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ABSTRACT

In the past decade several high-speed networks have been introduced, each su-

perseding the others with respect to raw performance, communication features and

capabilities. However, such aggressive initiative is accompanied by an increasing

divergence in the communication interface or “language” used by each network. Ac-

cordingly, portability for applications across these various network languages has

recently been a topic of extensive research. Programming models such as the Sockets

Interface, Message Passing Interface (MPI), Shared memory models, etc., have been

widely accepted as the primary means for achieving such portability.

This dissertation investigates the different design choices for implementing one

such programming model, i.e., Sockets, in various high-speed network environments

(e.g., InfiniBand and 10-Gigabit Ethernet). Specifically, the dissertation targets three

important sub-problems: (a) designing efficient sockets implementations to allow ex-

isting applications to be directly and transparently deployed on to clusters connected

with high-speed networks; (b) analyzing the limitations of the sockets interface in

various domains and extending it with features that applications need but are cur-

rently missing; and (c) designing a communication substrate to allow compatibility

between various kinds of protocol stacks belonging to a common network family (e.g.,

Ethernet). The proposed stack comprising of the above mentioned three components,

ii



allows development of applications and other upper layers in an efficient, seamless and

globally compatible manner.
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CHAPTER 1

INTRODUCTION

The last couple of decades have seen great advances in every part of machine and

computer technology. Computers have become ubiquitous in every area, whether in-

dustry or research, and now impact every aspect of human life. In early 70s, when

standard computers were gaining popularity among researchers, it was realized that

there was a need for more powerful machines that could solve problems that were too

complex and massive for standard computers. This realization led to the develop-

ment of ‘Supercomputers’ – advanced and powerful machines consisting of multiple

processing units. Cray-1, developed by Cray Research was one such powerful su-

percomputer. As supercomputers and computer technology evolved, there has been

an exponential growth in the demands by applications. The high cost for designing,

developing and maintaining these supercomputers, for meeting the high performance

application demands, led researchers to seek an alternative to these supercomputers

in the form of cluster-based systems or clusters in short.

Clusters consist of cheap commodity-off-the-shelf (COTS) PCs connected together

with network interconnects. These PCs interact with each other over the network to

project themselves as fast ‘Supercomputers’ whose aggregate capability is much higher

than any of the individual PCs. Such clusters are becoming increasingly popular
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in various application domains mainly due to their high performance-to-cost ratio.

These systems can now be designed for all levels of performance, due to the increasing

performance of commodity processors, memory and network technologies. Out of the

current Top 500 Supercomputers, 149 systems are clusters [51].

Since a cluster-based system relies on multiple inexpensive PCs interacting with

each other over the network, the capability of the network (the hardware as well as the

associated communication software) forms a critical component in its efficiency and

scalability. Figure 1.1 shows typical environments used by parallel and distributed

computing applications. Environments can range from localized clusters, to multiple

assorted clusters connected over WANs or High-speed backbone networks.

(a)

WAN

Myrinet−based Cluster

InfiniBand−based Cluster

10−Gigabit Ethernet Cluster

(b)

InfiniBand−based Cluster

Myrinet−based Cluster

10−Gigabit Ethernet Cluster

Back−bone Network
High Speed

(c)

Figure 1.1: Typical Environments for Distributed and Parallel Applications:(a) Com-
munication within the cluster environment, (b) Inter-Cluster Communication over a
WAN and (c) Inter-Cluster Communication over a High-Speed Backbone Network

In the past few years, a number of high-speed networks including Gigabit [46] and

10-Gigabit Ethernet [52, 45], GigaNet cLAN [54], InfiniBand (IB) [10], Myrinet [24],
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Quadrics [4], etc., have been introduced in the market. With the advent of such multi-

gigabit per second speed networks, the communication overhead in cluster systems

is shifting from the network itself to the networking protocols on the sender and the

receiver sides. Earlier generation networking protocols such as TCP/IP [78, 81] relied

upon the kernel for processing the messages. This caused multiple copies and ker-

nel context switches in the critical message passing path. Thus, the communication

overhead was high. During the last few years, researchers have been looking at alter-

natives to increase the communication performance delivered by clusters in the form

of low-latency and high-bandwidth user-level protocols such as FM [68] and GM [42]

for Myrinet, EMP [76, 77] for Gigabit Ethernet, etc. To standardize these efforts, in

the late 90s, the Virtual Interface Architecture (VIA) [27, 3, 54] was proposed; but it

was able to achieve only limited success. The industry has recently standardized the

InfiniBand Architecture to design next generation high-end clusters. All these devel-

opments are reducing the gap between the performance capabilities of the physical

network and that obtained by the end users.

However, each of these new networks and user-level protocols exposes a new ‘Ap-

plication Programing Interface (API)’ or “language” for the user to interact with.

While these new APIs can be efficiently used to develop new applications, they may

not be beneficial for the already existing applications which were developed over

a span of several years. Application developers while writing applications aim for

portability across various future platforms and networks. Programming models such

as the Message Passing Interface (MPI) [60] and the Sockets Interface have been

widely accepted as a feasible approach to achieve such portability.
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For the last several years, MPI has been the de facto standard for scientific ap-

plications. The Sockets Interface, on the other hand, has been the most widely used

programming model for traditional scientific applications, commercial applications,

file and storage systems, etc.

1.1 The Sockets Interface: Open Challenges and Issues

While several networks provide interesting features, traditionally the sockets layer

had been built on top of the host based TCP/IP protocol stack. Thus, sockets based

applications have not been able to take advantage of the performance provided by

the high speed networks. High-speed networks on the other hand, together with raw

network performance, provide a lot of additional features such as offloaded protocol

stacks, one-sided communication operations, atomic operations and so on.

At this point, the following open questions arise:

• What are the design challenges involved in mapping the offloaded protocols

offered by the high performance networks to the requirements of the sockets

semantics?

• What are the issues associated with the high performance sockets layers over

high performance networks? What impact can they have at the applications?

What is missing in the sockets API?

• Networks such as Ethernet provide multiple flavors each differing from the other

with respect to the wire-protocol or language they speak on the wire. Is it

possible for a sockets implementation to allow transparent wire compatibility
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for such different flavors of the networks while retaining the highest possible

performance?

1.2 Problem Statement

As indicated earlier, the traditional protocol stacks such as TCP/IP have not been

able to meet the high speeds provided by the current and the upcoming multi-gigabit

per second networks. This is mainly associated with the high overhead implementa-

tion of the protocol stack itself together with the multiple copies and kernel context

switches in the critical message passing path. Hardware-offloaded protocol stacks or

Protocol Offload Engines (POEs) try to alleviate this problem by offloading either

TCP/IP or some other protocol stack on to the network adapter. Sockets protocol

stack implementations allow applications to access these offloaded protocol stacks

without requiring any modifications. Figure 1.2 demonstrates the traditional ap-

proaches and our proposed sockets protocol stack approach for allowing compatibility

for sockets based applications.

Sockets Layer

TCP

IP

Sockets Application

Network Interface Card

Kernel Space

User Space

Hardware

Device Driver

(a)

Copy
Zero

Sockets ApplicationUser Space

Kernel Space

Sockets Layer

TCP

IP

IP to High Performance Network Layer

High Performance Network

(e.g., InfiniBand, 10−Gigabit Ethernet)

Hardware
RDMA

Offloaded
Protocol

(b)

High Performance Network

User Space

Kernel Space Kernel Agent

Hardware

(e.g., InfiniBand, 10−Gigabit Ethernet)

RDMA Copy
ZeroOffloaded

Protocol

Sockets Application

Sockets Protocol Stack

Native Network Protocol

(c)

Figure 1.2: Approaches to the Sockets Interface: (a) Traditional, (b) Mapping IP to
the offloaded protocol layers (such as VIA and IBA), and (c) Mapping the Sockets
layer to the User-level protocol

5



The traditional communication architecture involves just the application and the

libraries in user space, while protocol implementations such as TCP/UDP, IP, etc

reside in kernel space (Figure 1.2(a)). This approach not only entails multiple copies

for each message, but also requires a context switch to the kernel for every communi-

cation step, thus adding a significant overhead. Most of the network adapters which

do not feature any offloaded protocol stack implementations (also known as dumb

NICs) use this style of architecture.

For high performance network adapters which have protocol stacks offloaded on

hardware, researchers have been coming out with different approaches for providing

the sockets interface. One such approach was used by GigaNet Incorporation [54]

(now known as Emulex) to develop their LAN Emulator (LANE) driver to support

the TCP stack over their VIA-aware cLAN cards. Similarly, Mellanox Corporation

uses an IP over InfiniBand (IPoIB) [2] driver to support the TCP stack on their

InfiniBand aware network adapters. These drivers use a simple approach. They

provide an IP to offloaded protocol layer (e.g., IP-to-VI layer for VI NICs) which maps

IP communications onto the NIC (Figure 1.2(b)). However, TCP is still required for

reliable communications, multiple copies are necessary, and the entire setup is in the

kernel as with the traditional architecture outlined in Figure 1.2(a). Although this

approach gives us the required compatibility with existing sockets implementations,

it can not be expected to give any performance improvement.

The sockets protocol stack based solution creates an intermediate layer which

maps the sockets library onto the offloaded protocol stack provided by the network

adapter. This layer ensures the highest possible performance without necessitating
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any changes. Figure 1.2(c) provides an overview of the proposed Sockets Protocol

Stack architecture.

1.3 Dissertation Overview

Keeping in mind the issues associated with the basic high performance sockets

implementations, we propose a multi-component integrated framework with the fol-

lowing capabilities:

1. The framework should allow applications to not only run directly on the high-

speed networks without any modifications, but also be able to extract the best

performance from the network.

2. Instead of blindly following the sockets interface, the framework should encom-

pass the key features provided by high-speed networks into an extended sockets

interface. This would allow users to make changes to their applications as and

when required and not place it as a primary requirement for them to run, i.e.,

the application writers will need to modify only the segments of the code which

they feel are critical for performance without having to rewrite the entire ap-

plication.

3. The framework should maintain wire-protocol compatibility between different

networks belonging to a common family (e.g., different Ethernet networks). This

ensures that applications can directly and transparently execute on a cluster

which has multiple networks while retaining most of the performance of the

networks.
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Figure 1.3: The Proposed Framework: (a) Existing Infrastructure for sockets based
applications, (b) High Performance sockets component to take advantage of the of-
floaded protocol stacks, (c) Extended sockets component to encompass the most rel-
evant features provided by high-speed networks into the sockets interface and (d)
Wire-protocol compatibility component to achieve transparent interaction between
different flavors of a common network such as Ethernet.
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The focus of this dissertation is to provide an integrated framework known as the

sockets protocol stack, which provides a high-performance, feature rich and globally

compatible middleware for existing sockets-based applications to take advantage of.

Figure 1.3 shows the existing sockets implementation (Figure 1.3(a)) together with

the proposed stack comprising of three major components: (i) the high performance

sockets component, (ii) the extended sockets component and (iii) the wire protocol

compatibility component.

The High-performance sockets component (Figure 1.3(b)) forms the core of the

sockets protocol stack. This component has two major goals: (i) to provide trans-

parent compatibility for existing sockets-based applications over high-speed networks

and (ii) to achieve such compatibility by retaining most of the performance provided

by the networks by utilizing hardware-offloaded protocol stacks. Chapters 2 to 8 deal

with the various design aspects and evaluations associated with this component.

The extended sockets component (Figure 1.3(c)) is primarily an extension of the

high-performance sockets component. It questions the semantics of the existing sock-

ets interface with respect to its capabilities in several scientific as well as commercial

applications. Specifically, we perform detailed analysis in different environments and

extend the sockets interface appropriately to be most beneficial in these environments.

Chapters 9 and 10 deal with this component.

While achieving the best performance is highly desired, this has to be done in a

globally compatible manner, i.e., all networks should be able to transparently take

advantage of the proposed performance enhancements while interacting with each

other. This, of course, is an open problem. In the wire-protocol compatibility com-

ponent (Figure 1.3(d)), we pick a subset of this problem to provide such compatibility

9



within the Ethernet family while trying to maintain most of the performance of the

networks. Chapters 11 and 12 will deal with this component.

Conclusions and future research directions are indicated in Chapter 13.
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CHAPTER 2

HIGH-PERFORMANCE USER-LEVEL SOCKETS OVER
GIGABIT ETHERNET

Ethernet Message Passing (EMP) protocol [76, 77] is a high-performance protocol

over Gigabit Ethernet (GigE) [46] that was developed by the Ohio Supercomputer

Center and the Ohio State University. It provides a low overhead user-level protocol

similar to VIA [27, 3, 54] to allow applications to utilize the capability and perfor-

mance of the network. While such low-overhead protocols are good for writing new

applications, it might not be so beneficial for the already existing applications written

over standard interfaces such as sockets, that were developed over a span of several

years.

In this research, we take on a challenge of developing a low overhead, user-level

high-performance sockets interface on Gigabit Ethernet which uses EMP as the un-

derlying protocol. There is no exact parallel between EMP and TCP/IP or UDP/IP.

We analyze the semantic mismatches between the two protocols like connection man-

agement and unexpected message arrival to name a few. To capture these differences,

we suggest various approaches for two commonly used options with sockets, namely

data streaming and datagram. Finally, we suggest several performance enhancement

techniques while providing these options and analyze each of them in detail.
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Using our approach one will be able to transport the benefits of Gigabit Ethernet

to the existing sockets application without necessitating changes in the user appli-

cation itself. Our sockets interface is able to achieve a latency of 28.5 µs for the

Datagram sockets and 37 µs for Data Streaming sockets compared to a latency of

120 µs obtained by TCP for 4-byte messages. We also attained a peak bandwidth of

around 840 Mbps using our interface. In addition we tested our implementation on

real applications like the File Transfer Protocol (FTP) and the Apache Web Server [6].

For FTP we got almost twice the performance benefit as TCP while Apache showed

as much as six times performance enhancement.

2.1 Overview of EMP

In the past few years, a large number of user-level protocols have been developed

to reduce the gap between the performance capabilities of the physical network and

that achievable by an application programmer. The Ethernet Message Passing (EMP)

protocol specifications have been developed at the Ohio Supercomputing Center and

the Ohio State University to fully exploit the benefits of GigE.

EMP is a complete zero-copy, OS-bypass, NIC-level messaging system for GigE

(Figure 2.2). This is the first protocol of its kind on GigE. It has been implemented on

a network interface chip-set based around a general purpose embedded microprocessor

design called the Tigon2 [65] (produced by Alteon Web Systems, now owned by Nortel

Networks). This is a fully programmable NIC, whose novelty lies in its two CPUs on

the NIC. Figure 2.1 provides an overview of the Alteon NIC architecture.

In EMP, message transmission follows a sequence of steps (Figure 2.2). First the

host posts a transmit descriptor to the NIC (T1), which contains the location and
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Figure 2.1: The Alteon NIC Architecture

length of the message in the host address space, destination node, and an application

specified tag. Once the NIC gets this information (T2-T3), it DMAs this message

from the host (T4-T5), one frame at a time, and sends the frames on the network.

Message reception follows a similar sequence of steps (R1-R6) with the difference

that the target memory location in the host for incoming messages is determined by

performing tag matching at the NIC (R4). Both the source index of the sender and

an arbitrary user-provided 16-bit tag are used by the NIC to perform this matching,

which allows EMP to make progress on all messages without host intervention.

EMP is a reliable protocol. This mandates that for each message being sent, a

transmission record be maintained (T3). This record keeps track of the state of the

message including the number of frames sent, a pointer to the host data, the sent

frames, the acknowledged frames, the message recipient and so on.
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Similarly, on the receive side, the host pre-posts a receive descriptor at the NIC

for the message which it expects to receive (R1). Here, the state information which is

necessary for matching an incoming frame is stored (R4). Once the frame arrives (R3),

it is first classified as a data, header, acknowledgment or a negative acknowledgment

frame. Then it is matched to the pre-posted receive by going through all the pre-

posted records (R4). If the frame does not match any pre-posted descriptor, it is

dropped. Once the frame has been correctly identified the information in the frame

header is stored in the receive data structures for reliability and other bookkeeping

purposes (R4). For performance reasons, acknowledgments are sent for a certain

window size of frames. In our current implementation, this was chosen to be four.

Once the receive records are updated, the frame is scheduled for DMA to the host

using the DMA engine of the NIC (R6).

EMP is a zero-copy protocol as there is no buffering of the message at either the

NIC or the host, in both the send and receive operations. It is OS bypass in that the

kernel is not involved in the bulk of the operations. However, to ensure correctness,

each transmit or receive descriptor post must make a call to the operating system for

two reasons. First, the NIC accesses host memory using physical addresses, unlike

the virtual addresses which are used by application programs. Only the operating

system can make this translation. Second, the pages to be accessed by the NIC must

be pinned in physical memory to protect against the corruption that would occur

if the NIC wrote to a physical address which no longer contained the application

page due to kernel paging activity. We do both operations in a single system call

(T2/R2). One of the main features of this protocol is that it is a complete NIC
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Figure 2.2: EMP protocol architecture showing operation for transmit (left), and
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based implementation. This gives maximum benefit to the host in terms of not just

bandwidth and latency but also CPU utilization.

EMP has two implementations. One which has been implemented on the single

CPU of the NIC and the other utilizing both the CPUs of the Alteon NIC. In this

chapter we have evaluated the performance of the Sockets programming model over

EMP for the second implementation of EMP (using both the CPUs on the NIC).

2.2 Current Approaches

The traditional communication architecture involves just the application and the

libraries in user space, while protocol implementations such as TCP/IP, UDP/IP,

etc., reside in kernel space (Figure 2.3(a)). The kernel-based protocol stacks interact

with network-specific device drivers (which also reside in the kernel) to communicate

with the appropriate network adapter. Most of the protocol processing is handled
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by the TCP/IP or UDP/IP stacks; the device drivers typically perform the mini-

mal functionality of transmitting and receiving segments smaller than the maximum

transmission unit (MTU) of the network in an unreliable fashion.

This approach is simple and can be easily ported to different network adapters

using various device drivers. However, this approach does not fully utilize the capa-

bilities of high-speed networks. In particular, it does not take advantage of hardware-

offloaded protocol stack and advanced features provided by the network. Hence its

performance is restricted by the implementation of the TCP/IP and UDP/IP stacks.

Most current networks, including the Alteon NICs, use this style of architecture.

The device driver these NICs use is known as the Acenic driver.

The motivation for our work is to provide a high performance sockets layer over

Gigabit Ethernet given the advantages associated with Gigabit Ethernet.
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To be able to take advantage of the high performance offered by GigE, two impor-

tant changes are required from the traditional sockets implementation. First, the TCP

and IP layers must be removed to avoid message copies, which requires implementing

a sockets library directly on top of a high-performance protocol for GigE (e.g., EMP,

M-VIA [3]). Second, the entire interface library must exist in user space, to avoid the

additional context switch to the kernel for every communication, in essence removing

the kernel from the critical path.

M-VIA, while providing a high-performance VIA interface over Gigabit Ethernet,

is a kernel-based protocol. Hence, due to kernel context switches on every data

transfer event, it will not be able to exploit the complete benefits of Gigabit Ethernet.

To the best of our knowledge EMP is the only complete OS-bypass, zero-copy and

NIC-driven protocol over Gigabit Ethernet. Thus, we focus our research on the EMP

protocol.

The solution proposed in this chapter creates an intermediate layer which maps

the sockets library onto EMP. This layer ensures that no change is required to the

application itself. This intermediate layer will be referred to as the “EMP Substrate”.

Figure 2.3(b) provides an overview of the proposed Sockets-over-EMP architecture.

2.3 Design Challenges

While implementing the substrate to support sockets applications on EMP, we

faced a number of challenges. In this section, we mention a few of them, discuss the

possible alternatives, the pros and cons of each of the alternatives and the justifica-

tions behind the solutions.
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2.3.1 API Mismatches

The mismatches between TCP/IP and EMP are not limited to the syntax alone.

The motivation for developing TCP/IP was to obtain a reliable, secure and fault

tolerant protocol. However, EMP was developed to obtain a low-overhead protocol

to support high performance applications on Gigabit Ethernet.

While developing the EMP substrate to support applications written using the

sockets interface (on TCP/IP and UDP/IP), it must be kept in mind that the appli-

cation was designed around the semantics of TCP/IP. We have identified the following

significant mismatches in these two protocols and given solutions so as to maintain

the semantics for each of the mismatches with regard to TCP/IP. More importantly,

this has been done without compensating much on the performance given by EMP.

