the binomial tree is
most often used for host-based multicast operations, as
used in MPI, we will use the binomial tree for the host-
based multicast, and compare it to the NIC-assisted
multicast using an optimal tree as discussed in Section 2.
Then, because the binomial tree may not be the best
tree for host-based multicast, we will use an optimal
tree for the host-based multicast and compare that with



the NIC-assisted multicast also using an optimal tree. In
each case, we will show the impact of message pipelining.

Figures 6 and 7 compare NIC-assisted multicast us-
ing an optimal tree with pipelining against the host-
based multicast using a binomial tree. Notice that the
NIC-assisted scheme is better for every message size and
every number of destinations. The dip in the factor of
improvement for 2048 byte messages with 16 nodes is
due to packetization effects. The graph also shows a
factor of improvement of 1.86 for multicasting a 16K
message to four nodes and a factor of improvement of
1.85 for multicasting a 16K message to 16 nodes.

Figures 8 and 9 show the same comparison as above
but without message pipelining. We can see that the
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Figure 6: Multicast latency for NIC-assisted multicast
using an optimal tree with packet-wise pipelining (NA-
optimal), and multicast using binomial tree with FM
unicast send (FM-binomial).
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Figure 7: Multicast factor of improvement for NIC-
assisted multicast using an optimal tree with packet-wise
pipelining, compared to multicast using binomial tree
with FM unicast send.

when compared to the pipelined case, performance does
not change for one packet messages (FM packets are
1,536 byte) or for four nodes of any size. This is because
pipelining does not occur for single packet messages, and
for a four node broadcast the optimal tree is flat (A =
2), i.e., the root sends the message directly to all the
three destinations, so again no pipelining would occur.
While the performance improvement is not as great for
multi-packet messages with eight and 16 nodes, when
compared to the case when messages are pipelined, there
is still a 1.53 and 1.30 factor of improvement for 16K
messages with eight and 16 nodes, respectively.

To see what impact the shape of the tree had on the
performance we are seeing, the optimal tree algorithm
was used with the host-based unicast primitive and com-
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Figure 8: Multicast latency for NIC-assisted multicast
using an optimal tree without packet-wise pipelining
(NA-optimal), and multicast using binomial tree with
FM unicast send (FM-binomial).
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pared with the same data for the multi-send primitive
above. Figures 10, 11, 12 and 13 show the results of
this comparison. In this test, our scheme performs a lit-
tle worse than the host-based method for messages less
than 32 bytes. We believe that this is due to the over-
head of the additions to FM similar to that observed for
Figure 4. For multi-packet messages, the optimal tree
for the host-based method turned out to be a binomial
tree (i.e. A = 1), so the performance improvement for
those messages is the same as in the previous graphs.
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Figure 10: Multicast latency for NIC-assisted multicast
using an optimal tree with packet-wise pipelining (NA-
optimal), and multicast using an optimal tree with FM
unicast send (FM-optimal).

1.9 . :
4 node —— )
18  8node -
_ 17l 16 node - L ,( |
5
e 16 1 P
5 )
3 15 ¢ |
S
£ 14+ 1
S 137 1
g 12t ]
[
Lo1at 1
1r 1
Og *'“-'7”*”””* \ I I I I
1 4 16 64 256 1024 4096 16384

Message Size (byte)

Figure 11: Multicast factor of improvement for NIC-
assisted multicast using an optimal tree with packet-wise
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7 Related Work

NIC-based multicasting has been previously proposed
by Verstoep et.al. [15] and Bhoedjang et.al. [3]. Their
schemes perform the entire multicast operation at the
NIC, as opposed to our scheme which uses a multi-send
operation as a primitive for multicast.

Verstoep, et.al. extend FM 1.1 to include
NIC-based multicasting.  In their scheme (called
FM/MCQC)[15], the multicast is performed completely at
the NIC-level. At intermediate nodes, the packet is for-
warded to the host, but then immediately transmitted
to the child nodes without involving the host. The
host receive queues are divided into multicast queues
and unicast queues. In order to prevent buffer overflow,
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Figure 12: Multicast latency for NIC-assisted multi-

cast using an optimal tree without packet-wise pipelining
(NA-optimal), and multicast using an optimal tree with
FM unicast send (FM-optimal).
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credits are managed separately for each. One multi-
cast credit corresponds to one packet buffer in each host
in the network, rather than just for one host, as with
unicast credits. One NIC on the network is designated
as a credit manager which distributes and collects the
multicast credits. A NIC must request credits from the
manager before multicasting a packet. However, once
a multicast has been initiated, the intermediate nodes
do not need to check for credits and can immediately
forward the packet to their children when they receive
it.