Connection Management

TCP/IP is a connection based protocol, unlike EMP, i.e., in TCP/IP, when a

connection request is sent to the server, it contains important information about the

client requesting the connection. Thus, in our approach, though explicit connection

establishment is not required, we still need to carry out a three-way handshake in

order to ensure that all the relevant information has been appropriately exchanged.

However, this puts an additional requirement on the substrate to post descriptors

for the connection management messages too. When the application calls the listen()

call, the substrate posts a number of descriptors equal to the usual sockets parameter

of a backlog which limits the number of connections that can be simultaneously

waiting for an acceptance. When the application calls accept(), the substrate blocks

on the completion of the descriptor at the head of the backlog queue.
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Unexpected message arrivals

Like most other user-level protocols, EMP has a constraint that before a message

arrives, a descriptor must have been posted so that the NIC knows where to DMA the

arriving message. However, EMP is a reliable protocol. So, when a message arrives,

if a descriptor is not posted, the message is dropped by the receiver and eventually

retransmitted by the sender. This facility relaxes the descriptor posting constraint

to some extent. However, allowing the nodes to retransmit packets indefinitely might

congest the network and harm performance. Posting a descriptor before the message

arrives is not essential for the functionality, but is crucial for performance issues. In

our solution, we explicitly handle unexpected messages at the substrate, and avoid

these retransmissions. We examined three separate mechanisms to deal with this.

Separate Communication Thread: In the first approach, we post a number

of descriptors on the receiver side and have a separate communication thread which

watches for descriptors being used and reposts them. This approach was evaluated

and found to be too costly. With both threads polling, the synchronization cost of the

threads themselves comes to about 20 µs. Also, the effective percentage of CPU cycles

the main thread can utilize would go down to about 50%, assuming equal priority

threads. In case of a blocking thread, the Operating System scheduling granular-

ity makes the response time too coarse (order of milliseconds) for any performance

benefit.

Rendezvous Approach: The second approach (similar to the approach indi-

cated by [58]) is through rendezvous communication with the receiver as shown in

Figure 2.4. Initially, the receive side posts a descriptor for a request message, not

for a data message. Once the sender sends the request, it blocks until it receives an
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acknowledgment. The receiver on the other hand, checks for the request when it en-

counters a read() call, and posts two descriptors – one for the expected data message

and the other for the next request, and sends back an acknowledgment to the sender.

The sender then sends the data message.

Effectively, the sender is blocked till the receiver has synchronized and once this

is done, it is allowed to send the actual data message. This adds an additional

synchronization cost in the latency.

SQ RQ SQ RQ
Sender Receiver

Request

Ack

Data

Figure 2.4: Rendezvous approach

Eager with Flow Control: This approach is similar to the rendezvous approach.

The receiver initially posts a descriptor. When the sender wants to send a data

message, it goes ahead and sends the message. However, for the next data message,

it waits for an acknowledgment from the receiver confirming that another descriptor

has been posted. Once this acknowledgment has been received, the sender can send

the next message. On the receiver side, when a data message comes in, it uses up
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the pre-posted descriptor. Since this descriptor was posted without synchronization

with the read() call in the application, the descriptor does not point to the user

buffer address, but to some temporary memory location. Once the receiver calls the

read() call, the data is copied into the user buffer, another descriptor is posted and

an acknowledgment is sent back to the sender. This involves an extra copy on the

receiver side. Figure 2.5 illustrates the eager approach with flow control.

SQ RQ SQ RQ
Sender Receiver

Ack

Data

Data

Figure 2.5: Eager with Flow Control

In Section 2.4.1, we propose an extension of this idea (with additional credits) to

enhance its performance.

The first solution, using a separate communication thread, was not found to give

any significant benefit in performance. However, the second and third approaches,

namely the rendezvous and eager with flow control respectively, were found to give

significant benefit in latency and bandwidth. Both these approaches have been im-

plemented in the substrate, giving the user an option of choosing either one of them.
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2.3.2 Overloading function name-space

Applications built using the sockets interface use a number of standard UNIX

system calls including specialized ones such as listen(), accept() and connect(), and

generic overloaded calls such as open(), read() and write(). The generic functions

are used for a variety of external communication operations including local files,

named pipes and other devices. In the substrate, these calls were mapped to the

corresponding EMP calls (sets of calls).

In our approaches, we override the libc library to redirect these calls to the EMP

substrate. For most cases, such overriding can be done using environment variables

(e.g., LD PRELOAD). This is the most non-intrusive approach for using the EMP

substrate and can provide transparent high performance even for applications avail-

able only in binary format. For cases where the relevant symbols in the libc library are

statically compiled into the application executable, the environment variable based

approach will not be applicable. In this case, the application will have to be recom-

piled with the EMP substrate.

It is to be noted that in both these approaches, the application is not modified

at all. However, the second approach requires recompilation of the application while

the first approach does not require any recompilation either.

2.4 Performance Enhancement

While implementing the substrate, the functionality of the calls was taken into

account so that the application does not have to suffer due to the changes. However,

these adjustments do affect the performance the substrate is able to deliver. In order

to improve the performance given by the substrate, we have come up with some

22



SQ RQ SQ RQ
Sender Receiver

Data

Data

Ack

Ack

Pre−posted
Descriptors

N

Figure 2.6: The Credit Based Approach

techniques, which are summarized below. More details on these techniques are are

included in [16].

2.4.1 Credit-based flow control

As mentioned earlier (Section 2.3.1), the scheme we have chosen for handling

unexpected messages can be extended to enhance its performance.

The sender is given a certain number of credits (tokens). It loses a token for every

message sent and gains a token for every acknowledgment received. If the sender is

given N credits, the substrate has to make sure that there are enough descriptors and

buffers pre-posted for N unexpected message arrivals on the receiver side. In this way,

the substrate can tolerate up to N outstanding write() calls before the corresponding

read() for the first write() is called (Figure 2.6).

One problem with applying this algorithm directly is that the acknowledgment

messages also use up a descriptor and there is no way the receiver would know when

it is reposted, unless the sender sends back another acknowledgment, thus forming a

cycle. To avoid this problem, we have proposed the following solutions:
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Blocking the send: In this approach, the write() call is blocked until an ac-

knowledgment is received from the receiver, which would increase the time taken for

a send to a round-trip latency.

Piggy-back acknowledgment: In this approach, the acknowledgment is sent

along with the next data message from the receiver node to the sender node. This

approach again requires synchronization between both the nodes. Though this ap-

proach is used in the substrate when a message is available to be sent, we cannot

always rely on this approach and need an explicit acknowledgment mechanism too.

Post more descriptors: In this approach, 2N number of descriptors are posted

where N is the number of credits given. It can be proved that at any point of time,

the number of unattended data and acknowledgment messages will not exceed 2N .

On the basis of the same, this approach was used in the substrate.

2.4.2 Disabling Data Streaming

As mentioned earlier, TCP supports the data streaming option, which allows the

user to read any number of bytes from the socket at any time (assuming that at-least

so many bytes have been sent). To support this option, we use a temporary buffer

to contain the message as soon as it arrives and copy it into the user buffer as and

when the read() call is called. Thus, there would be an additional memory copy in

this case.

However, there are a number of applications (e.g., those using UDP/IP datagram

sockets) which do not need this option. To improve the performance of these appli-

cations, we have provided an option in the substrate which allows the user to disable

this option. In this case, we can avoid the memory copy for larger message sizes by
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switching to the rendezvous approach to synchronize with the receiver and DMA the

message directly to the user buffer space.

2.4.3 Delayed Acknowledgments

To improve performance, we delay the acknowledgments so that an acknowledg-

ment message is sent only after half the credits have been used up, rather than after

every message. This reduces the overhead per byte transmitted and improves the

overall throughput.

These delayed acknowledgments bring about an improvement in the latency too.

When the number of credits given is small, half of the total descriptors posted are

acknowledgment descriptors. So, when the message arrives, the tag matching at the

NIC takes extra time to walk through the list that includes all the acknowledgment

descriptors. This time was calculated to be about 550 ns per descriptor. However,

with the increase in the number of credits given, the fraction of acknowledgment de-

scriptors decreases, and thus reducing the effect of the time required for tag matching.

2.4.4 EMP Unexpected Queue

EMP supports a facility for unexpected messages. The user can post a certain

number of unexpected queue descriptors, and when the message comes in, if a descrip-

tor is not posted, the message is put in the unexpected queue and when the actual

receive descriptor is posted, the data is copied from this temporary memory location

to the user buffer. The advantage of this unexpected queue is that the descriptors

posted in this queue are the last to be checked during tag matching, which means

that access to the more time-critical pre-posted descriptors is faster.
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The only disadvantage with this queue is the additional memory copy which occurs

from the temporary buffer to the user buffer. In our substrate, we use this unexpected

queue to accommodate the acknowledgment buffers. The memory copy cost is not

a concern, since the acknowledgment messages do not carry data payload. Further,

there is the additional advantage of removing the acknowledgment messages from the

critical path.

These enhancements have been incorporated in the substrate and are found to

give a significant improvement in the performance.

2.5 Performance Results

The experimental test-bed included 4 Pentium III 700MHz Quads, each with a

Cache Size of 1MB and 1GB main memory. The interconnect was a Gigabit Ethernet

network with Alteon NICs on each machine connected using a Packet Engine switch.

The linux kernel version used was 2.4.18.

2.5.1 Implementation Alternatives

This section gives the performance evaluation of the basic substrate without any

performance enhancement and shows the advantage obtained incrementally with each

performance enhancement technique.

In Figure 2.7 the basic performance given by the substrate for data streaming

sockets is labeled as DS and that for datagram sockets is labeled as DG. DS DA

refers to the performance obtained by incorporating Delayed Acknowledgments as

mentioned in Section 5.3. DS DA UQ refers to the performance obtained with both

the Delayed Acknowledgments and the Unexpected Queue option turned on (Sec-

tion 2.4). For this experiment, for the Data Streaming case, we have chosen a credit
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size of 32 with each temporary buffer of size 64KB. With all the options turned on,

the substrate performs very close to raw EMP. The Datagram option performs the

closest to EMP with a latency of 28.5 µs (an overhead of as low as 1 µs over EMP)

for 4-bytes messages. The Data Streaming option with all enhancements turned on,

is able to provide a latency of 37 µs for 4-byte messages.

20

40

60

80

100

120

140

160

180

4 16 64 256 1024 4096

T
im

e 
(u

s)

Message Size (bytes)

DS
DS_DA

DS_DA_UQ
DG

EMP

Figure 2.7: Micro-Benchmarks: Latency

Figure 2.8 shows the drop in latency with delayed acknowledgment messages. The

reason for this is the decrease in the amount of tag matching that needs to be done at

the NIC with the reduced number of acknowledgment descriptors. For a credit size

of 1, the percentage of acknowledgment descriptors would be 50%, which leads to an

additional tag matching for every data descriptor. However, for a credit size of 32,

the percentage of acknowledgment descriptors would be 6.25%, thus reducing the tag

matching time.
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The bandwidth results have been found to stay in the same range with each

performance evaluation technique.

2.5.2 Latency and Bandwidth

Figure 9.3 shows the latency and the bandwidth achieved by the substrate com-

pared to TCP. The Data Streaming label corresponds to DS DA UQ (Data Streaming

sockets with all performance enhancements turned on).

Again, for the data streaming case, a credit size of 32 has been chosen with each

temporary buffer of size 64 Kbytes. In default, TCP allocates 64 Kbytes of kernel

space for the NIC to use for communication activity. With this amount of kernel

space, TCP has been found to give a bandwidth of about 340 Mbps. However, since

the modern systems allow much higher memory registration, we changed the kernel

space allocated by TCP for the NIC to use. With increasing buffer size in the kernel,

TCP is able to achieve a bandwidth of about 550 Mbps (after which increasing the
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Figure 2.9: Micro-Benchmark Results: Latency (left) and Bandwidth (right)

kernel space allocated does not make any difference). Further, this change in the

amount of kernel buffer allocated does not affect the latency results obtained by TCP

to a great extent.

The substrate is found to give a latency as low as 28.5 µs for Datagram sockets

and 37 µs for Data Streaming sockets achieving a performance improvement of 4.2

and 3.4 respectively, compared to TCP. The peak bandwidth achieved was above

840Mbps with the Data Streaming option.

2.5.3 FTP Application

We have measured the performance of the standard File Transfer Protocol (ftp)

given by TCP on Gigabit Ethernet and our substrate. To remove the effects of disk

access and caching, we have used RAM disks for this experiment.

With our substrate, the FTP application takes 6.84 secs for Data Streaming and

Datagram sockets, compared to the 11.8 secs taken by TCP for transferring a 512MB

file. For small files, FTP takes 13.6 µs for Data Streaming and Datagram sockets,

compared to the 25.6 µs taken by TCP.
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The application is not able to achieve the peak bandwidth illustrated in Sec-

tion 2.5.2, due to the File System overhead.

There is a minor variation in the bandwidth achieved by the data streaming

and the datagram options in the standard bandwidth test. The overlapping of the

performance achieved by both the options in the ftp application, is also attributed to

the file system overhead.

2.5.4 Web Server Application

We have measured the performance obtained by the Apache Web Server applica-

tion for a 4 node cluster (with one server and three clients).

The server keeps accepting requests from the clients. The clients connect to the

server and send in a HTTP request message. The server accepts the connection and

sends back a file of size S bytes to the client. We have shown results for S varying

from 4 bytes to 8 Kbytes. Once the message is sent, the connection is closed (as
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Figure 2.11: Web Server (HTTP/1.0)

per HTTP/1.0 specification). However, this was slightly modified in the HTTP/1.1

specification, which we also discuss in this section.

A number of things have to be noted about this application. First, the latency

and the connection time results obtained by the substrate in the micro-benchmarks

play a dominant role in this application. For connection management, we use a data

message exchange scheme as mentioned earlier. This gives an inherent benefit to the

Sockets-over-EMP scheme since the time for the actual connection establishment is

hidden.

Figure 2.11 gives the results obtained by the Web Server application following the

HTTP/1.0 specifications.

In the substrate, once the “connection request” message is sent by the substrate,

the application can start sending the data messages. This reduces the connection time

of the substrate to the time required by a message exchange. However, in TCP/IP,

the connection time requires intervention by the kernel and is typically about 200 to

31



250 µs. To cover this disadvantage, TCP has the following enhancements: the HTTP

1.1 specifications allow a node to make up to 8 requests on one connection. Even

with this specification, our substrate was found to perform better than TCP/IP.
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2.6 Summary

Ethernet forms a major portion of the world’s networks. Applications written

using the sockets library have not been able to take advantage of the high performance

provided by Gigabit Ethernet due to the traditional implementation of sockets on

kernel based protocols.

In this chapter, we have discussed the design of a low-overhead substrate to sup-

port socket based applications on EMP. For short messages, this substrate delivers a

latency of 28.5 µs for Datagram sockets and 37 µs for Data Streaming sockets com-

pared to a latency of 28 µs achieved by raw EMP. Compared to the basic TCP, latency
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obtained by this substrate shows performance improvement up to 4 times. A peak

bandwidth of over 840 Mbps is obtained by this substrate, compared to 550 Mbps

achieved by the basic TCP, a performance improvement by a percentage of up to

53%. For the FTP and Apache Web server applications, compared to the basic TCP

implementation, the new substrate shows performance improvement by a factor of 2

and 6, respectively. These results demonstrate that applications written using TCP

can be directly run on Gigabit Ethernet-connected cluster with this substrate.
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CHAPTER 3

IMPACT OF HIGH-PERFORMANCE SOCKETS ON
DATA INTENSIVE APPLICATIONS

Quite a number of research projects in high-end computing focus on development

of methods for solving challenging compute intensive applications in science, engi-

neering and medicine. These applications are generally run in batch mode and can

generate very large datasets. Advanced sensor technologies also enable acquisition of

high resolution multi-dimensional datasets. As a result, there is an increasing interest

in developing applications that interactively explore, synthesize and analyze large sci-

entific datasets [49]. In this chapter, we refer to these applications as data intensive

applications.

A challenging issue in supporting data intensive applications is that large volumes

of data should be efficiently moved between processor memories. Data movement

and processing operations should also be efficiently coordinated by a runtime sup-

port to achieve high performance. Together with a requirement in terms of good

performance, such applications also require guarantees in performance, scalability

with these guarantees, and adaptability to heterogeneous environments and varying

resource availability.
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Component-based frameworks [22, 32, 66, 70] have been able to provide a flexible

and efficient environment for data intensive applications on distributed platforms. In

these frameworks, an application is developed from a set of interacting software com-

ponents. Placement of components onto computational resources represents an im-

portant degree of flexibility in optimizing application performance. Data-parallelism

can be achieved by executing multiple copies of a component across a cluster of storage

and processing nodes [22]. Pipelining is another possible mechanism for performance

improvement. In many data intensive applications, a dataset can be partitioned into

user-defined data chunks. Processing of the chunks can be pipelined. While compu-

tation and communication can be overlapped in this manner, the performance gain

also depends on the granularity of computation and the size of data messages (data

chunks). Small chunks would likely result in better load balance and pipelining, but

a lot of messages are generated with small chunk sizes. Although large chunks would

reduce the number of messages and achieve higher communication bandwidth, they

would likely suffer from load imbalance and less pipelining.

A number of such frameworks have been developed using the sockets interface.

To support such applications on high performance user-level protocols without any

changes to the application itself, researchers have come up with various high perfor-

mance sockets implementations [16, 58, 74]. Applications written using kernel-based

sockets layers are often developed keeping the communication performance of TCP/IP

in mind. High performance substrates, on the other hand, have different performance

characteristics compared to kernel-based sockets layers. This becomes a fundamental

bottleneck in the performance such high performance substrates are able to deliver.

However, changing some components of an application, such as the size of the data
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chunks that make up the dataset, allows the applications to take advantage of the per-

formance characteristics of high performance substrates making them more scalable

and adaptable.

In this chapter, we study the efficiency and limitations of such a high performance

sockets implementation over the Virtual Interface Architecture (VIA), referred to here

as SocketVIA, in terms of performance and the flexibility it allows, in the context

of a component framework designed to provide runtime support for data intensive

applications, called DataCutter [22]. In particular, we investigate answers to the

following questions:

• Can high performance sockets allow the implementation of a scalable interactive

data-intensive application with performance guarantees to the end user?

• Can high performance sockets improve the adaptability of data-intensive appli-

cations to heterogeneous environments?

Our experimental results show that by reorganizing certain components of the

applications, significant improvements in performance can be obtained. This leads

to higher scalability of applications with performance guarantees. It also enables fine

grained load balancing, thus making applications more adaptable to heterogeneous

environments and varying resource availability.

3.1 Background

In this chapter, a brief overview of the Virtual Interface Architecture (VIA) [27,

3, 54], a widely used user level protocol is provided.
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Figure 3.1: VI Architectural Model

3.1.1 Virtual Interface Architecture

The Virtual Interface Architecture (VIA) has been standardized as a low latency

and high bandwidth user-level protocol for System Area Networks(SANs). A System

Area Network interconnects various nodes of a distributed computer system.

The VIA architecture mainly aims at reducing the system processing overhead

by decreasing the number of copies associated with a message transfer and removing

the kernel from the critical path of the message. This is achieved by providing every

consumer process a protected and directly accessible interface to the network named

as a Virtual Interface(VI). Figure 3.1 illustrates the Virtual Interface Architecture

model.
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Each VI is a communication endpoint. Two VIs on different nodes can be con-

nected to each other to form a logical bi-directional communication channel. An

application can have multiple VIs. Each VI has a Work queue consisting of send

and a receive Queue. A doorbell is also associated with each VI. Applications post

requests to these queues in the form of VIA descriptors. The posting of the request is

followed by ringing of the doorbell associated with the VI to inform the VI provider

about the new request. Each VI can be associated with a completion queue (CQ).

A completion queue can be associated with many VIs. Notification of the completed

request on a VI can optionally be directed to the completion queue associated with

it. Hence, an application can poll a single CQ instead of multiple work queues to

check for completion of a request.

A VIA descriptor is a data structure which contains all the information needed

by the VIA provider to process the request. Each VIA descriptor contains a Control

Segment (CS), zero or more Data Segments (DS) and possibly an Address Segment

(AS). When a request is completed, the Status field on the CS is marked complete.

Applications can check the completion of their requests by verifying this field. On

completion, these descriptors can be removed from the queues and reused for further

requests.

The Data segment of the descriptor contains a user buffer virtual address. The

descriptor gives necessary information including the data buffer address and length.

VIA requires that the memory buffers used in the data transfer be registered. This

allows the VI provider to pin down the virtual memory pages in physical memory

and avoid their swapping, thus allowing the network interface to directly access them
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without the intervention of the operating system. For each contiguous region of mem-

ory registered, the application (VI consumer) gets an opaque handle. The registered

memory can be referenced by the virtual address and the associated memory handle.

The VIA specifies two types of data transfer facilities: the traditional send and

receive messaging model and the Remote Direct Memory Access (RDMA) model.

In the send and receive model, each send descriptor on the local node has to

be matched with a receive descriptor on the remote node. Thus there is a one-to-

one correspondence between every send and receive operation. Failure to post a

receive descriptor on the remote node results in the message being dropped and if

the connection is a reliable connection, it might even result in the breaking of the

connection.

In the RDMA model, the initiator specifies both the virtual address of the local

user buffer and that of the remote user buffer. In this model, a descriptor does not

have to be posted on the receiver side corresponding to every message. The exception

to this case is when the RDMA Write is used in conjunction with immediate data, a

receive descriptor is consumed at the receiver end.

The VIA specification does not provide different primitives for Send and RDMA.

It is the VIA descriptor that distinguishes between the Send and RDMA. The Send

descriptor contains the CS and DS. In case of RDMA, the VI Send descriptor also

contains the AS. In the AS, the user specifies the address of the buffer at the destina-

tion node and the memory handle associated with that registered destination buffer

address.

There are two types of RDMA operations: RDMA Write and RDMA Read. In

the RDMA Write operation, the initiator specifies both the virtual address of the
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locally registered source user buffer and that of the remote destination user buffer.

In the RDMA Read operation, the initiator specifies the source of the data transfer

at the remote and the destination of the data transfer within a locally registered

contiguous memory location. In both cases, the initiator should know the remote

address and should have the memory handle for that address beforehand. Also, VIA

does not support scatter of data, hence the destination buffer in the case of RDMA

Write and RDMA Read has to be contiguously registered buffer. The RDMA Write

is a required feature of the VIA specification whereas the RDMA Read operation is

optional. Hence, the work done in this thesis exploits only the RDMA Write feature

of the VIA.

Since the introduction of VIA, many software and hardware implementations of

VIA have become available. The Berkeley VIA [27], Firm VIA [19], M-VIA [3], Server

Net VIA [50], GigaNet VIA [54] are among these implementations. In this chapter, we

use GigaNet VIA, a hardware implementation of VIA for experimental evaluation.

3.2 Overview of Data Intensive Applications

As processing power and capacity of disks continue to increase, the potential for

applications to create and store multi-gigabyte and multi-terabyte datasets is becom-

ing more feasible. Increased understanding is achieved through running analysis and

visualization codes on the stored data. For example, interactive visualization relies

on our ability to gain insight from looking at a complex system. Thus, both data

analysis and visual exploration of large datasets play an increasingly important role in

many domains of scientific research. We refer here to applications that interactively

query and analyze large scientific datasets as data-intensive applications.
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An example of data-intensive applications is digitized microscopy. We use the

salient characteristics of this application as a motivating scenario and a case study in

this chapter. The software support required to store, retrieve, and process digitized

slides to provide interactive response times for the standard behavior of a physical

microscope is a challenging issue [8, 31]. The main difficulty stems from handling of

large volumes of image data, which can range from a few hundreds of Megabytes to

several Gigabytes per image. At a basic level, the software system should emulate the

use of a physical microscope, including continuously moving the stage and changing

magnification. The processing of client queries requires projecting high resolution

data onto a grid of suitable resolution and appropriately composing pixels mapping

onto a single grid point.

Consider a visualization server for digitized microscopy. The client to this server

can generate a number of different types of requests. The most common ones are

complete update queries, by which a completely new image is requested, and partial

update query, by which the image being viewed is moved slightly or zoomed into. The

server should be designed to handle both types of queries.

Processing of data in applications that query and manipulate scientific datasets

can often be represented as an acyclic, coarse grain data flow, from one or more data

sources (e.g., one or more datasets distributed across storage systems) to processing

nodes to the client. For a given query, first the data of interest is retrieved from the

corresponding datasets. The data is then processed via a sequence of operations on

the processing nodes. For example, in the digitized microscopy application, the data

of interest is processed through Clipping, Subsampling, Viewing operations [21, 22].

Finally, the processed data is sent to the client.
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Data forming parts of the image are stored in the form of blocks or data chunks

for indexing reasons, requiring the entire block to be fetched even when only a part of

the block is required. Figure 3.2 shows a complete image being made up of a number

of blocks. As seen in the figure, a partial update query (the rectangle with dotted

lines in the figure) may require only part of a block. Therefore, the size and extent

of a block affect the amount of unnecessary data retrieved and communicated for

queries.

Figure 3.2: Partitioning of a complete image into blocks. A partial query (rectangle with
dotted lines) requires only a part of a block

3.3 Performance Issues in Runtime Support for Data Inten-
sive Applications

3.3.1 Basic Performance Considerations

For data-intensive applications, performance can be improved in several ways.

First, datasets can be declustered across the system to achieve parallelism in I/O

when retrieving the data of interest for a query. With good declustering, a query will
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hit as many disks as possible. Second, the computational power of the system can

be efficiently used if the application can be designed to exploit data parallelism for

processing the data. Another factor that can improve the performance, especially in

interactive exploration of datasets, is pipelined execution. By dividing the data into

chunks and pipelining the processing of these chunks, the overall execution time of

the application can be decreased. In many applications, pipelining also provides a

mechanism to gradually create the output data product. In other words, the user does

not have to wait for the processing of the query to be completed; partial results can

be gradually generated. Although this may not actually reduce the overall response

time, such a feature is very effective in an interactive setting, especially if the region

of interest moves continuously.

3.3.2 Message Granularity vs. Performance Guarantee

The granularity of the work and the size of data chunks affects the performance

of pipelined execution. The chunk size should be carefully selected by taking into

account the network bandwidth and latency (the time taken for the transfer of a

message including the protocol processing overheads at the sender and the receiver

ends). As the chunk size increases, the number of messages required to transfer the

data of interest decreases. In this case, bandwidth becomes more important than

latency. However, with a bigger chunk size, processing time per chunk also increases.

As a result, the system becomes less responsive, i.e., the frequency of partial/gradual

updates decreases. On the other hand, if the chunk size is small, the number of

messages increases. As a result, latency may become a dominant factor in the overall

efficiency of the application. Also, smaller chunks can result in better load balance

43



among the copies of application components, but communication overheads may offset

the performance gain.

Having large blocks allows a better response time for a complete update query due

to improved bandwidth. However, during a partial update query, this would result in

more data being fetched and eventually being wasted. On the other hand, with small

block size, a partial update query would not retrieve a lot of unnecessary data, but a

complete update query would suffer due to reduced bandwidth.

In addition to providing a higher bandwidth and lower latency, high perfor-

mance substrates have other interesting features as demonstrated in Figures 3.3(a)

and 3.3(b). Figure 3.3(a) shows that high performance substrates achieve a required

bandwidth at a much lower message size compared to kernel-based sockets layers such

as TCP/IP. For instance, for attaining bandwidth ‘B’, kernel-based sockets need a

message size of U1 bytes, whereas high performance substrates require a lower mes-

sage size of U2 bytes. Using this information in Figure 3.3(b), we observe that high

performance substrates result in lower message latency (from L1 to L2) at a message

size of U1 bytes. We also observe that high performance substrates can use a message

size of U2 bytes (from Figure 3.3(a)), hence further reducing the latency (from L2 to

L3) and resulting in better performance.

3.3.3 Heterogeneity and Load Balancing

Heterogeneity arises in several situations. First, the hardware environment may

consist of machines with different processing power and memory capacity. Second, the

resources can be shared by other applications. As a result, the availability of resources

such as CPU and memory can vary dynamically. In such cases, the application

44



Reqd. BW

U1U2

High Performance Substrate

Kernel−Based Sockets

Message Size

Bandwidth

(a)

U1U2

L2

L1

L3

Kernel−Based Sockets

High Performance SubstrateLatency

Message Size

(b)

Figure 3.3: (a) High Performance Substrates achieve a given bandwidth for a lower mes-
sage size compared to Kernel-Based Sockets, (b) High Performance Substrates can achieve
a direct and indirect improvement in the performance based on the application character-
istics

should be structured to accommodate the heterogeneous nature of the environment.

The application should be optimized in its use of shared resources and be adaptive

to the changes in the availability of the resources. This requires the application

to employ adaptive mechanisms to balance the workload among processing nodes

depending on the computation capabilities of each of them. A possible approach is

to adaptively schedule data and application computations among processing nodes.

The data can be broken up into chunks so as to allow pipelining of computation and

communication. In addition, assignment of data chunks to processing units can be

done using a demand-driven scheme (see Section 8.4.1) so that faster nodes can get

more data to process. If a fast node becomes slower (e.g., due to processes of other

applications), the underlying load balancing mechanism should be able to detect the

change in resource availability quickly.

3.4 Software Infrastructure used for Evaluation

In terms of application development and runtime support, component-based frame-

works [22, 32, 66, 70] can provide an effective environment to address performance
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issues in data intensive applications. Components can be placed onto different com-

putational resources, and task and data-parallelism can be achieved by pipelined

execution of multiple copies of these components. Therefore, we use a component-

based infrastructure, called DataCutter, which is designed to support data intensive

applications in distributed environments. We also employ a high performance sock-

ets interface, referred to here as SocketVIA, designed for applications written using

TCP/IP to take advantage of the performance capabilities of VIA.

3.4.1 DataCutter

In this section we briefly describe the DataCutter framework. DataCutter imple-

ments a filter-stream programming model for developing data-intensive applications.

In this model, the application processing structure is implemented as a set of com-

ponents, referred to as filters, that exchange data through a stream abstraction. The

interface for a filter, consists of three functions: (1) an initialization function (init),

in which any required resources such as memory for data structures are allocated

and initialized, (2) a processing function (process), in which user-defined operations

are applied on data elements, and (3) a finalization function (finalize), in which the

resources allocated in init are released.

Filters are connected via logical streams. A stream denotes a uni-directional data

flow from one filter (i.e., the producer) to another (i.e., the consumer). A filter is

required to read data from its input streams and write data to its output streams

only. We define a data buffer as an array of data elements transferred from one filter

to another. The original implementation of the logical stream delivers data in fixed

size buffers, and uses TCP for point-to-point stream communication.
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The overall processing structure of an application is realized by a filter group,

which is a set of filters connected through logical streams. When a filter group is

instantiated to process an application query, the runtime system establishes socket

connections between filters placed on different hosts before starting the execution of

the application query. Filters placed on the same host execute as separate threads.

An application query is handled as a unit of work (UOW) by the filter group. An

example is a visualization of a dataset from a viewing angle. The processing of a UOW

can be done in a pipelined fashion; different filters can work on different data elements

simultaneously. Processing of a UOW starts when the filtering service calls the filter

init function, which is where any required resources such as memory can be pre-

allocated. Next the process function is called to read from any input streams, work

on the data buffers received, and write to any output streams. A special marker is

sent by the runtime system after the last buffer to mark the end for the current UOW

(see Figure 8.6(a)). The finalize function is called after all processing is completed

for the current UOW, to allow release of allocated resources such as scratch space.

The interface functions may be called again to process another UOW.
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Figure 3.4: DataCutter stream abstraction and support for copies. (a) Data buffers
and end-of-work markers on a stream. (b) P,F,C filter group instantiated using trans-
parent copies.
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The programming model provides several abstractions to facilitate performance

optimizations. A transparent filter copy is a copy of a filter in a filter group (see

Figure 8.6(b)). The filter copy is transparent in the sense that it shares the same

logical input and output streams of the original filter. A transparent copy of a filter

can be made if the semantics of the filter group are not affected. That is, the output

of a unit of work should be the same, regardless of the number of transparent copies.

The transparent copies enable data-parallelism for execution of a single query, while

multiple filter groups allow concurrency among multiple queries.

The filter runtime system maintains the illusion of a single logical point-to-point

stream for communication between a logical producer filter and a logical consumer

filter. It is responsible for scheduling elements (or buffers) in a data stream among the

transparent copies of a filter. For example, in Figure 8.6(b), if copy P1 issues a buffer

write operation to the logical stream that connects filter P to filter F , the buffer can

be sent to the copies on host3 or host4. For distribution between transparent copies,

the runtime system supports a Round-Robin (RR) mechanism and a Demand Driven

(DD) mechanism based on the buffer consumption rate. DD aims at sending buffers

to the filter that would process them fastest. When a consumer filter starts processing

of a buffer received from a producer filter, it sends an acknowledgment message to

the producer filter to indicate that the buffer is being processed. A producer filter

chooses the consumer filter with the minimum number of unacknowledged buffers to

send a data buffer to, thus achieving a better balancing of the load.
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3.4.2 SocketVIA

Inspite of the development of low-latency and high-bandwidth user-level proto-

cols, a large number of applications have been developed previously on kernel-based

protocols such as TCP and UDP. Some of these applications took years to develop.

Trying to rewrite these applications on user-level protocols is highly time-consuming

and impractical. On the other hand, the sockets interface is widely used by a variety

of applications written on protocols such as TCP and UDP.

The cLAN network is a hardware implementation of the Virtual Interface Archi-

tecture (VIA). There are two typical socket implementations on the cLAN network.

One is to keep the legacy socket, TCP/UDP and IP layers unchanged, while one ad-

ditional layer is introduced to bridge the IP layer and the kernel level VI layer. The

LANE (LAN Emulator) implementation of the socket layer is such an implementation

using an IP-to-VI layer [54]. Due to the system call overhead (including the kernel-

context switch, flushing of the cache, flushing of the TLB, bottom-half handlers, etc)

and multiple copies involved in this implementation, applications using LANE have

not been able to take complete advantage of the high performance provided by the

underlying network. Another type of socket implementation on the cLAN network

is to provide socket interface using a user-level library based on the user-level VIA

primitives. Our implementation falls into this category. We refer to our sockets layer

as SocketVIA in the rest of this dissertation. Since the implementation of SocketVIA

is not the main focus of this chapter, we just present the micro-benchmark results

for our sockets layer in the next section. For other details related to the design and

implementation of SocketVIA, we refer the reader to [18].
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3.5 Performance Evaluation

In this chapter, we present two groups of results. First, we look at the peak

performance delivered by SocketVIA in the form of latency and bandwidth micro-

benchmarks. Second, we examine the direct and indirect impacts on the performance

delivered by the substrate on applications implemented using DataCutter in order to

evaluate both latency and bandwidth aspects in a controlled way. The experiments

were carried out on a PC cluster which consists of 16 Dell Precision 420 nodes con-

nected by GigaNet cLAN and Fast Ethernet. We use cLAN 1000 Host Adapters and

cLAN5300 Cluster switches. Each node has two 1GHz Pentium III processors, built

around the Intel 840 chipset, which has four 32-bit 33-MHz PCI slots. These nodes

are equipped with 512MB of SDRAM and 256K L2-level cache. The Linux kernel

version is 2.2.17.

3.5.1 Micro-Benchmarks

Figure 3.5(a) shows the latency achieved by our substrate compared to that

achieved by the traditional implementation of sockets on top of TCP and a direct

VIA implementation (base VIA). Our sockets layer gives a latency of as low as 9.5µs,

which is very close to that given by VIA. Also, it is nearly a factor of five improvement

over the latency given by the traditional sockets layer over TCP/IP.

Figure 3.5(b) shows the bandwidth achieved by our substrate compared to that of

the traditional sockets implementation and base cLAN VIA implementation. Sock-

etVIA achieves a peak bandwidth of 763Mbps compared to 795Mbps given by VIA

and 510Mbps given by the traditional TCP implementation; an improvement of nearly

50%.
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Micro-Benchmarks: Latency
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Figure 3.5: Micro-Benchmarks (a) Latency, (b) Bandwidth

Experimental Setup

In these experiments, we used two kinds of applications. The first application

emulates a visualization server. This application uses a 4-stage pipeline with a visu-

alization filter at the last stage. Also, we executed three copies of each filter in the

pipeline to improve the end bandwidth (Figure 3.6). The user visualizes an image at

the visualization node, on which the visualization filter is placed. The required data

is fetched from a data repository and passed onto other filters, each of which is placed

on a different node in the system, in the pipeline.

Each image viewed by the user requires 16MB of data to be retrieved and pro-

cessed. This data is stored in the form of chunks with pre-defined size, referred to

here as the distribution block size. For a typical distribution block size, a complete

image is made up of several blocks (Figure 3.2). When the user asks for an update to

an image (partial or complete), the corresponding chunks have to be fetched. Each

chunk is retrieved as a whole, potentially resulting in some additional unnecessary

data to be transferred over the network.

51



Filter1 Filter2
Data

Repository

Data
Repository

Multiple

Data

Visualization
Server

Instances

Filter1 Filter2

Filter1 Filter2

Repository

Figure 3.6: Guarantee Based Performance Evaluation: Experimental Setup

Two kinds of queries were emulated. The first query is a complete update or a

request for a new image. This requires all the blocks corresponding to the query to

be fetched. This kind of update is bandwidth sensitive and having a large block size

would be helpful. Therefore, as discussed in the earlier sections, for allowing a certain

update rate for the complete update queries, a certain block size (or larger) has to be

used.

The second query is a partial update. This type of query is executed when the

user moves the visualization window by a small amount, or tries to zoom into the

currently viewed image. A partial update query requires only the excess blocks to be

fetched, which is typically a small number compared to the number of blocks forming

the complete image. This kind of update is latency sensitive. Also, the chunks are

retrieved as a whole. Thus, having small blocks would be helpful.

In summary, if the block size is too large, the partial update will likely take long

time, since the entire block is fetched even if a small portion of one block is required.

However, if the block size is too small, the complete update will likely take long time,

since many small blocks will need to be retrieved. Thus, for an application which

allows both kinds of queries, there would be a performance tradeoff between the two

types of queries. In the following experiments, we show the improved scalability of the
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application with socketVIA compared to that of TCP with performance guarantees

for each kind of update.

The second application we look at is a software load-balancing mechanism such as

the one used by DataCutter. When data is processed by a number of nodes, perfect

pipelining is achieved when the time taken by the load-balancer to send one block of

the message to the computing node is equal to the time taken by the computing node

to process it. In this application, typically the block size is chosen so that perfect

pipelining is achieved in computation and communication. However, the assumption

is that the computation power of the nodes does not change during the course of the

application run. In a heterogeneous, dynamic environment, this assumption does not

hold. In our experiments, in a homogeneous setting, perfect pipelining is achieved at

16KB and 2KB for TCP/IP and VIA, respectively. This means that the block size

required in TCP/IP is significantly larger than that in VIA. However, on heteroge-

neous networks, when a block size is too large, a mistake by a load balancer (sending

the data block to a slow node) may become too costly (Figure 3.7). Performance

impact with such heterogeneity is also studied in this section.

Repository
      and

     Load Balancer

Computation
   Node

Data

Slower
Computation Node

Figure 3.7: Effect of Heterogeneous Clusters: Experimental Setup
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Figure 3.8: Effect of High Performance Sockets on Average Latency with guarantees on
Updates per Second for (a) No Computation Cost and (b) Linear Computation Cost

Guarantee based Performance Evaluation

Effect on Average Latency with guarantees on Updates per Second:

In the first set of experiments, the user wants to achieve a certain frame rate (i.e.,

the number of new images generated or full updates done per second). With this

constraint, we look at the average latency observed when a partial update query is

submitted. Figures 3.8(a) and 3.8(b) show the performance achieved by the applica-

tion. For a given frame rate for new images, TCP requires a certain message size to

attain the required bandwidth. With data chunking done to suit this requirement,

the latency for a partial update using TCP would be the latency for this message

chunk (depicted as legend ‘TCP’). With the same chunk size, SocketVIA inherently

achieves a higher performance (legend ‘SocketVIA’). However, SocketVIA requires a

much smaller message size to attain the bandwidth for full updates. Thus, by reparti-

tioning the data by taking SocketVIA’s latency and bandwidth into consideration, the

latency can be further reduced (legend ‘SocketVIA (with DR)’). Figure 3.8(a) shows

the performance with no computation. This experiment emphasizes the actual benefit
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obtained by using SocketVIA, without being affected by the presence of computation

costs at each node. We observe, here, that TCP cannot meet an update constraint

greater than 3.25 full updates per second. However, SocketVIA (with DR) can still

achieve this frame rate without much degradation in the performance. The results

obtained in this experiment show an improvement of more than 3.5 times without

any repartitioning and more than 10 times with repartitioning of data. In addition

to socketVIA’s inherently improving the performance of the application, reorganizing

some components of the application (the block size in this case) allows the applica-

tion to gain significant benefits not only in performance, but also in scalability with

performance guarantees.