Bhoedjang et.al. propose a new message passing
protocol called Link-level Flow Control (LFC)[3]. This
system does all flow control at the NIC and also per-
forms the multicast completely at the NIC. In this sys-
tem data for a packet is copied to a buffer pool on the
NIC by the host, then the host writes a descriptor to the
send queue. The NIC polls the send queue and trans-
mits the packets when there are sufficient credits. In
order to send a multicast packet, the host simply has to
add one descriptor for each destination but refer them
to the same data. At an intermediate node, the NIC
receives the packet then adds descriptors for its children
to the send queue.

The main difference between our scheme and the
schemes described above, is that a multicast operation
in the schemes described above is done completely at
the NIC. Also, our scheme keeps the receive queues and
credit management unified for both unicast and multi-
cast messages.

8 Conclusions and Future Work

We have introduced a new multi-send primitive, which
uses the NIC to transmit multiple copies of a packet to
different destinations. We then showed how this primi-
tive can be used in a multicast tree to further improve
performance for large numbers of destinations.

The multi-send primitive gave us a 3.51 factor of
improvement over conventional host-level iterative sends
for 16K messages. We also observed a 1.85 factor of
improvement for 8K messages and 16 nodes when using
the primitive in a multicast operation using an optimal
tree versus using a binomial tree with the traditional
host-level unicast sends.

The current evaluations are based on a 16-node
cluster with a 16 port myrinet switch. Thus, there is
no network contention during the multicast operation.
For larger systems, network contention will play an im-
portant role. We plan to develop a method for con-
structing trees for multicast using multi-send primitives

which would give minimal contention for arbitrary ir-
regular networks. Also it would be interesting to study
the effects of a workload on such an algorithm and the
resulting performance on the multicast.

On a more general level we intend to investi-
gate whether other collective communication operations,
such as barriers, reductions, or personalized multicast
could benefit from similar NIC-assisted primitives.

Additional Information: Additional papers re-
lated to this research can be obtained from the
following Web pages: Network-Based Computing
Laboratory  (http://nowlab.cis.ohio-state.edu)  and
Parallel Architecture and Communication Group
(http://www.cis.ohio-state.edu/ “panda/pac.html).

Appendix

This appendix explains how we arrived at the estimates
shown in Section 2. We used the RDTSC Pentium as-
sembly instruction[14] which reads the Pentium’s inter-
nal 64 bit cycle counter. If one knows the speed of the
processor, one can use this counter for accurate timings.

To estimate tgen,q we timed the send portion of a
simple ping-pong program and averaged it over 10,000
iterations. We did this for various message sizes up to
one packet size (1,536 bytes).

To estimate tx,,;; we used the RTC register on the
NIC’s LANai chip. This register is incremented at a reg-
ular interval. To time this interval we did the following.
First, we read the NIC’s RTC register from the host
then immediately read the Pentium cycle counter. We
then repeatedly slept for one second, read the RTC and
Pentium cycle counter, and compared the values to the
initial reading, then calculated the elapsed time. This
was done until the resulting value converged. By loop-
ing until the value converged, we were able to eliminate,
to an arbitrary degree of accuracy, the delay of reading
the RTC register over the PCI bus.

Once we calibrated the RTC register period, we
timed the NIC transmit time by subtracting the RTC
time from the variable storing the total transmit time
as soon as the NIC noticed that a packet was added to
the send queue. Then as soon as the transmit DMA was
completed, we added the value of the RTC register to
this variable. This was done for sending 10,000 pack-
ets, then this value was read by the host and divided by
10,000. To make sure that no other packets were sent
during this time, such as credit packets, the FM library
code was modified to prevent such packets from being
sent.



Note that tsepng + txmit does not include the time
between when the host finishes copying the packet to
the NIC and when the NIC notices that the packet is
there. We expect this time to be small.

We timed the interval for the NIC to receive a mes-
sage and DMA it to the host similarly to how we timed
the tx i value. We took the time from when the NIC
started the DMA from the network to a receive buffer,
until the packet had finished being DMAed to the host.
We then timed the interval for the host to perform the
copy of the packet from the DMA region where the NIC
had placed it, to the application buffer. We took the
sum of these two measurements for the value of tgecy-

Note that this time does not include the network
latency, which should be very small because we have
only one switch, and the time from when the NIC fin-
ishes DM Aing the packet until when the host notices
that the packet is there. Again, we feel that this should
be a small value.
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