Figure 3.8(b) depicts the performance with a computation cost that is linear with

message size in the experiments. We timed the computation required in the visu-

alization part of a digitized microscopy application, called Virtual Microscope [31],

on DataCutter and found it to be 18ns per byte of the message. Applications such

as these involving browsing of digitized microscopy slides have such low computation

costs per pixel. These are the applications that will benefit most from low latency and

high bandwidth substrates. So we have focused on such applications in this chapter.

In this experiment, even SocketVIA (with DR) is not able to achieve an update

rate greater than 3.25, unlike the previous experiment. The reason for this is that the

bandwidth given by SocketVIA is bounded by the computation costs at each node.

For this experiment, we observe an improvement of more than 4 and 12 times without

and with repartitioning of data, respectively.

Effect on Updates per Second with Latency Guarantees: In the second

set of experiments, we try to maximize the number of full updates per second when
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Figure 3.9: Effect of High Performance Sockets on Updates per Second with Latency
Guarantees for (a) No Computation Cost and (b) Linear Computation Cost

a particular latency is targeted for a partial update query. Figures 3.9(a) and 3.9(b)

depict the performance achieved by the application. For a given latency constraint,

TCP cannot have a block size greater than a certain value. With data chunking done

to suit this requirement, the bandwidth it can achieve is quite limited as seen in the

figure under legend ‘TCP’. With the same block size, SocketVIA achieves a much

better performance, shown by legend ‘SocketVIA’. However, a re-chunking of data

that takes the latency and bandwidth of SocketVIA into consideration results in a

much higher performance, as shown by the performance numbers for ‘SocketVIA (with

DR)’. Figure 3.9(a) gives the performance with no computation, while computation

cost, which varies linearly with the size of the chunk, is introduced in the experiments

for Figure 3.9(b). With no computation cost, as the latency constraint becomes as low

as 100µs, TCP drops out. However, SocketVIA continues to give a performance close

to the peak value. The results of this experiment show an improvement of more than

6 times without any repartitioning of data, and more than 8 times with repartitioning

of data. With a computation cost, we see that for a large latency guarantee, TCP
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and SocketVIA perform very closely. The reason for this is the computation cost

in the message path. With a computation cost of 18ns per byte, processing of data

becomes a bottleneck with VIA. However, with TCP, the communication is still the

bottleneck. Because of the same reason, unlike TCP, the frame rate achieved by

SocketVIA does not change very much as the requested latency is decreased. The

results for this experiment show a performance improvement of up to 4 times.
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Figure 3.10: Effect of High Performance Sockets on the Average Response Time of Queries
for (a) No Computation Cost and (b) Linear Computation Cost

Effect of Multiple queries on Average Response Time: In the third set of

experiments, we consider a model where there is a mixture of two kinds of queries. The

first query type is a zoom or a magnification query, while the second one is a complete

update query. The first query covers a small region of the image, requiring only 4

data chunks to be retrieved. However, the second query covers the entire image, hence

all the data chunks should be retrieved and processed. Figures 3.10(a) and 3.10(b)

display the average response time to queries. The x-axis shows the fraction of queries

that correspond to the second type. The remaining fraction of queries correspond to
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the first type. The volume of data chunks accessed for each query depends on the

partitioning of the dataset into data chunks. Since the fraction of queries of each kind

may not be known a priori, we analyze the performance given by TCP and SocketVIA

with different partition sizes. If the dataset is not partitioned into chunks, a query

has to access the entire data, so the timings do not vary with varying fractions of

the queries. The benefit we see for SocketVIA compared to TCP is just the inherent

benefit of SocketVIA and has nothing to do with the partition sizes. However, with

a partitioning of the dataset into smaller chunks, the rate of increase in the response

time is very high for TCP compared to SocketVIA. Therefore, for any given average

response time, SocketVIA can tolerate a higher variation in the fraction of different

query types than TCP. For example, for an average response time of 150ms and 64

partitions per block, TCP can support a variation from 0% to 60% (percentage of

the complete update queries), but fails after that. However, for the same constraint,

SocketVIA can support a variation from 0% to 90% before failing. This shows that

in cases where the block size cannot be pre-defined, or just an estimate of the block

size is available, SocketVIA can do much better.

Effect of SocketVIA on Heterogeneous Clusters

In the next few experiments, we analyze the effect of SocketVIA on a cluster

with a collection of heterogeneous compute nodes. We emulate slower nodes in the

network by making some of the nodes do the processing on the data more than once.

For host-based protocols like TCP, a decrease in the processing speed would result

in a degradation in the communication time, together with a degradation in the

computation time. However, in these experiments, we assume that communication

time remains constant and only the computation time varies.
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Effect of the Round-Robin scheduling scheme on Heterogeneous Clus-

ters: For this experiment, we examine the impact on performance of the round-robin

(RR) buffer scheduling in DataCutter when TCP and SocketVIA are employed. In

order to achieve perfect pipelining, the time taken to transfer the data to a node

should be equal to the processing time of the data on each of the nodes. For this

experiment, we have considered load balancing between the filters of the Visualiza-

tion Application (the first nodes in the pipeline, Figure 3.7). The processing time of

the data in each filter is linear with message size (18ns per byte of message). With

TCP, a perfect pipeline was observed to be achieved by 16KB message. But, with

SocketVIA, this was achieved by 2KB messages. Thus, load balancing can be done

at a much finer granularity.
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Figure 3.11: Effect of Heterogeneity in Processing Speed on Load Balancing using the
Round-Robin Scheduling Scheme

Figure 3.11 shows the amount of time the load balancer takes to react to the

heterogeneity of the nodes, with increasing factor of heterogeneity in the network.
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The factor of heterogeneity is the ratio of the processing speeds of the fastest and

the slowest processors. With TCP, the block size is large (16KB). So, when the load

balancer makes a mistake (sends a block to a slower node), it results in the slow node

spending a huge amount of time on processing this block. This increases the time the

load balancer takes to realize its mistake. On the other hand, with SocketVIA, the

block size is small. So, when the load balancer makes a mistake, the amount of time

taken by the slow node to process this block is lesser compared to that of TCP. Thus

the reaction time of the load balancer is lesser. The results for this experiment show

that with SocketVIA, the reaction time of the load balancer decreases by a factor of

8 compared to TCP.

Effect of the Demand-Driven scheduling scheme on Heterogeneous Clus-

ters: For this experiment, we examine the impact on performance of the demand-

driven (DD) buffer scheduling in DataCutter when TCP and SocketVIA are employed.

Due to the same reason as the Round-Robin scheduling (mentioned in the last sub-

section), a block size of 2KB was chosen for socketVIA and a block size of 16KB for

TCP.

Figure 3.12 shows the execution time of the application. The node is assumed

to get slow dynamically at times. The probability of the node becoming slower is

varied on the x-axis. So, a probability of 30% means that, 30% of the computation

is carried out at a slower pace, and the remaining 70% is carried out at the original

pace of the node. In Figure 3.12, the legend socketVIA(n) stands for the application

running using socketVIA and a factor of heterogeneity of ‘n’. The other legends are

interpreted in a similar manner.
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Effect of Heterogeneity in the Cluster
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Figure 3.12: Effect of Heterogeneity in Processing Speed on Load Balancing using the
Demand-Driven Scheduling Scheme

We observe that application performance using TCP is close to that of sock-

etVIA. This is mainly because of the fact that demand-driven assignment of data

chunks to consumers allows more work to be routed to less loaded processors. In

addition, pipelining of data results in good overlap between communication and com-

putation. Thus, our results show that if high-performance substrates are not available

on a hardware configuration, applications should be structured to take advantage of

pipelining of computations and dynamic scheduling of data. However, as our earlier

results show, high-performance substrates are desirable for performance and latency

guarantees.

3.6 Summary

Together with a pure performance requirements, data intensive applications have

other requirements such as guarantees in performance, scalability with these guar-

antees and adaptability to heterogeneous networks. Typically such applications are
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written using the kernel-based sockets interface over TCP/IP. To allow such appli-

cations take advantage of the high performance protocols, researchers have come up

with a number of techniques including High Performance Sockets layers over User-

level protocols such as Virtual Interface Architecture and the emerging InfiniBand

Architecture. However, these sockets layers are fundamentally limited by the fact

that the applications using them had been written keeping the communication per-

formance of TCP/IP in mind.

In this chapter, we have studied the capabilities and limitations of such a sub-

strate, termed SocketVIA, in performance, with respect to a component framework

designed to provide runtime support for data intensive applications, termed as Data-

Cutter. The experimental results show that by reorganizing certain components of the

applications, we can make significant improvements in the performance, leading to a

higher scalability of the applications with performance guarantees and fine grained

load balancing making them more adaptable to heterogeneous networks. The exper-

imental results also show that the different performance characteristics of SocketVIA

allow a more efficient partitioning of data at the source nodes, thus improving the

performance up to an order of magnitude in some cases. This shows that together

with high performance, low-overhead substrates provide the ability to applications to

simultaneously meet quality requirements along multiple dimensions. These results

have strong implications on designing, developing, and implementing next generation

data intensive applications on modern clusters.

62



CHAPTER 4

SOCKETS DIRECT PROTOCOL OVER INFINIBAND IN
CLUSTERS: IS IT BENEFICIAL?

Sockets Direct Protocol (SDP) [5] is an industry standard specification for high

performance sockets implementations over InfiniBand (IB) and the Internet Wide

Area RDMA Protocol (iWARP) [71]. SDP was proposed along the same lines as the

user-level sockets layers; to allow a smooth transition to deploy existing sockets based

applications on to clusters connected with InfiniBand while sustaining most of the

performance provided by the base network.

In this chapter, we study the benefits and limitations of an implementation of

SDP. We first analyze the performance of SDP based on a detailed suite of micro-

benchmarks. Next, we evaluate it on two real application domains: (a) a Multi-tier

Data-Center and (b) a Parallel Virtual File System (PVFS). Our micro-benchmark

results show that SDP is able to provide up to 2.7 times better bandwidth as com-

pared to the native TCP/IP sockets implementation over InfiniBand (IPoIB) and

significantly better latency for large message sizes. Our experimental results also

show that SDP is able to achieve a considerably high performance (improvement of

up to a factor of 2.4) compared to the native sockets implementation in the PVFS

environment. In the data-center environment, SDP outperforms IPoIB for large file
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transfers in-spite of currently being limited by a high connection setup time. However,

as the InfiniBand software and hardware products are rapidly maturing, we expect

this limitation to be overcome soon. Based on this, we have shown that the projected

performance for SDP, without the connection setup time, can outperform IPoIB for

small message transfers as well.

4.1 Background

In this section we provide a brief background about InfiniBand and the Sockets

Direct Protocol (SDP).

4.1.1 InfiniBand Architecture

The InfiniBand Architecture (IBA) is an industry standard that defines a System

Area Network (SAN) to design clusters offering low latency and high bandwidth. In

a typical IBA cluster, switched serial links connect the processing nodes and the I/O

nodes. The compute nodes are connected to the IBA fabric by means of Host Channel

Adapters (HCAs). IBA defines a semantic interface called as Verbs for the consumer

applications to communicate with the HCAs. VAPI is one such interface developed

by Mellanox Technologies.

IBA mainly aims at reducing the system processing overhead by decreasing the

number of copies associated with a message transfer and removing the kernel from the

critical message passing path. This is achieved by providing the consumer applications

direct and protected access to the HCA. The specification for Verbs includes a queue-

based interface, known as a Queue Pair (QP), to issue requests to the HCA. Figure 4.1

illustrates the InfiniBand Architecture model.
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Figure 4.1: InfiniBand Architecture (Courtesy InfiniBand Specifications)

Each Queue Pair is a communication endpoint. A Queue Pair (QP) consists of

the send queue and the receive queue. Two QPs on different nodes can be connected

to each other to form a logical bi-directional communication channel. An application

can have multiple QPs. Communication requests are initiated by posting Work Queue

Requests (WQRs) to these queues. Each WQR is associated with one or more pre-

registered buffers from which data is either transferred (for a send WQR) or received

(receive WQR). The application can either choose the request to be a Signaled (SG)

request or an Un-Signaled request (USG). When the HCA completes the processing of

a signaled request, it places an entry called as the Completion Queue Entry (CQE) in

the Completion Queue (CQ). The consumer application can poll on the CQ associated

with the work request to check for completion. There is also the feature of triggering

event handlers whenever a completion occurs. For un-signaled requests, no kind of
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completion event is returned to the user. However, depending on the implementation,

the driver cleans up the Work Queue Request from the appropriate Queue Pair on

completion.

IBA supports two types of communication semantics: channel semantics (send-

receive communication model) and memory semantics (RDMA communication model).

In channel semantics, every send request has a corresponding receive request at

the remote end. Thus there is one-to-one correspondence between every send and

receive operation. Failure to post a receive descriptor on the remote node results in

the message being dropped and if the connection is reliable, it might even result in

the breaking of the connection.

In memory semantics, Remote Direct Memory Access (RDMA) operations are

used. These operations are transparent at the remote end since they do not require

a receive descriptor to be posted. In this semantics, the send request itself contains

both the virtual address for the local transmit buffer as well as that for the receive

buffer on the remote end.

Most entries in the WQR are common for both the Send-Receive model as well as

the RDMA model, except an additional remote buffer virtual address which has to be

specified for RDMA operations. There are two kinds of RDMA operations: RDMA

Write and RDMA Read. In an RDMA write operation, the initiator directly writes

data into the remote node’s user buffer. Similarly, in an RDMA Read operation, the

initiator reads data from the remote node’s user buffer.

In addition to RDMA, the reliable communication classes also optionally atomic

operations directly against the memory at the end node. Atomic operations are posted

as descriptors at the sender side as in any other type of communication. However, the
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operation is completely handled by the NIC and involves very little host intervention

and resource consumption.

The atomic operations supported are Fetch-and-Add and Compare-and-Swap,

both on 64-bit data. The Fetch and Add operation performs an atomic addition

at the remote end. The Compare and Swap is use to compare two 64-bit values and

swap the remote value with the data provided if the comparison succeeds.

Atomics are effectively a variation on RDMA: a combined write and read RDMA,

carrying the data involved as immediate data. Two different levels of atomicity are

optionally supported: atomic with respect to other operations on a target CA; and

atomic with respect to all memory operation of the target host and all CAs on that

host.

4.1.2 Sockets Direct Protocol

Sockets Direct Protocol (SDP) is a protocol defined by the Software Working

Group (SWG) of the InfiniBand Trade Association [10]. The design of SDP is mainly

based on two architectural goals: (a) Maintain traditional sockets SOCK STREAM

semantics as commonly implemented over TCP/IP and (b) Support for byte-streaming

over a message passing protocol, including kernel bypass data transfers and zero-copy

data transfers. Figure 4.2 illustrates the SDP architecture.

SDP’s Upper Layer Protocol (ULP) interface is a byte-stream that is layered

on top of InfiniBand’s Reliable Connection (RC) message-oriented transfer model.

The mapping of the byte stream protocol to InfiniBand message-oriented semantics

was designed to enable ULP data to be transfered by one of two methods: through

intermediate private buffers (using a buffer copy) or directly between ULP buffers
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(zero copy). A mix of InfiniBand Send and RDMA mechanisms are used to transfer

ULP data.

SDP specifications also specify two additional control messages known as “Buffer

Availability Notification” messages.

Sink Avail Message: If the data sink has already posted a receive buffer and

the data source has not sent the data message yet, the data sink does the following

steps: (1) Registers the receive user-buffer (for large message reads) and (2) Sends a

“Sink Avail” message containing the receive buffer handle to the source. The Data

Source on a data transmit call, uses this receive buffer handle to directly RDMA write

the data into the receive buffer.

Source Avail Message: If the data source has already posted a send buffer

and the available SDP window is not large enough to contain the buffer, it does the

following two steps: (1) Registers the transmit user-buffer (for large message sends)
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and (2) Sends a “Source Avail” message containing the transmit buffer handle to the

data sink. The Data Sink on a data receive call, uses this transmit buffer handle to

directly RDMA read the data into the receive buffer.

The current implementation of SDP follows most of the specifications provided

above. There are two major deviations from the specifications in this implementation.

First, it does not support “Source Avail” and “Sink Avail” messages. Second, it does

not support a zero-copy data transfer between user buffers. All data transfer is done

through the buffer copy mechanism. This limitation can also be considered as part

of the previous (“Source Avail”/”Sink Avail”) limitation, since they are always used

together.

4.2 Software Infrastructure

We have carried out the evaluation of SDP on two different software infrastruc-

tures: Multi-Tier Data Center environment and the Parallel Virtual File System

(PVFS). In this section, we discuss each of these in more detail.

4.2.1 Multi-Tier Data Center environment

A typical Multi-tier Data-center has as its first tier, a cluster of nodes known as

the edge nodes. These nodes can be thought of as switches (up to the 7th layer)

providing load balancing, security, caching etc. The main purpose of this tier is to

help increase the performance of the inner tiers. The next tier usually contains the

web-servers and application servers. These nodes apart from serving static content,

can fetch dynamic data from other sources and serve that data in presentable form.

The last tier of the Data-Center is the database tier. It is used to store persistent

data. This tier is usually I/O intensive.
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A request from a client is received by the edge servers. If this request can be

serviced from the cache, it is. Otherwise, it is forwarded to the Web/Application

servers. Static requests are serviced by the web servers by just returning the requested

file to the client via the edge server. This content may be cached at the edge server so

that subsequent requests to the same static content may be served from the cache. The

Application tier nodes handle the Dynamic content. The type of applications this tier

includes range from mail servers to directory services to ERP software. Any request

that needs a value to be computed, searched, analyzed or stored uses this tier. The

back end database servers are responsible for storing data persistently and responding

to queries. These nodes are connected to persistent storage systems. Queries to the

database systems can be anything ranging from a simple seek of required data to

performing joins, aggregation and select operations on the data. A more detailed

explanation of the typical data-center environment can be obtained in [14].

4.2.2 Parallel Virtual File System (PVFS)

Parallel Virtual File System (PVFS) [30] is one of the leading parallel file systems

for Linux cluster systems today. It was designed to meet the increasing I/O demands

of parallel applications in cluster systems. Typically, a number of nodes in the cluster

system are configured as I/O servers and one of them (either an I/O server or an

different node) as a metadata manager. It is possible for a node to host computations

while serving as an I/O node.

PVFS achieves high performance by striping files across a set of I/O server nodes

allowing parallel accesses to the data. It uses the native file system on the I/O servers

to store individual file stripes. An I/O daemon runs on each I/O node and services
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requests from the compute nodes, in particular the read and write requests. Thus,

data is transferred directly between the I/O servers and the compute nodes. A man-

ager daemon runs on a metadata manager node. It handles metadata operations

involving file permissions, truncation, file stripe characteristics, and so on. Metadata

is also stored on the local file system. The metadata manager provides a cluster-wide

consistent name space to applications. In PVFS, the metadata manager does not

participate in read/write operations. PVFS supports a set of feature-rich interfaces,

including support for both contiguous and non-contiguous accesses to both memory

and files [35]. PVFS can be used with multiple APIs: a native API, the UNIX/POSIX

API, MPI-IO [79], and an array I/O interface called Multi-Dimensional Block Inter-

face (MDBI). The presence of multiple popular interfaces contributes to the wide

success of PVFS in the industry.

4.3 SDP Micro-Benchmark Results

In this section, we compare the micro-benchmark level performance achievable

by SDP and the native sockets implementation over InfiniBand (IPoIB). For all our

experiments we used 2 clusters:

Cluster 1: An 8 node cluster built around SuperMicro SUPER P4DL6 moth-

erboards and GC chipsets which include 64-bit 133 MHz PCI-X interfaces. Each

node has two Intel Xeon 2.4 GHz processors with a 512 kB L2 cache and a 400 MHz

front side bus. The machines are connected with Mellanox InfiniHost MT23108 Du-

alPort 4x HCA adapter through an InfiniScale MT43132 Eight 4x Port InfiniBand

Switch. The SDK version is thca-x86-0.2.0-build-001. The adapter firmware version
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is fw-23108-rel-1 17 0000-rc12-build-001. We used the Linux RedHat 7.2 operating

system.

Cluster 2: A 16 Dell Precision 420 node cluster connected by Fast Ethernet.

Each node has two 1GHz Pentium III processors, built around the Intel 840 chipset,

which has four 32-bit 33-MHz PCI slots. These nodes are equipped with 512MB of

SDRAM and 256K L2-level cache.

We used Cluster 1 for all experiments in this section.

4.3.1 Latency and Bandwidth

Figure 4.3a shows the one-way latency achieved by IPoIB, SDP and Send-Receive

and RDMA Write communication models of native VAPI for various message sizes.

SDP achieves a latency of around 28µs for 2 byte messages compared to a 30µs

achieved by IPoIB and 7µs and 5.5µs achieved by the Send-Receive and RDMA

communication models of VAPI. Further, with increasing message sizes, the difference

between the latency achieved by SDP and that achieved by IPoIB tends to increase.

Figure 4.3b shows the uni-directional bandwidth achieved by IPoIB, SDP, VAPI

Send-Receive and VAPI RDMA communication models. SDP achieves a throughput

of up to 471Mbytes/s compared to a 169Mbytes/s achieved by IPoIB and 825Mbytes/s

and 820Mbytes/s achieved by the Send-Receive and RDMA communication models

of VAPI. We see that SDP is able to transfer data at a much higher rate as compared

to IPoIB using a significantly lower portion of the host CPU. This improvement in the

throughput and CPU is mainly attributed to the NIC offload of the transportation

and network layers in SDP unlike that of IPoIB.
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Figure 4.3: Micro-Benchmarks: (a) Latency, (b) Bandwidth

4.3.2 Multi-Stream Bandwidth

In the Multi-Stream bandwidth test, we use two machines and N threads on each

machine. Each thread on one machine has a connection to exactly one thread on

the other machine and on each connection, the basic bandwidth test is performed.

The aggregate bandwidth achieved by all the threads together within a period of

time is calculated as the multi-stream bandwidth. Performance results with different

numbers of streams are shown in Figure 4.4a. We can see that SDP achieves a peak

bandwidth of about 500Mbytes/s as compared to a 200Mbytes/s achieved by IPoIB.

The CPU Utilization for a 16Kbyte message size is also presented.
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Figure 4.4: (a) Multi-Stream Bandwidth, (b) Hot-Spot Latency
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4.3.3 Hot-Spot Test

In the Hot-Spot test, multiple clients communicate with the same server. The

communication pattern between any client and the server is the same pattern as in

the basic latency test, i.e., the server needs to receive messages from all the clients

and send messages to all clients as well, creating a hot-spot on the server. Figure 4.4b

shows the one-way latency of IPoIB and SDP when communicating with a hot-spot

server, for different numbers of clients. The server CPU utilization for a 16Kbyte

message size is also presented. We can see that as SDP scales well with the number

of clients; its latency increasing by only a 138µs compared to 456µs increase with

IPoIB for a message size of 16Kbytes. Further, we find that as the number of nodes

increases we get an improvement of more than a factor of 2, in terms of CPU utilization

for SDP over IPoIB.

4.3.4 Fan-in and Fan-out
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Figure 4.5: Micro-Benchmarks: (a) Fan-in, (b) Fan-out

In the Fan-in test, multiple clients from different nodes stream data to the same

server. Similarly, in the Fan-out test, the same server streams data out to multiple
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clients. Figures 4.5a and 4.5b show the aggregate bandwidth observed by the server

for different number of clients for the Fan-in and Fan-out tests respectively. We can

see that for the Fan-in test, SDP reaches a peak aggregate throughput of 687Mbytes/s

compared to a 237Mbytes/s of IPoIB. Similarly, for the Fan-out test, SDP reaches

a peak aggregate throughput of 477Mbytes/s compared to a 175Mbytes/s of IPoIB.

The server CPU utilization for a 16Kbyte message size is also presented. Both figures

show similar trends in CPU utilization for SDP and IPoIB as the previous tests, i.e.,

SDP performs about 60-70% better than IPoIB in CPU requirements.

4.4 Data-Center Performance Evaluation

In this section, we analyze the performance of a 3-tier data-center environment

over SDP while comparing it with the performance of IPoIB. For all experiments in

this section, we used nodes in Cluster 1 (described in Section 4.3) for the data-center

tiers. For the client nodes, we used the nodes in Cluster 2 for most experiments. We

will notify the readers at appropriate points in this chapter when other nodes are

used as clients.

4.4.1 Evaluation Methodology

As mentioned earlier, we used a 3-tier data-center model. Tier 1 consists of the

front-end proxies. For this we used the proxy module of apache-1.3.12. Tier 2 consists

of the web server and PHP application server modules of Apache, in order to service

static and dynamic requests respectively. Tier 3 consists of the Database servers

running MySQL to serve dynamic database queries. All the three tiers in the data-

center reside on an InfiniBand network; the clients are connected to the data-center

using Fast Ethernet. We evaluate the response time of the data-center using Openload,
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an open source client workload generator. We use a 20,000 request subset of the world-

cup trace [9] for our experiments. To generate requests amounting to different average

file sizes, we scale the file sizes in the given trace linearly, while keeping the access

pattern intact.

In our experiments, we evaluate two scenarios: requests from the client consisting

of 100% static content (involving only the proxy and the web server) and requests

from the client consisting of 100% dynamic content (involving all the three tiers in

the data-center). “Openload” allows firing a mix of static and dynamic requests.

However, the main aim of this research is the analysis of the performance achievable

by IPoIB and SDP. Hence, we only focused on these two scenarios (100% static and

100% dynamic content) to avoid dilution of this analysis with other aspects of the

data-center environment such as workload characteristics, etc.

For evaluating the scenario with 100% static requests, we used a test-bed with

one proxy at the first tier and one web-server at the second tier. The client would fire

requests one at a time, so as to evaluate the ideal case response time for the request.

For evaluating the scenario with 100% dynamic page requests, we set up the data

center with the following configuration: Tier 1 consists of 3 Proxies, Tier 2 contains

2 servers which act as both web servers as well as application servers (running PHP)

and Tier 3 with 3 MySQL Database Servers (1 Master and 2 Slave Servers). We used

the TPC-W transactional web benchmark [20] for generating our dynamic request

access pattern (further details about the database used can be obtained in [14]).
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4.4.2 Experimental Results

We used a 20,000 request subset of the world-cup trace to come up with our base

trace file. As discussed earlier, to generate multiple traces with different average file

sizes, we scale each file size with the ratio of the requested average file size and the

weighted average (weighted by the frequency of requests made to the given file) of

the base trace file.

Figure 4.6a shows the response times seen by the client for various average file

sizes requested over IPoIB and SDP. As seen in the figure, the benefit obtained by

SDP over IPoIB is quite minimal. In order to analyze the reason for this, we found

the break-up of this response time in the proxy and web servers. Figure 4.6b shows

the break-up of the response time for average file size requests of 64K and 128K.

The “Web-Server Time” shown in the graph is the time duration for the back-end

web-server to respond to the file request from the proxy. The “Proxy-Time” is the

difference between the times spent by the proxy (from the moment it gets the request

to the moment it sends back the response) and the time spent by the web-server.

This value denotes the actual overhead of the proxy tier in the entire response time

seen by the client. Similarly, the “Client-Time” is the difference between the times

seen by the client and by the proxy.

From the break-up graph (Figure 4.6b), we can easily observe that the web server

over SDP is consistently better than IPoIB, implying that the web server over SDP

can deliver better throughput. Further, this also implies that SDP can handle a given

server load with lesser number of back-end web-servers as compared to an IPoIB based

implementation due to the reduced “per-request-time” spent at the server. In spite
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of this improvement in the performance in the web-server time, there’s no apparent

improvement in the overall response time.

A possible reason for this lack of improvement is the slow interconnect used by

the clients to contact the proxy server. Since the client connects to the data-center

over fast ethernet, it is possible that the client is unable to accept the response at

the rate at which the server is able to send the data. To validate this hypothesis, we

conducted experiments using our data-center test-bed with faster clients. Such clients

may themselves be on high speed interconnects such as InfiniBand or may become

available due to Internet proxies, ISPs etc.

Figure 4.7a shows the client response times that is achievable using SDP and

IPoIB in this new scenario which we emulated by having the clients request files over

IPoIB (using InfiniBand; we used nodes from cluster 1 to act as clients in this case).

This figure clearly shows a better performance for SDP, as compared to IPoIB for

large file transfers above 128K. However, for small file sizes, there’s no significant

improvement. In fact, IPoIB outperforms SDP in this case. To understand the lack

of performance benefits for small file sizes, we took a similar split up of the response

time perceived by the client.

Figure 4.7b shows the splitup of the response time seen by the faster clients. We

observe the same trend as seen with clients over Fast Ethernet. The “web-server

time” reduces even in this scenario. However, it’s quickly apparent from the figure

that the time taken at the proxy is higher for SDP as compared to IPoIB. For a clearer

understanding of this observation, we further evaluated the response time within the

data-center by breaking down the time taken by the proxy in servicing the request.
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Figures 4.9a and 4.9b show a comprehensive breakup of the time spent at the proxy

over IPoIB and SDP respectively. A comparison of this splitup for SDP with IPoIB

shows a significant difference in the time for the the proxy to connect to the back-end

server. This high connection time of the current SDP implementation, about 500µs

higher than IPoIB, makes the data-transfer related benefits of SDP imperceivable for

low file size transfers.
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Figure 4.8: Fast Client Response Time without Connection Time

The current implementation of SDP has inherent lower level function calls dur-

ing the process of connection establishment, which form a significant portion of the

connection latency. In order to hide this connection time overhead, researchers are

proposing a number of techniques including persistent connections from the proxy to

the back-end, allowing free connected Queue Pair (QP) pools, etc. Further, since this

issue of connection setup time is completely implementation specific, we tried to esti-

mate the (projected) performance SDP can provide if the connection time bottleneck

was resolved.
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Figure 4.8 shows the projected response times of the fast client, without the con-

nection time overhead. Assuming a future implementation of SDP with lower con-

nection time, we see that SDP is able to give significant response time benefits as

compared to IPoIB even for small file size transfers. A similar analysis for dynamic

requests can be found in [14].
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Figure 4.9: Proxy Split-up times: (a) IPoIB, (b) SDP

4.5 PVFS Performance Evaluation

In this section, we compare the performance of the Parallel Virtual File System

(PVFS) over IPoIB and SDP with the original PVFS implementation [30]. We also

compare the performance of PVFS on the above two protocols with the performance

of our previous implementation of PVFS over InfiniBand [82]. All experiments in this

section have been performed on Cluster 1 (mentioned in Section 4.3).

4.5.1 Evaluation Methodology

There is a large difference between the bandwidth realized by the InfiniBand net-

work (Figure 4.3b) and that which can be obtained on a disk-based file system in
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most cluster systems. However, applications can still benefit from fast networks for

many reasons in spite of this disparity. Data frequently resides in server memory due

to file caching and read-ahead when a request arrives. Also, in large disk array sys-

tems, the aggregate performance of many disks can approach network speeds. Caches

on disk arrays and on individual disks also serve to speed up transfers. Therefore,

we designed two types of experiments. The first type of experiments are based on a

memory-resident file system, ramfs. These tests are designed to stress the network

data transfer independent of any disk activity. Results of these tests are represen-

tative of workloads with sequential I/O on large disk arrays or random-access loads

on servers which are capable of delivering data at network speeds. The second type

of experiments are based on a regular disk file system, ext3fs. Results of these tests

are representative of disk-bounded workloads. In these tests, we focus on how the

difference in CPU utilization for these protocols can affect the PVFS performance.

We used the test program, pvfs-test (included in the PVFS release package), to

measure the concurrent read and write performance. We followed the same test

method as described in [30], i.e., each compute node simultaneously reads or writes

a single contiguous region of size 2N Mbytes, where N is the number of I/O nodes.

Each compute node accesses 2 Mbytes data from each I/O node.

4.5.2 PVFS Concurrent Read and Write on ramfs

Figure 4.10 shows the read performance with the original implementation of PVFS

over IPoIB and SDP and an implementation of PVFS over VAPI [82], previously done

by our group. The performance of PVFS over SDP depicts the peak performance

one can achieve without making any changes to the PVFS implementation. On the
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other hand, PVFS over VAPI depicts the peak performance achievable by PVFS

over InfiniBand. We name these three cases using the legends IPoIB, SDP, and

VAPI, respectively. When there are sufficient compute nodes to carry the load, the

bandwidth increases at a rate of approximately 140 Mbytes/s, 310 Mbytes/s and

380 Mbytes/s with each additional I/O node for IPoIB, SDP and VAPI respectively.

Note that in our 8-node InfiniBand cluster system (Cluster 1), we cannot place the

PVFS manager process and the I/O server process on the same physical node since

the current implementation of SDP does not support socket-based communication

between processes on the same physical node. So, we have one compute node lesser

in all experiments with SDP.

Figure 4.11 shows the write performance of PVFS over IPoIB, SDP and VAPI.

Again, when there are sufficient compute nodes to carry the load, the bandwidth

increases at a rate of approximately 130 Mbytes/s, 210 Mbytes/s and 310 Mbytes/s

with each additional I/O node for IPoIB, SDP and VAPI respectively.

Overall, compared to PVFS on IPoIB, PVFS on SDP has a factor of 2.4 improve-

ment for concurrent reads and a factor of 1.5 improvement for concurrent writes. The

cost of writes on ramfs is higher than that of reads, resulting in a lesser improvement

for SDP as compared to IPoIB. Compared to PVFS over VAPI, PVFS over SDP has

about 35% degradation. This degradation is mainly attributed to the copies on the

sender and the receiver sides in the current implementation of SDP. With a future

zero-copy implementation of SDP, this gap is expected to be further reduced.
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Figure 4.10: PVFS Read Performance Comparison
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Figure 4.11: PVFS Write Performance Comparison
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Figure 4.12: Performance of PVFS Write with Sync on ext3fs

4.5.3 PVFS Concurrent Write on ext3fs

We also performed the above mentioned test on a disk-based file system, ext3fs

on a Seagate ST340016A, ATA 100 40 GB disk. The write bandwidth for this disk

is 25 Mbytes/s. In this test, the number of I/O nodes are fixed at three, and the

number of compute nodes four. We chose PVFS write with sync. Figure 4.12 shows

the performance of PVFS write with sync with IPoIB, SDP and VAPI. It can be seen

that, although each I/O server is disk-bound, a significant performance improvement

of 9% is achieved by PVFS over SDP as compared to PVFS over IPoIB. This is because

the lower overhead of SDP as shown in Figure 4.3b leaves more CPU cycles free for

I/O servers to process concurrent requests. Due to the same reason, SDP achieves

about 5% lesser performance as compared to the native VAPI implementation.
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4.6 Summary

The Sockets Direct Protocol had been proposed recently in order to enable tradi-

tional sockets based applications to take advantage of the enhanced features provided

by the InfiniBand Architecture. In this chapter, we have studied the benefits and limi-

tations of an implementation of SDP. We first analyzed the performance of SDP based

on a detailed suite of micro-benchmarks. Next, we evaluated it on two real applica-

tion domains: (1) A multi-tier Data-Center environment and (2) A Parallel Virtual

File System (PVFS). Our micro-benchmark results show that SDP is able to provide

up to 2.7 times better bandwidth as compared to the native sockets implementation

over InfiniBand (IPoIB) and significantly better latency for large message sizes. Our

results also show that SDP is able to achieve a considerably higher performance (im-

provement of up to 2.4 times) as compared to IPoIB in the PVFS environment. In the

data-center environment, SDP outperforms IPoIB for large file transfers in spite of

currently being limited by a high connection setup time. However, as the InfiniBand

software and hardware products are rapidly maturing, we expect this limitation to be

overcome rapidly. Based on this, we have shown that the projected performance for

SDP can perform significantly better than IPoIB in all cases. These results provide

profound insights into the efficiencies and bottlenecks associated with High Perfor-

mance socket layers for 10-Gigabit networks. These insights have strong implications

on the design and implementation of the next generation high performance applica-

tions.
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CHAPTER 5

ASYNCHRONOUS ZERO-COPY COMMUNICATION
FOR SYNCHRONOUS SOCKETS IN SDP OVER

INFINIBAND

The SDP standard supports two kinds of sockets semantics, viz., Synchronous

sockets (e.g., used by Linux, BSD, Windows) and Asynchronous sockets (e.g., used

by Windows, upcoming support in Linux). In the synchronous sockets interface, the

application has to block for every data transfer operation, i.e., if an application wants

to send a 1 MB message, it has to wait till either the data is transferred to the remote

node or is copied to a local communication buffer and scheduled for communication.

In the asynchronous sockets interface, on the other hand, the application can initiate

a data transfer and check whether the transfer is complete at a later time; thus

providing a better overlap of the communication with the other on-going computation

in the application. Due to the inherent benefits of asynchronous sockets, the SDP

standard allows several intelligent approaches such as source-avail and sink-avail based

zero-copy for these sockets. However, most of these approaches that work well for

the asynchronous sockets interface are not as beneficial for the synchronous sockets

interface. Added to this is the fact that the synchronous sockets interface is the one

used by most sockets applications today due to its portability, ease of use and support
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on a wider set of platforms. Thus, a mechanism by which the approaches proposed

for asynchronous sockets can be used for synchronous sockets is highly desirable.

In this chapter, we propose one such mechanism, termed as AZ-SDP (Asyn-

chronous Zero-Copy SDP) which allows the approaches proposed for asynchronous

sockets to be used for synchronous sockets while maintaining the synchronous sock-

ets semantics. The basic idea of this mechanism is to protect application buffers

from memory access during a data transfer event and carry out communication asyn-

chronously. Once the data transfer is completed, the protection is removed and the

application is allowed to touch the buffer again. It is to be noted that this entire

scheme is completely transparent to the end application. We present our detailed de-

sign in this chapter and evaluate the stack with an extensive set of micro-benchmarks.

The experimental results demonstrate that our approach can provide an improvement

of close to 35% for medium-message uni-directional throughput and up to a factor of

2 benefit for computation-communication overlap tests and multi-connection bench-

marks.

5.1 Related Work

The concept of high performance sockets (such as SDP) has existed for quite some

time. Several researchers, including ourselves, have performed significant amount of

research on such implementations over various networks. Shah, et. al., from Intel,

were the first to demonstrate such an implementation for VIA over the GigaNet cLAN

network [74]. This was soon followed by other implementations over VIA [58, 18] as

well as other networks such as Myrinet [63] and Gigabit Ethernet [16].
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There has also been some amount of previous research for the high performance

sockets implementations over IBA, i.e., SDP. Balaji et. al., were the first to show

the benefits of SDP over IBA in [14] using a buffer copy based implementation of

SDP. Goldenberg et. al., recently proposed a zero-copy implementation of SDP using

a restricted version of the source-avail scheme [48, 47]. In particular, the scheme

allows zero-copy communication by restricting the number of outstanding data com-

munication requests on the network to just one. This, however, significantly affects

the performance achieved by the zero-copy communication. Our design, on the other

hand, carries out zero-copy communication while not being restricted to just one com-

munication request, thus allowing for a significant improvement in the performance.

To optimize the TCP/IP and UDP/IP protocol stacks itself, many researchers

have suggested several zero-copy schemes [55, 84, 34, 36]. However, most of these

approaches are for asynchronous sockets and all of them require modifications to the

kernel and even the NIC firmware in some cases. In addition, these approaches still

suffer from the heavy packet processing overheads of TCP/IP and UDP/IP. On the

other hand, our work benefits the more widely used synchronous sockets interface, it

does not require any kernel or firmware modifications at all and can achieve very low

packet processing overhead (due to the thin native protocol layers of the high-speed

interconnects).

In summary, AZ-SDP is a novel and unique design for high performance sockets

over IBA.
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5.2 Design and Implementation Issues

As described in the previous chapters, to achieve zero-copy communication, buffer

availability notification messages need to be implemented. In this chapter, we focus

on a design that uses source-avail messages to implement zero-copy communication.

In this section, we detail our mechanism to take advantage of asynchronous commu-

nication for synchronous zero-copy sockets.

5.2.1 Application Transparent Asynchronism
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Figure 5.1: (a) Synchronous Zero-copy SDP (ZSDP) and (b) Asynchronous Zero-copy SDP

(AZ-SDP)

The main idea of asynchronism is to avoid blocking the application while wait-

ing for the communication to be completed, i.e, as soon as the data transmission is
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initiated, the control is returned to the application. With the asynchronous sockets

interface, the application is provided with additional socket calls through which it

can initiate data transfer in one call and wait for its completion in another. In the

synchronous sockets interface, however, there are no such separate calls; there is just

one call which initiates the data transfer and waits for its completion. Thus, the

application cannot initiate multiple communications requests at the same time. Fur-

ther, the semantics of synchronous sockets assumes that when the control is returned

from the communication call, the buffer is free to be used (e.g., read from or write

to). Thus, returning from a synchronous call asynchronously means that the appli-

cation can assume that the data has been sent or received and try to write or read

from the buffer irrespective of the completion of the operation. Accordingly, a scheme

which asynchronously returns control from the communication call after initiating the

communication, might result in data corruption for synchronous sockets.

To transparently provide asynchronous capabilities for synchronous sockets, two

goals need to be met: (i) the interface should not change; the application can still use

the same interface as earlier, i.e., the synchronous sockets interface and (ii) the appli-

cation can assume the synchronous sockets semantics, i.e., once the control returns

from the communication call, it can read from or write to the communication buffer.

In our approach, the key idea in meeting these design goals is to memory-protect the

user buffer (thus disallow the application from accessing it) and to carry out commu-

nication asynchronously from this buffer, while tricking the application into believing

that we are carrying out data communication in a synchronous manner.

Figure 5.1 illustrates the designs of the synchronous zero-copy SDP (ZSDP) scheme

and our asynchronous zero-copy SDP (AZ-SDP) scheme. As shown in Figure 5.1(a),
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in the ZSDP scheme, on a data transmission event, a source-avail message contain-

ing information about the source buffer is sent to the receiver side. The receiver,

on seeing this request, initiates a GET on the source data to be fetched into the

final destination buffer using an IBA RDMA read request. Once the GET has com-

pleted, the receiver sends a GET COMPLETE message to the sender indicating that

the communication has completed. The sender on receiving this GET COMPLETE

message, returns control to the application.

Figure 5.1(b) shows the design of the AZ-SDP scheme. This scheme is simi-

lar to the ZSDP scheme, except that it memory-protects the transmission appli-

cation buffers and sends out several outstanding source-avail messages to the re-

ceiver. The receiver, on receiving these source-avail messages, memory-protects the

receive application buffers and initiates several GET requests using multiple IBA

RDMA read requests. On the completion of each of these GET requests, the re-

ceiver sends back GET COMPLETE messages to the sender. Finally, on receiving

the GET COMPLETE requests, the sender unprotects the corresponding memory

buffers. Thus, this approach allows for a better pipelining in the data communication

providing a potential for much higher performance as compared to ZSDP.

5.2.2 Buffer Protection Mechanisms

As described in Section 5.2.1, our asynchronous communication mechanism uses

memory-protect operations to disallow the application from accessing the communi-

cation buffer. If the application tries to access the buffer, a page fault is generated; our

scheme needs to appropriately handle this, such that the semantics of synchronous

sockets is maintained.
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As we will see in Section 8.3.1, if the application touches the communication buffer

very frequently (thus generating page faults very frequently), it might impact the per-

formance of AZ-SDP. However, the actual number of page faults that the application

would generate depends closely on the kind of application we are trying to support.

For example, if a middleware that supports non-blocking semantics is built on top

of the sockets interface, we expect the number of page faults to be quite low. Con-

sidering MPI to be one example of such a middleware, whenever the end application

calls a non-blocking communication call, MPI will have to implement this using the

blocking semantics of sockets. However, till the application actually checks for com-

pletion, the data will remain untouched, thus reducing the number of page faults that

might occur. Another example, is applications which perform data prefetching. As

network throughput is increasing at a much faster rate as compared to the decrease

in point-to-point latency, several applications today attempt to intelligently prefetch
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data that they might use in the future. This, essentially implies that though the

prefetched data is transferred, it might be used at a much later time, if at all it is

used. Again, in such scenarios, we expect the number of page faults occurring to be

quite less. In this section, we describe generic approaches for handling the page faults.

The performance, though, would depend on the actual number of page faults that the

application would generate (which is further discussed in Section 8.3.1).

On the receiver side, we use a simple approach for ensuring the synchronous sockets

semantics. Specifically, if the application calls a recv() call, the buffer to which the

data is arriving is protected and the control is returned to the application. Now, if the

receiver tries to read from this buffer before the data has actually arrived, our scheme

blocks the application in the page fault until the data arrives. From the application’s

perspective, this operation is completely transparent except that the memory access

would seem to take a longer time. On the sender side, however, we can consider two

different approaches to handle this and guarantee the synchronous communication

semantics: (i) block-on-write and (ii) copy-on-write. We discuss these alternatives in

Sections 5.2.2 and Sections 5.2.2, respectively.

Block on Write

This approach is similar to the approach used on the receiver side, i.e., if the appli-

cation tries to access the communication buffer before the communication completes,

we force the application to block (Figure 5.2(a)). The advantage of this approach is

that we always achieve zero-copy communication (saving on CPU cycles by avoiding

memory copies). The disadvantage of this approach is that it is not skew tolerant,

i.e., if the receiver process is delayed because of some computation and cannot post
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a receive for the communication, the sender has to block waiting for the receiver to

arrive.

Copy on Write

The idea of this approach is to perform a copy-on-write operation from the com-

munication buffer to a temporary internal buffer when a page fault is generated.

However, before control is returned to the user, the AZ-SDP layer needs to ensure

that the receiver has not already started the GET operation; otherwise, it could result

in data corruption.

This scheme performs the following steps to maintain the synchronous sockets

semantics (illustrated in Figure 5.2(b)):

1. The AZ-SDP layer maintains a lock at the receiver side for each source-avail

message.

2. Once the receiver calls a recv() and sees this source-avail message, it sets the

lock and initiates the GET operation for the data using the IBA RDMA read

operation.

3. On the sender side, if a page fault occurs (due to the application trying to touch

the buffer), the AZ-SDP layer attempts to obtain the lock on the receiver side

using an IBA compare-and-swap atomic operation. Depending on whether the

sender gets a page fault first or the receiver calls the recv() operation first, one

of them will get the lock.

4. If the sender gets the lock, it means that the receiver has not called a recv() for

the data yet. In this case, the sender copies the data into a copy-on-write buffer,

sends an updated-source-avail message pointing to the copy-on-write buffer and
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returns the lock. During this time, if the receiver attempts to get the lock and

fails, it just blocks waiting for the updated-source-avail message.

5. If the sender does not get the lock, it means that the receiver has already called

the recv() call and is in the process of transferring data. In this case, the sender

just blocks waiting for the receiver to complete the data transfer and send it a

GET COMPLETE message.

The advantage of this approach is that it is more skew tolerant as compared to the

block-on-write approach, i.e., if the receiver is delayed because of some computation

and does not call a recv() soon, the sender does not have to block. The disadvantages

of this approach, on the other hand, are: (i) it requires an additional copy operation,

so it consumes more CPU cycles as compared to the ZSDP scheme and (ii) it has an

additional lock management phase which adds more overhead in the communication.

Thus, this approach may result in higher overhead than even the copy-based scheme

(BSDP) when there is no skew.

5.2.3 Handling Buffer Sharing

Several applications perform buffer sharing using approaches such as memory-

mapping two different buffers (e.g., mmap() operation). Let us consider a scenario

where buffer B1 and buffer B2 are memory-mapped to each other. In this case, it

is possible that the application can perform a send() operation from B1 and try to

access B2. In our approach, we memory-protect B1 and disallow all accesses to it.

However, if the application writes to B2, this newly written data is reflected in B1 as

well (due to the memory-mapping); this can potentially take place before the data is

actually transmitted from B1 and can cause data corruption.
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In order to handle this, we override the mmap() call from libc to call our own

mmap() call. The new mmap() call, internally maintains a mapping of all memory-

mapped buffers. Now, if any communication is initiated from one buffer, all buffers

memory-mapped to this buffer are protected. Similarly, if a page fault occurs, memory

access is blocked (or copy-on-write performed) till all communication for this and its

associated memory-mapped buffers has completed.

5.2.4 Handling Unaligned Buffers

The mprotect() operation used to memory-protect buffers in Linux, performs

memory-protects in a granularity of a physical page size, i.e., if a buffer is protected,

all physical pages on which it resides are protected. However, when the application is

performing communication from a buffer, it is not necessary that this buffer is aligned

so that it starts on a physical page.

Application BufferVAPI
Control Buffer

Physical
Page

Shared Physical Page

Figure 5.3: Physical Page Sharing Between Two Buffers

Let us consider the case depicted in Figure 5.3. In this case, the application buffer

shares the same physical page with a control buffer used by the protocol layer, e.g,

VAPI. Here, if we protect the application buffer disallowing any access to it, the

protocol’s internal control buffer is also protected. Now, suppose the protocol layer

needs to access this control buffer to carry out the data transmission; this would
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result in a deadlock. In this section, we present two approaches for handling this: (i)

Malloc Hook and (ii) Hybrid approach with BSDP.

Malloc Hook

In this approach, we provide a hook for the malloc() and free() calls, i.e., we

override the malloc() and free() calls to be redirected to our own memory allocation

and freeing functions. Now, in the new memory allocation function, if an allocation

for N bytes is requested, we allocate N + PAGE SIZE bytes and return a pointer to

a portion of this large buffer such that the start address is aligned to a physical page

boundary.
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Figure 5.4: Overhead of the Malloc Hook

While this approach is simple, it has several disadvantages. First, if the application

calls several small buffer allocations, for each call atleast a PAGE SIZE amount of

buffer is allocated. This might result in a lot of wastage. Second, as shown in

Figure 5.4, the amount of time taken to perform a memory allocation operation
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increases significantly from a small buffer allocation to a PAGE SIZE amount of

buffer allocation. Thus, if we use a malloc hook, even a 40 byte memory allocation

would take the amount of time equivalent to that of a complete physical page size,

i.e., instead of 0.1µs, a 40 byte memory allocation would take about 4.8µs.

Table 5.1: Transmission Initiation Overhead
Operation w/ Malloc (µs) w/ Malloc Hook (µs)

Registration Check 1.4 1.4
Memory-Protect 1.4 1.4
Memory Copy 0.3 0.3

Malloc 0.1 4.8
Descriptor Post 1.6 1.6

Other 1.1 1.1

To understand the impact of the additional memory allocation time, we show

the break up of the message transmission initiation phase in Table 5.1. As shown

in the table, there are several steps involved in initiating a data transfer. Of these,

the memory allocation overhead is of primary interest to us. For small message

communication (e.g., source- and sink-avail messages), VAPI allocates a small buffer

(40 bytes), copies the data into the buffer together with the descriptor describing the

buffer itself and its protection attributes. This allows the network adapter to fetch

both the descriptor as well as the actual buffer in a single DMA operation. Here, we

calculate the memory allocation portion for the small buffer (40 bytes) as the fourth

overhead. As we can see in the table, by adding our malloc hook, all the overheads

remain the same, except for the memory allocation overhead which increases to 4.8µs,

i.e., its portion in the entire transmission initiation overhead increases to about 45%

from 1.5% making it the dominant overhead in the data transmission initiation part.
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Hybrid Approach with Buffered SDP (BSDP)

In this approach, we use a hybrid mechanism between AZ-SDP and BSDP. Specif-

ically, if the buffer is not page-aligned, we transmit the page-aligned portions of the

buffer using AZ-SDP and the remaining portions of the buffer using BSDP. The be-

ginning and end portions of the communication buffer are thus sent through BSDP

while the intermediate portion over AZ-SDP.

This approach does not have any of the disadvantages mentioned for the previous

malloc-hook based scheme. The only disadvantage is that a single message commu-

nication might need to be carried out in multiple communication operations (at most

three). This might add some overhead when the communication buffers are not page-

aligned. In our preliminary results, we noticed that this approach gives about 5%

to 10% better throughput as compared to the malloc-hook based scheme. Hence, we

went ahead with this approach.

5.3 Experimental Evaluation
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Figure 5.5: Micro-Benchmarks: (a) Ping-Pong Latency and (b) Unidirectional Throughput
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In this section, we evaluate the AZ-SDP implementation and compare it with

the other two implementations of SDP, i.e., BSDP and ZSDP. We perform two sets

of evaluations. In the first set (section 8.3.1), we use single connection benchmarks

such as ping-pong latency, uni-directional throughput, computation-communication

overlap capabilities and effect of page faults. In the second set (section 8.3.2), we use

multi-connection benchmarks such as hot-spot latency, multi-stream throughput and

multi-client throughput tests. For AZ-SDP, our results are based on the block-on-write

technique for page faults.

The experimental test-bed consists of four nodes with dual 3.6 GHz Intel Xeon

EM64T processors. Each node has a 2 MB L2 cache and 512 MB of 333 MHz DDR

SDRAM. The nodes are equipped with Mellanox MT25208 InfiniHost III DDR PCI-

Express adapters (capable of a link-rate of 20 Gbps) and are connected to a Mellanox

MTS-2400, 24-port fully non-blocking DDR switch.

5.3.1 Single Connection Micro-Benchmarks

In this section, we evaluate the three stacks with a suite of single connection

micro-benchmarks.

Ping-Pong Latency: Figure 5.5(a) shows the point-to-point latency achieved by

the three stacks. In this test, the sender node first sends a message to the receiver; the

receiver receives this message and sends back another message to the sender. Such

exchange is carried out for several iterations, the total time calculated and averaged

over the number of iterations. This gives the time for a complete message exchange.

The ping-pong latency demonstrated in the figure is half of this amount (one-way

communication).
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As shown in the figure, both zero-copy schemes (ZSDP and AZ-SDP) achieve a

superior ping-pong latency as compared to BSDP. However, there is no significant

difference in the performance of ZSDP and AZ-SDP. This is due to the way the ping-

pong latency test is designed. In this test, only one message is sent at a time and the

node has to wait for a reply from its peer before it can send the next message, i.e.,

the test itself is completely synchronous and cannot utilize the capability of AZ-SDP

with respect to allowing multiple outstanding requests on the network at any given

time, resulting in no performance difference between the two schemes.

Uni-directional Throughput: Figure 5.5(b) shows the uni-directional throughput

achieved by the three stacks. In this test, the sender node keeps streaming data and

the receiver keeps receiving it. Once the data transfer completes, the time is measured

and the data rate is calculated as the number of bytes sent out per unit time. We

used the ttcp benchmark [80] version 1.4.7 for this experiment.

As shown in the figure, for small messages BSDP performs the best. The reason

for this is two fold: (i) Both ZSDP and AZ-SDP rely on control message exchange

for every message to be transferred. This causes an additional overhead for each

data transfer which is significant for small messages and (ii) Our BSDP implemen-

tation uses an optimization technique known as reverse packetization to improve the

throughput for small messages. More details about this can be found in [12].

For medium and large messages, on the other hand, AZ-SDP and ZSDP outper-

form BSDP because of the zero-copy communication. Also, for medium messages,

AZ-SDP performs the best with about 35% improvement compared to ZSDP.
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Figure 5.6: Computation and Communication Overlap Micro-Benchmark: (a) 64Kbyte

message and (b) 1Mbyte message
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Figure 5.7: Impact of Page Faults: (a) 64Kbyte message and (b) 1Mbyte message
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Computation-Communication Overlap: As mentioned earlier, IBA provides

hardware offloaded network and transport layers to allow high performance com-

munication. This also implies that the host CPU now has to do lesser amount of

work for carrying out the communication, i.e., once the data transfer is initiated, the

host is free to carry out its own computation while the actual communication is car-

ried out by the network adapter. However, the amount of such overlap between the

computation and communication that each of the schemes can exploit varies. In this

experiment, we measure the capability of each scheme with respect to overlapping

application computation with the network communication. Specifically, we modify

the ttcp benchmark to add additional computation between every data transmission.

We vary the amount of this computation and report the throughput delivered.

Figure 5.6 shows the overlap capability for the different schemes with the amount

of computation added represented on the x-axis and the throughput measured, on

the y-axis. Figure 5.6(a) shows the overlap capability for a message size of 64Kbytes

and Figure 5.6(b) shows that for a message size of 1Mbyte. As shown in the figures,

AZ-SDP achieves much higher computation-communication overlap as compared to

the other schemes, as illustrated by its capability to retain high performance even

for a large amount of intermediate computation. For example, for a message size

of 64Kbytes, AZ-SDP achieves an improvement of up to a factor of 2. Also, for a

message size of 1Mbyte, we see absolutely no drop in the performance of AZ-SDP even

with a computation amount of 200µs while the other schemes see a huge degradation

in the performance.
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The reason for this better performance of AZ-SDP is its capability to utilize the

hardware offloaded protocol stack more efficiently, i.e., once the data buffer is pro-

tected and the transmission initiated, AZ-SDP returns control to the application

allowing it to perform its computation while the network hardware takes care of the

data transmission. ZSDP on the other hand waits for the actual data to be transmit-

ted before returning control to the application, i.e., it takes absolutely no advantage

of the network adapter’s capability to carry out data transmission independently.

Impact of Page Faults: As described earlier, the AZ-SDP scheme protects mem-

ory locations and carries out communication from or to these memory locations asyn-

chronously. If the application tries to touch the data buffer before the communication

completes, a page fault is generated. The AZ-SDP implementation traps this event,

blocks to make sure that the data communication completes and returns the control

to the application (allowing it to touch the buffer). Thus, in the case where the

application very frequently touches the data buffer immediately after communication

event, the AZ-SDP scheme has to handle several page faults adding some amount of

overhead to this scheme. To characterize this overhead, we have modified the ttcp

benchmark to touch data occasionally. We define a variable known as the Window

Size (W) for this. The sender side first calls W data transmission calls and then

writes a pattern into the transmission buffer. Similarly, the receiver calls W data

reception calls and then reads the pattern from the reception buffer. This obviously

does not impact the BSDP and ZSDP schemes since they do not perform any kind

of protection of the application buffers. However, for the AZ-SDP scheme, each time

the sender tries to write to the buffer or the receiver tries to read from the buffer, a

page fault is generated, adding additional overhead.
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Figure 5.7 shows the impact of page faults on the three schemes for message sizes

64Kbytes and 1Mbyte respectively. As shown in the figure, for small window sizes, the

performance of AZ-SDP is poor. Though this degradation is lesser for larger message

sizes (Figure 5.7(b)), there is still some amount of drop. There are two reasons for

this: (i) When a page fault is generated, no additional data transmission or reception

requests are initiated; thus, during this time, the behavior of ZSDP and AZ-SDP

would be similar and (ii) Each page fault adds about 6µs overhead. Thus, though

AZ-SDP falls back to the ZSDP scheme, it still has to deal with the page faults for

previous protected buffers causing worse performance than ZSDP1.

5.3.2 Multi-Connection Micro-Benchmarks

In this section, we present the evaluation of the stacks with several benchmarks

which carry out communication over multiple connections simultaneously.
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Figure 5.8: Hot-Spot Latency Test
1We tackle this problem by allowing AZ-SDP to completely fall back to ZSDP if the application

has generated more page faults than a certain threshold. However, to avoid diluting the results, we
set this threshold to a very high number so that it is never triggered in the experiments.
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Figure 5.9: Multi-Connection Micro-Benchmarks: (a) Multi-Stream Throughput test and

(b) Multi-Client Throughput test

Hot-Spot Latency Test: Figure 5.8 shows the impact of multiple connections in

message transaction kind of environments. In this experiment, a number of client

nodes perform point-to-point latency test with the same server, forming a hot-spot

on the server. We perform this experiment with one node acting as a server node and

three other dual-processor nodes hosting a total of 6 client processes and report the

average of the latencies observed by each client process. As shown in the figure, AZ-

SDP significantly outperforms the other two schemes especially for large messages.

The key to the performance difference in this experiment lies in the usage of multiple

connections for the test. Since the server has to deal with several connections at the

same time, it can initiate a request to the first client and handle the other connec-

tions while the first data transfer is taking place. Thus, though each connection is

synchronous, the overall experiment provides some asynchronism with respect to the

number of clients the server has to deal with. Further, we expect this benefit to grow

with the number of clients allowing a better scalability for the AZ-SDP scheme.

Multi-Stream Throughput Test: The multi-stream throughput test is similar to

the uni-directional throughput test, except that multiple threads on the same pair of
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physical nodes carry out uni-directional communication separately. We measure the

aggregate throughput of all the threads together and report it in Figure 5.9(a). The

message size used for the test is 64Kbytes; the x-axis gives the number of threads

used and the y-axis gives the throughput achieved. As shown in the figure, when the

number of streams is one, the test behaves similar to the uni-directional throughput

test with AZ-SDP outperforming the other schemes. However, when we have more

streams performing communication as well, the performance of ZSDP is also similar

to what AZ-SDP can achieve. To understand this behavior, we briefly reiterate on the

way the ZSDP scheme works. In the ZSDP scheme, when a process tries to send the

data out to a remote process, it sends the buffer availability notification message and

waits till the remote process completes the data communication and informs it about

the completion. Now, in a multi-threaded environment, while the first process is

waiting, the remaining processes can go ahead and send out messages. Thus, though

each thread is blocking for progress in ZSDP, the network is not left unutilized due to

several threads accessing it simultaneously. This results in ZSDP achieving a similar

performance as AZ-SDP in this environment.

Multi-client Throughput Test: In the multi-client throughput test, similar to

the hot-spot test, we use one server and 6 clients (spread over three dual-processor

physical nodes). In this setup, we perform the streaming throughput test between

each of the clients and the same server. As shown in Figure 5.9(b), AZ-SDP performs

significantly better than both ZSDP and BSDP in this test. Like the hot-spot test,

the improvement in the performance of AZ-SDP is attributed to its ability to perform

communication over the different connections simultaneously while ZSDP and BSDP

perform communication one connection at a time.
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5.4 Summary

In this chapter we proposed a mechanism, termed as AZ-SDP (Asynchronous

Zero-Copy SDP), which allows the approaches proposed for asynchronous sockets to

be used for synchronous sockets, while maintaining the synchronous sockets seman-

tics. We presented our detailed design in this chapter and evaluated the stack with

an extensive set of micro-benchmarks. The experimental results demonstrate that

our approach can provide an improvement of close to 35% for medium-message uni-

directional throughput and up to a factor of 2 benefit for computation-communication

overlap tests and multi-connection benchmarks.
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CHAPTER 6

RDMA SUPPORTED PACKETIZED FLOW CONTROL
FOR THE SOCKETS DIRECT PROTOCOL (SDP) OVER

INFINIBAND

Most high-speed networks have strict requirements on their upper layers that the

receiver has to post a receive descriptor informing the network adapter about where

to place the incoming message before the message is actually sent by the sender. Not

doing so might result in limited retransmissions of the message (increasing the network

load) and/or the connection being dropped or terminated. Thus, most programming

models and upper layers use different schemes to handle this requirement. Like several

other programming models, SDP uses a credit-based flow-control approach to handle

this.

However, as we will discuss in the later sections, though the credit-based flow

control is a simple and generic approach for communication, it decouples the send

and receive buffers by forcing the sender to manage the send buffers and the receiver

to manage the receive buffers. Thus, explicit synchronization is required within the

critical path of communication in order to make sure that the sender does not overrun

the receiver. Further, since the receiver is not aware of the messages that the sender

is going to send, it statically and conservatively allocates buffers. Thus, when the

sender sends data, the buffers might not be utilized completely.
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In this chapter, we present a new flow-control approach for SDP known as the

packetized flow control, which utilizes RDMA-based one-sided communication oper-

ations to perform completely sender-side buffer management for both the sender as

well as the receiver buffers. This allows us to remove the “communication gap” that

is formed between the sender and the receiver for managing buffers and helps us in

improving the buffer usage as well as the performance achievable by SDP.

Our results demonstrate that our scheme can significantly improve the buffer usage

of SDP’s flow control to close to the ideal 100% which is several orders of magnitude

higher than existing schemes. Further, our scheme also allows SDP to utilize the

network in a more effective manner by coalescing many small packets into a few large

packets, thus improving the overall performance by close to 10X for medium message

sizes.

6.1 Overview of Credit-based Flow-control in SDP

As mentioned earlier, most programming models and upper layers used the credit-

based flow control mechanism for communication. We have presented the basic credit-

based flow control approach in Section 2.4.1. Here we provide a brief overview of the

same.

In this approach, the sender is given a certain number of credits (tokens). It loses

a credit for every message sent and gains a credit for every acknowledgment received.

If the sender is given N credits, the substrate has to make sure that there are enough

descriptors and buffers pre-posted for N unexpected message arrivals on the receiver

side. In this way, the substrate can tolerate up to N outstanding write() calls before

the corresponding read() for the first write() is called (Figure 6.1).
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Figure 6.1: The Credit Based Approach

One problem with applying this algorithm directly is that the acknowledgment

messages also use up a descriptor and there is no way the receiver would know when

it is reposted, unless the sender sends back another acknowledgment, thus forming a

potential live lock. To avoid this problem, we have proposed the following solutions:

1. Blocking the send: In this approach, the write() call is blocked until an

acknowledgment is received from the receiver, which would increase the time

taken for a send to a round-trip latency.

2. Piggy-back acknowledgment: In this approach, the acknowledgment is sent

along with the next data message from the receiver node to the sender node.

This approach again requires synchronization between both the nodes. Though

this approach is used in the substrate when a message is available to be sent,

we cannot always rely on this approach and need an explicit acknowledgment

mechanism too.
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3. Post more descriptors: In this approach, 2N number of descriptors are

posted where N is the number of credits given. It can be proved that at any

point of time, the number of unattended data and acknowledgment messages

will not exceed 2N . On the basis of the same, this approach was used in the

substrate.

In the credit-based flow control approach, the receiver is “blind” to the sizes of

the incoming messages. Accordingly, statically sized buffers are allocated in circular

fashion, both on the sender and the receiver side. There are as many intermediate

buffers, of size S, as the number of credits. So, if there are credits available, the sender

can directly copy the outstanding message into the intermediate buffer and send it

out to the next available receive buffer. If the message is S bytes or smaller in size,

it is copied to the intermediate buffer on the sender side and sent to the receiver side

intermediate buffer. If the message is larger than S bytes in size, it is broken up into

S byte chunks and copied into as many intermediate buffers as available. Data from

each of these buffers is sent out as soon as a credit is available.

6.2 Packetized Flow Control: Design and Implementation

Each of the credit-based flow control mechanisms discussed in the previous sec-

tion (Section 6.1), have their own disadvantages. Packetized flow-control has been

designed to solve these problems. In this section, we provide the design and imple-

mentation details of the same.

The main disadvantage of the credit-based flow control scheme is based on the way

it handles the communication of small messages, i.e., when the sender is transmitting

small messages, each message uses up an entire buffer on the receiver side, thus
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Figure 6.2: Packetized Flow Control Approach

wasting the buffer space available. For example if each message is only 1 byte and

each buffer is 8 KB, effectively 99.8% of the buffer space is completely under-utilized.

This wastage of buffers also reflects on the number of messages that are sent out, i.e.,

excessive under-utilization of buffer space might result in the SDP layer to “believe”

that it has used up its resources in spite of having free resources in reality.

Another disadvantage of the credit-based flow control mechanism is its network

utilization. Since this approach directly sends out data as soon as the sender has

requested for transmission, it might result in very small messages being posted to the

network. This, of course, results in the under-utilization of the network and hence in

degradation in performance.

Packetized flow-control utilizes advanced network features such as RDMA to solve

these problems with credit based flow control. In this scheme, the entire intermediate

buffer is one continuous buffer instead of several buffers connected in a circular list.

Or in other words, the intermediate buffer is packetized into buffers of 1 byte size.

The entire buffer management, for both the sender as well as the receiver, is carried

out on the sender side alone using RDMA operation. Since the sender knows exactly

what size messages it is sending, this allows the sender to manage the receiver buffer
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in a better manner. When the new message has to be sent out, the sender knows the

address of the next free location on the receiver side and can place the new message

in the appropriate position using an RDMA write operation. Thus the wastage of

buffers is minimal in this approach and close to the ideal 100% in most cases.

Further, if the application posts a new message to be sent after all the credits

have been used up, the message can be copied to the intermediate buffer (where there

is more space available due to better buffer management) and sent at a later time.

The application returns assuming that the data has been sent and carries on with

computation. This allows the SDP layer to coalesce multiple small messages into one

larger message, thus improving the network utilization and hence the performance.

In summary, the advantages of Packetized flow control are two fold. Firstly,

it avoids buffer wastage for small and medium sized messages. Server side buffer

management assures that there is no buffer wastage. Secondly, it increases throughput

for small and medium sized messages. When the sender is out of remote credits, it can

buffer all the incoming messages until the intermediate buffer is full and thus coalesce

a number of small messages into one large message. When a credit is available, one

large message is sent out. This results in a higher throughput than sending each small

message individually and achieves better throughput.

6.3 Experimental Results

In this section, we evaluate the performance of the packetized flow control as

compared to the regular credit-based flow control approach. We present ping-pong

latency and uni-directional throughput as well as the temporary buffer utilization

measurements for both these approaches.
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The experimental test-bed consists of four nodes with dual 3.6 GHz Intel Xeon

EM64T processors. Each node has a 2 MB L2 cache and 512 MB of 333 MHz DDR

SDRAM. The nodes are equipped with Mellanox MT25208 InfiniHost III DDR PCI-

Express adapters (capable of a link-rate of 20 Gbps) and are connected to a Mellanox

MTS-2400, 24-port fully non-blocking DDR switch.

6.3.1 Latency and Bandwidth
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Figure 6.3: Micro-Benchmarks: (a) Ping-Pong Latency and (b) Unidirectional Throughput

Figure 6.3(a) shows the ping-pong latency comparison of the packetized flow-

control approach with that of the credit-based flow control approach. As shown in

the figure, there is no difference in the latency for both these approaches. The reason

for this indifference is that the packetized flow control approach essentially improves

the resource utilization when multiple back-to-back messages are transmitted. The

ping-pong latency test, however, is completely synchronous in nature and does not

transmit any back-to-back messages.
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Figure 6.3(b) shows the unidirectional throughput comparison of the two ap-

proaches. As shown in the figure, packetized flow control achieves around 10X im-

provement in the throughput for small to medium messages. As mentioned earlier,

this improvement is attributed to the better network utilization and buffer manage-

ment associated with the packetized flow control approach.

6.3.2 Temporary Buffer Utilization
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Figure 6.4: Temporary Buffer Utilization: (a) Socket buffer size = 8KB x credits, (b)

Socket buffer size = 32KB x credits

Figures 6.4(a) and 6.4(b) show the way the amount of the temporary socket buffer

each scheme utilizes (for different socket buffer sizes). As shown in the figures, for

very small message sizes, the credit-based flow control approach is extremely wasteful

utilizing close to 0% of the entire buffer space available. As the message size increases,

however, this approach starts using a larger fraction of the buffer. Packetized flow

control, on the other hand, always utilizes close to 100% of the allotted temporary

buffer space.
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6.4 Summary

In this chapter, we have proposed an enhanced flow control mechanism, termed

as the packetized flow control, for the Sockets Direct Protocol over InfiniBand. This

approach tries to meet the limitations of the existing flow control mechanisms in terms

of resource usage and performance. We have presented some preliminary performance

results in both these aspects and showed that our approach can achieve a throughput

improvement of close to an order of magnitude for small and medium message sizes.

Further, the resource usage of our approach is several orders of magnitude better in

some cases.
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CHAPTER 7

PERFORMANCE CHARACTERIZATION OF A
10-GIGABIT ETHERNET TCP OFFLOAD ENGINE

(TOE)

Despite the performance criticisms of Ethernet for high-performance comput-

ing (HPC), the Top500 Supercomputer List [7] continues to move towards more

commodity-based Ethernet clusters. Just three years ago, there were zero Giga-

bit Ethernet-based clusters in the Top500 list; now, Gigabit Ethernet-based clusters

make up 176 (or 35.2%) of these. The primary drivers of this Ethernet trend are

ease of deployment and cost. So, even though the end-to-end throughput and latency

of Gigabit Ethernet (GigE) lags exotic high-speed networks such as Quadrics [69],

Myrinet [24], and InfiniBand [10] by as much as ten-fold, the current trend indi-

cates that GigE-based clusters will soon make up over half of the Top500 (as early

as November 2005). Further, Ethernet is already the ubiquitous interconnect tech-

nology for commodity grid computing because it leverages the legacy Ethernet/IP

infrastructure whose roots date back to the mid-1970s. Its ubiquity will become even

more widespread as long-haul network providers move towards 10-Gigabit Ethernet

(10GigE) [52, 45] backbones, as recently demonstrated by the longest continuous

10GigE connection between Tokyo, Japan and Geneva, Switzerland via Canada and
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the United States [41]. Specifically, in late 2004, researchers from Japan, Canada,

the United States, and Europe completed an 18,500-km 10GigE connection between

the Japanese Data Reservoir project in Tokyo and the CERN particle physical lab-

oratory in Geneva; a connection that used 10GigE WAN PHY technology to set-up

a local-area network at the University of Tokyo that appeared to include systems at

CERN, which were 17 time zones away.

Given that GigE is so far behind the curve with respect to network performance,

can 10GigE bridge the performance divide while achieving the ease of deployment

and cost of GigE? Arguably yes. The IEEE 802.3-ae 10-Gb/s standard, supported

by the 10GigE Alliance, already ensures interoperability with existing Ethernet/IP

infrastructures, and the manufacturing volume of 10GigE is already driving costs

down exponentially, just as it did for Fast Ethernet and Gigabit Ethernet2. This

leaves us with the “performance divide” between 10GigE and the more exotic network

technologies.

In a distributed grid environment, the performance difference is a non-issue mainly

because of the ubiquity of Ethernet and IP as the routing language of choice for local-,

metropolitan, and wide-area networks in support of grid computing. Ethernet has

become synonymous with IP for these environments, allowing complete compatibility

for clusters using Ethernet to communicate over these environments. On the other

hand, networks such as Quadrics, Myrinet, and InfiniBand are unusable in such en-

vironments due to their incompatibility with Ethernet and due to their limitations

against using the IP stack in order to maintain a high performance.

2Per-port costs for 10GigE have dropped nearly ten-fold in two years.
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With respect to the cluster environment, Gigabit Ethernet suffers from an order-

of-magnitude performance penalty when compared to networks such as Quadrics and

InfiniBand. In our previous work [52, 45, 15], we had demonstrated the capabilities

of the basic 10GigE adapters in bridging this gap. In this chapter, we take the

next step by demonstrating the capabilities of the Chelsio T110 10GigE adapter

with TCP Offload Engine (TOE). We present performance evaluations in three broad

categories: (i) detailed micro-benchmark performance evaluation at the sockets layer,

(ii) performance evaluation of the MPI stack atop the sockets interface, and (iii)

application-level evaluation using the Apache web server [6]. Our experimental results

demonstrate latency as low as 8.9 µs and throughput of nearly 7.6 Gbps for these

adapters. Further, we see an order-of-magnitude improvement in the performance of

the Apache web server while utilizing the TOE as compared to a 10GigE adapter

without TOE.

7.1 Background

In this section, we briefly discuss the TOE architecture and provide an overview

of the Chelsio T110 10GigE adapter.

7.1.1 Overview of TCP Offload Engines (TOEs)

The processing of traditional protocols such as TCP/IP and UDP/IP is accom-

plished by software running on the central processor, CPU or microprocessor, of

the server. As network connections scale beyond GigE speeds, the CPU becomes

burdened with the large amount of protocol processing required. Resource-intensive

memory copies, checksum computation, interrupts, and reassembling of out-of-order

packets put a tremendous amount of load on the host CPU. In high-speed networks,
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Figure 7.1: TCP Offload Engines

the CPU has to dedicate more processing to handle the network traffic than to the

applications it is running. TCP Offload Engines (TOEs) are emerging as a solution

to limit the processing required by CPUs for networking.

The basic idea of a TOE is to offload the processing of protocols from the host

processor to the hardware on the adapter or in the system (Figure 7.1). A TOE

can be implemented with a network processor and firmware, specialized ASICs, or a

combination of both. Most TOE implementations available in the market concentrate

on offloading the TCP and IP processing, while a few of them focus on other protocols

such as UDP/IP.

As a precursor to complete protocol offloading, some operating systems started

incorporating support for features to offload some compute-intensive features from
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the host to the underlying adapter, e.g., TCP/UDP and IP checksum offload. But as

Ethernet speeds increased beyond 100 Mbps, the need for further protocol processing

offload became a clear requirement. Some GigE adapters complemented this require-

ment by offloading TCP/IP and UDP/IP segmentation or even the whole protocol

stack onto the network adapter [53, 40].

7.1.2 Chelsio 10-Gigabit Ethernet TOE

The Chelsio T110 is a PCI-X network adapter capable of supporting full TCP/IP

offloading from a host system at line speeds of 10 Gbps. The adapter consists of

multiple components: the Terminator which provides the basis for offloading, separate

memory systems each designed for holding particular types of data, and a MAC and

XPAC Optical Transceiver for physically transferring data over the line. An overview

of the T110’s architecture can be seen in Figure 7.2.

Context (CM) and Packet (PM) memory are available on-board as well as a 64 KB

EEPROM. A 4.5 MB TCAM is used to store a Layer 3 routing table and can filter

out invalid segments for non-offloaded connections. The T110 is a Terminator ASIC,

which is the core of the offload engine, capable of handling 64,000 connections at

once, with a setup and tear-down rate of about 3 million connections per second.

Memory Layout: Two types of on-board memory are available to the Termi-

nator. 256 MB of EFF FCRAM Context Memory stores TCP state information for

each offloaded and protected non-offloaded connection as well as a Layer 3 routing

table and its associated structures. Each connection uses 128 bytes of memory to

store state information in a TCP Control Block. For payload (packets), standard

ECC SDRAM (PC2700) can be used, ranging from 128 MB to 4 GB.
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Terminator Core: The Terminator sits between a systems host and its Ethernet

interface. When offloading a TCP/IP connection, it can handle such tasks as con-

nection management, checksums, route lookup from the TCAM, congestion control,

and most other TCP/IP processing. When offloading is not desired, a connection can

be tunneled directly to the host’s TCP/IP stack. In most cases, the PCI-X interface

is used to send both data and control messages between the host, but an SPI-4.2

interface can be used to pass data to and from a network processor (NPU) for further

processing.

7.2 Interfacing with the TOE

Since the Linux kernel does not currently support TCP Offload Engines (TOEs),

there are various approaches researchers have taken in order to allow applications to

interface with TOEs. The two predominant approaches are High Performance Sockets

(HPS) [74, 57, 58, 16, 18, 14, 55] and TCP Stack Override. The Chelsio T110 adapter

uses the latter approach.

In this approach, the kernel-based sockets layer is retained and used by the appli-

cations. However, the TCP/IP stack is overridden, and the data is pushed directly to
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the offloaded protocol stack, bypassing the host TCP/IP stack implementation. One

of Chelsio’s goals in constructing a TOE was to keep it from being too invasive to

the current structure of the system. By adding kernel hooks inside the TCP/IP stack

and avoiding actual code changes, the current TCP/IP stack remains usable for all

other network interfaces, including loopback.

The architecture used by Chelsio essentially has two software components: the

TCP Offload Module and the Offload driver.

TCP Offload Module: As mentioned earlier, the Linux operating system lacks

support for TOE devices. Chelsio provides a framework of a TCP offload module

(TOM) and a thin layer known as the toedev which decides whether a connection

needs to be handed over to the TOM or to the traditional host-based TCP/IP stack.

The TOM can be thought of as the upper layer of the TOE stack. It is responsible for

implementing portions of TCP processing that cannot be done on the TOE (e.g., TCP

TIME WAIT processing). The state of all offloaded connections is also maintained by

the TOM. Not all of the Linux network API calls (e.g., tcp sendmsg, tcp recvmsg) are

compatible with offloading to the TOE. Such a requirement would result in extensive

changes in the TCP/IP stack. To avoid this, the TOM implements its own subset

of the transport layer API. TCP connections that are offloaded have certain function

pointers redirected to the TOM’s functions. Thus, non-offloaded connections can

continue through the network stack normally.

Offload Driver: The offload driver is the lower layer of the TOE stack. It is

directly responsible for manipulating the Terminator and its associated resources.

TOEs have a many-to-one relationship with a TOM. A TOM can support multi-

ple TOEs as long as it provides all functionality required by each. Each TOE can
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only be assigned one TOM. More than one driver may be associated with a single

TOE device. If a TOE wishes to act as a normal Ethernet device (capable of only

inputting/outputting Layer 2 level packets), a separate device driver may be required.

7.3 Experimental Evaluation

In this section, we evaluate the performance achieved by the Chelsio T110 10GigE

adapter with TOE. In Section 7.3.1, we perform evaluations on the native sockets

layer; in Section 7.3.2, we perform evaluations of the Message Passing Interface (MPI)

stack atop the sockets interface; and in Section 7.3.3, we evaluate the Apache web

server as an end application.

We used two clusters for the experimental evaluation. Cluster 1 consists of

two Opteron 248 nodes, each with a 2.2-GHz CPU along with 1 GB of 400-MHz

DDR SDRAM and 1 MB of L2-Cache. These nodes are connected back-to-back with

Chelsio T110 10GigE adapters with TOEs. Cluster 2 consists of four Opteron 846

nodes, each with four 2.0-GHz CPUs (quad systems) along with 4 GB of 333-MHz

DDR SDRAM and 1 MB of L2-Cache. It is connected with similar network adapters

(Chelsio T110 10GigE-based TOEs) but via a 12-port Fujitsu XG1200 10GigE switch

(with a latency of approximately 450 ns and capable of up to 240 Gbps of aggregate

throughput). The experiments on both the clusters were performed with the SuSE

Linux distribution installed with kernel.org kernel 2.6.6 (patched with Chelsio TCP

Offload modules). In general, we have used Cluster 1 for all experiments requiring

only two nodes and Cluster 2 for all experiments requiring more nodes. We will be

pointing out the cluster used for each experiment throughout this section.
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For optimizing the performance of the network adapters, we have modified several

settings on the hardware as well as the software systems, e.g., (i) increased PCI burst

size to 2 KB, (ii) increased send and receive socket buffer sizes to 512 KB each, and

(iii) increased window size to 10 MB. Detailed descriptions about these optimizations

and their impacts can be found in our previous work [52, 45, 15].

7.3.1 Sockets-level Evaluation

In this section, we evaluate the performance of the native sockets layer atop the

TOEs as compared to the native host-based TCP/IP stack. We perform micro-

benchmark level evaluations in two sub-categories. First, we perform evaluations

based on a single connection measuring the point-to-point latency and uni-directional

throughput together with the CPU utilization. Second, we perform evaluations based

on multiple connections using the multi-stream, hot-spot, fan-in and fan-out tests.

Single Connection Micro-Benchmarks
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Figure 7.3: Sockets-level Micro-Benchmarks (MTU 1500): (a) Latency and (b)
Throughput
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Ping-pong Latency (MTU 9000)
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Figure 7.4: Sockets-level Micro-Benchmarks (MTU 9000): (a) Latency and (b)
Throughput

Figures 7.3 and 7.4 show the basic single-stream performance of the 10GigE TOE

as compared to the traditional host-based TCP/IP stack. All experiments in this

section have been performed on Cluster 1 (described in Section 7.3).

Figure 7.3a shows that the TCP Offload Engines (TOE) can achieve a point-to-

point latency of about 8.9 µs as compared to the 10.37 µs achievable by the host-based

TCP/IP stack (non-TOE); an improvement of about 14.2%. Figure 7.3b shows the

uni-directional throughput achieved by the TOE as compared to the non-TOE. As

shown in the figure, the TOE achieves a throughput of up to 7.6 Gbps as compared to

the 5 Gbps achievable by the non-TOE stack (improvement of about 52%). Through-

put results presented throughout this chapter refer to the application data transferred

per second and do not include the TCP/IP/Ethernet headers.

Increasing the MTU size of the network adapter to 9 KB (Jumbo frames) improves

the performance of the non-TOE stack to 7.2 Gbps (Figure 7.4b). There is no addi-

tional improvement for the TOE due to the way it handles the message transmission.

129



For the TOE, the device driver hands over large message chunks (16 KB) to be sent

out. The actual segmentation of the message chunk to MTU-sized frames is carried

out by the network adapter. Thus, the TOE shields the host from the overheads

associated with smaller MTU sizes. On the other hand, for the host-based TCP/IP

stack (non-TOE), an MTU of 1500 bytes results in more segments and correspond-

ingly more interrupts to be handled for every message causing a lower performance

as compared to Jumbo frames.

We also show the CPU utilization for the different stacks. For TOE, the CPU

remains close to 35% for large messages. However, for the non-TOE, the CPU uti-

lization increases slightly on using jumbo frames. To understand this behavior, we

reiterate on the implementation of these stacks. When the application calls a write()

call, the host CPU copies the data into the socket buffer. If there is no space in the

socket buffer, the CPU waits for the network adapter to complete sending out the

existing data and creating space for the new data to be copied. Once the data is

copied, the underlying TCP/IP stack handles the actual data transmission. Now, if

the network adapter pushes the data out faster, space is created in the socket buffer

faster and the host CPU spends a larger fraction of its time in copying data to the

socket buffer than waiting for space to be created in the socket buffer. Thus, in gen-

eral when the performance increases, we expect the host CPU to be spending a larger

fraction of time copying data and burning CPU cycles. However, the usage of Jumbo

frames reduces the CPU overhead for the host-based TCP/IP stack due to reduced

number of interrupts. With these two conditions, on the whole, we see about a 10%

increase in the CPU usage with Jumbo frames.

Multiple Connection Micro-Benchmarks
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Figure 7.5: (a) Multi-stream Throughput and (b) Hot-Spot Latency
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Figure 7.6: (a) Fan-out Test and (b) Fan-in Test
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Here we evaluate the TOE and non-TOE stacks with micro-benchmarks utilizing

multiple simultaneous connections. For all experiments in this section, we utilize an

MTU of 1500 bytes in order to stick to the standard Ethernet frame size.

Multi-stream Throughput Test: Figure 8.4a shows the aggregate throughput

achieved by two nodes (in Cluster 1) performing multiple instances of uni-directional

throughput tests. We see that the TOE achieves a throughput of 7.1 to 7.6 Gbps.

The non-TOE stack gets saturated at about 4.9 Gbps. These results are similar to

the single stream results; thus using multiple simultaneous streams to transfer data

does not seem to make much difference.

Hot-Spot Latency Test: Figure 8.4b shows the impact of multiple connections

on small message transactions. In this experiment, a number of client nodes perform

a point-to-point latency test with the same server forming a hot-spot on the server.

We performed this experiment on Cluster 2 with one node acting as a server node

and each of the other three 4-processor nodes hosting totally 12 client processes. The

clients are alloted in a cyclic manner, so 3 clients refers to 1 client on each node, 6

clients refers to 2 clients on each node and so on. As seen in the figure, both the

non-TOE as well as the TOE stacks show similar scalability with increasing number

of clients, i.e., the performance difference seen with just one client continues with

increasing number of clients. This shows that the look-up time for connection related

data-structures is performed efficiently enough on the TOE and does not form a

significant bottleneck.

Fan-out and Fan-in Tests: With the hot-spot test, we have shown that the

lookup time for connection related data-structures is quite efficient on the TOE.
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However, the hot-spot test does not stress the other resources on the network adapter

such as management of memory regions for buffering data during transmission and

reception. In order to stress such resources, we have designed two other tests namely

fan-out and fan-in. In both these tests, one server process carries out uni-directional

throughput tests simultaneously with a number of client threads (performed on Clus-

ter 2). The difference being that in a fan-out test the server pushes data to the

different clients (stressing the transmission path on the network adapter) and in a

fan-in test the clients push data to the server process (stressing the receive path on the

network adapter). Figure 8.5 shows the performance of the TOE stack as compared

to the non-TOE stack for both these tests. As seen in the figure, the performance

for both the fan-out and the fan-in tests is quite consistent with increasing number

of clients suggesting an efficient transmission and receive path implementation.

7.3.2 MPI-level Evaluation

In this section, we evaluate the Message Passing Interface (MPI) stack written

using the sockets interface on the TOE and non-TOE stacks. MPI is considered the

de facto standard programming model for scientific applications; thus this evaluation

would allow us to understand the implications of the TOE stack for such applications.

We used the LAM [28] implementation of MPI for this evaluation.

Figure 7.7 illustrates the point-to-point latency and uni-directional throughput

achievable with the TOE and non-TOE stacks for an MTU size of 1500 bytes. As

shown in Figure 7.7a, MPI over the TOE stack achieves a latency of about 10.2 µs

compared to the 12.2 µs latency achieved by the non-TOE stack. The increased

point-to-point latency of the MPI stack as compared to that of the native sockets

layer (8.9 µs) is attributed to the overhead of the MPI implementation. Figure 7.7b
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shows the uni-directional throughput achieved by the two stacks. TOE achieves a

throughput of about 6.9 Gbps as compared to the 3.1 Gbps achieved by the non-

TOE stack.
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7.3.3 Application-level Evaluation

In this section, we evaluate the performance of the stacks using a real application,

namely the Apache web server. One node is used as a web-server and three nodes to

host up to 24 client processes.

In the first experiment (Figure 7.8a), we use a simulated trace consisting of only

one file. Evaluating the stacks with various sizes for this file lets us understand their

performance without being diluted by other system parameters. As seen in the figure,

the TOE achieves a significantly better performance as compared to the non-TOE

especially for large files. In the next experiment (Figure 7.8b), we build a trace based

on the popular Zipf [85] file request distribution. The Zipf distribution states that

the probability of requesting the Ith most popular document is inversely proportional

to a constant power α of I. α denotes the temporal locality in the trace (close to one

represents a high temporal locality). We used the World-Cup trace [9] to associate

file sizes with the Zipf pattern; like several other traces, this trace associates small

files to be the most popular ones while larger files tend to be less popular. Thus,

when the α value is very close to one, a lot of small files tend to be accessed and

when the α value becomes smaller, the requests are more spread out to the larger

files as well. Accordingly, the percentage improvement in performance for the TOE

seems to be lesser for high α values as compared to small α values.

7.4 Summary

In this chapter, we presented a detailed performance evaluation of the Chelsio

T110 10GigE adapter with TOE. We have performed evaluations in three categories:
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(i) detailed micro-benchmark level evaluation of the native sockets layer, (ii) evalua-

tion of the Message Passing Interface (MPI) stack over the sockets interface, and (iii)

application-level evaluation of the Apache web server. These experimental evaluations

provide several useful insights into the effectiveness of the TOE stack in scientific as

well as commercial domains.
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CHAPTER 8

HEAD-TO-TOE EVALUATION OF
HIGH-PERFORMANCE SOCKETS OVER PROTOCOL

OFFLOAD ENGINES

Many researchers, including ourselves, have evaluated the benefits of sockets over

offloaded protocol stacks on various networks including IBA and Myrinet. However,

to our best knowledge, there has been no work that compares and contrasts the ca-

pabilities and limitations of these technologies with the recently introduced 10GigE

TOEs on a homogeneous experimental testbed. In this chapter, we perform sev-

eral evaluations to enable a coherent comparison between 10GigE, IBA and Myrinet

with respect to the sockets interface. In particular, we evaluate the networks at two

levels: (i) a detailed micro-benchmark evaluation and (ii) an application-level evalu-

ation with sample applications from multiple domains, including a bio-medical image

visualization tool known as the Virtual Microscope [8], an iso-surface oil reservoir

simulator called Iso-Surface [23], a cluster file-system known as the Parallel Virtual

File-System (PVFS) [67], and a popular cluster management tool named Ganglia [1].

In addition to 10GigE’s advantage with respect to compatibility to wide-area network

infrastructures, e.g., in support of grids, our results show that 10GigE also delivers

performance that is comparable to traditional high-speed network technologies such

137



as IBA and Myrinet in a system-area network environment to support clusters and

that 10GigE is particularly well-suited for sockets-based applications.

8.1 Interfacing with POEs

Since the Linux kernel does not currently support Protocol Offload Engines (POEs),

researchers have taken a number of approaches to enable applications to interface with

POEs. The two predominant approaches are high-performance sockets implementa-

tions such as the Sockets Direct Protocol (SDP) and TCP Stack Override. In this

section, we will discuss the TCP stack override approach. The high-performance

sockets approach is discussed in the previous chapters and is skipped here.

8.1.1 TCP Stack Override

This approach retains the kernel-based sockets layer. However, the TCP/IP stack

is overridden and the data is pushed directly to the offloaded protocol stack in order to

bypass the host TCP/IP stack implementation (see Figure 8.1b). The Chelsio T110

adapter studied in this chapter follows this approach. The software architecture used

by Chelsio essentially has two components: the TCP offload module (TOM) and the

offload driver.

TCP Offload Module: As mentioned earlier, the Linux operating system lacks

support for TOE devices. Chelsio provides a framework of a TCP offload module

(TOM) and a thin layer known as the toedev which decides whether a connection

needs to be handed over to the TOM or to the traditional host-based TCP/IP stack.

The TOM can be thought of as the upper layer of the TOE stack. It is responsible

for implementing portions of TCP processing that cannot be done on the TOE. The

state of all offloaded connections is also maintained by the TOM. Not all of the Linux
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Figure 8.1: Interfacing with POEs: (a) High Performance Sockets and (b) TCP Stack
Override

network API calls (e.g., tcp sendmsg, tcp recvmsg) are compatible with the TOE.

Modifying these would result in extensive changes in the TCP/IP stack. To avoid

this, the TOM implements its own subset of the transport-layer API. TCP connections

that are offloaded have certain function pointers redirected to the TOM’s functions.

Thus, non-offloaded connections can continue through the network stack normally.

Offload Driver: The offload driver is the lower layer of the TOE stack. It

is directly responsible for manipulating the terminator and its associated resources.

TOEs have a many-to-one relationship with a TOM. A TOM can support multiple

TOEs as long as it provides all the functionality required by each. Each TOE can

only be assigned one TOM. More than one driver may be associated with a single
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TOE device. If a TOE wishes to act as a normal Ethernet device (capable of handling

only Layer 2 packets), a separate device driver may be required.

8.2 Experimental Testbed

For experimentally evaluating the performance of the three networks, we used the

following testbed: a cluster of four nodes built around SuperMicro SUPER X5DL8-

GG motherboards with ServerWorks GC LE chipsets, which include 64-bit, 133-MHz

PCI-X interfaces. Each node has two Intel Xeon 3.0 GHz processors with a 512-kB

L2 cache and a 533-MHz front-side bus and 2 GB of 266-MHz DDR SDRAM. We

used the RedHat 9.0 Linux distribution and the Linux-2.4.25smp kernel.org kernel.

Each node was equipped with the 10GigE, IBA and Myrinet networks. The 32-bit

Xeon processors and the 2.4 kernel used in the testbed represent a large installation

base; thus, the results described here would be most relevant for researchers using

such testbeds to weigh the pros and cons of each network before adopting them.

10GigE: The 10GigE network was based on Chelsio T110 10GigE adapters with

TOEs connected to a 16-port SuperX Foundry switch. The driver version used on

the network adapters is 1.2.0, and the firmware on the switch is version 2.2.0. For

optimizing the performance of the 10GigE network, we have modified several settings

on the hardware as well as the software systems, e.g., (i) increased PCI burst size

to 2 KB, (ii) increased send and receive socket buffer sizes to 512 KB each, (iii)

increased window size to 10 MB and (iv) enabled hardware flow control to minimize

packet drops on the switch. Detailed descriptions about these optimizations and their

impact can be found in our previous work [52, 45, 15].
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InfiniBand: The InfiniBand (IBA) network was based on Mellanox InfiniHost

MT23108 dual-port 4x HCA adapters through an InfiniScale MT43132 twenty-four

port completely non-blocking switch. The adapter firmware version is fw-23108-rel-

3 2 0-rc4-build-001 and the software stack was based on the Voltaire IBHost-3.0.0-16

stack.

Myrinet: The Myrinet network was based on Myrinet-2000 ‘E’ (dual-port)

adapters connected by a Myrinet-2000 wormhole router crossbar switch. Each adapter

is capable of a 4Gbps theoretical bandwidth in each direction. For SDP/Myrinet, we

performed evaluations with two different implementations. The first implementation

is using the GM/Myrinet drivers (SDP/GM v1.7.9 over GM v2.1.9). The second im-

plementation is over the newly released MX/Myrinet drivers (SDP/MX v1.0.2 over

MX v1.0.0). The SDP/MX implementation is a very recent release by Myricom (the

vendor for Myrinet) and achieves a significantly better performance than the older

SDP/GM. However, as a part-and-parcel of being a bleeding-edge implementation,

SDP/MX comes with its share of stability issues; due to this, we had to restrict the

evaluation of some of the experiments to SDP/GM alone. Specifically, we present

the ping-pong latency, uni-directional and bi-directional bandwidth results (in Sec-

tion 8.3.1) for both SDP/MX as well as SDP/GM and the rest of the results for

SDP/GM alone. With the current active effort from Myricom towards SDP/MX, we

expect these stability issues to be resolved very soon and the numbers for Myrinet

presented in this section to further improve.
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8.3 Micro-Benchmark Evaluation

In this section, we perform micro-benchmark evaluations of the three networks

over the sockets interface. We perform evaluations in two sub-categories. First,

we perform evaluations based on a single connection measuring the point-to-point

latency, uni-directional bandwidth, and the bi-directional bandwidth. Second, we

perform evaluations based on multiple connections using the multi-stream bandwidth

test, hot-spot test, and fan-in and fan-out tests. In Section 8.4 we extend this evalu-

ation to real-life applications from various domains.

8.3.1 Single Connection Micro-Benchmarks

Figures 8.2 and 8.3 show the basic single-connection performance of the 10GigE

TOE as compared to SDP/IBA and SDP/Myrinet (both SDP/MX/Myrinet and

SDP/GM/Myrinet).

Ping-Pong Latency Micro-Benchmark: Figures 8.2a and 8.2b show the com-

parison of the ping-pong latency for the different network stacks.

IBA and Myrinet provide two kinds of mechanisms to inform the user about the

completion of data transmission or reception, namely polling and event-based. In

the polling approach, the sockets implementation has to continuously poll on a pre-

defined location to check whether the data transmission or reception has completed.

This approach is good for performance but requires the sockets implementation to

continuously monitor the data-transfer completions, thus requiring a huge amount of

CPU resources. In the event-based approach, the sockets implementation requests

the network adapter to inform it on a completion and sleeps. On a completion event,
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Figure 8.2: Single Connection Micro-Benchmarks: (a) Latency (polling-based), (b)
Latency (event-based) and (c) Uni-directional Bandwidth (event-based)
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the network adapter wakes this process up through an interrupt. While this approach

is more efficient in terms of the CPU required since the application does not have

to continuously monitor the data transfer completions, it incurs an additional cost

of the interrupt. In general, for single-threaded applications the polling approach

is the most efficient while for most multi-threaded applications the event-based ap-

proach turns out to perform better. Based on this, we show two implementations of

the SDP/IBA and SDP/Myrinet stacks, viz., event-based (Figure 8.2a) and polling-

based (Figure 8.2b); the 10GigE TOE supports only the event-based approach.

As shown in the figures, SDP/Myrinet achieves the lowest small-message latency

for both the polling as well as event-based models. For the polling-based models,

SDP/MX/Myrinet and SDP/GM/Myrinet achieve latencies of 4.64µs and 6.68µs re-

spectively, compared to a 8.25µs achieved by SDP/IBA. For the event-based models,

SDP/MX/Myrinet and SDP/GM/Myrinet achieve latencies of 14.47µs and 11.33µs,

compared to the 17.7µs and 24.4µs achieved by 10GigE and SDP/IBA, respectively.

However, as shown in the figure, for medium-sized messages (larger than 2 kB for

event-based and 4 kB for polling-based), the performance of SDP/Myrinet deterio-

rates. For messages in this range, SDP/IBA performs the best followed by the 10GigE

TOE, and the two SDP/Myrinet implementations, respectively. We should note that

the Foundry SuperX 10GigE switch that we used has approximately a 4.5-µs flow-

through latency, which is amazing for a store-and-forward switch. For the virtual

cut-through based Fujitsu XG1200 switch, however, the flow-through latency is only

0.5 µs, resulting in a 10GigE end-to-end latency of only 13.7 µs.

Unidirectional Bandwidth Micro-Benchmark: For the uni-directional band-

width test, the 10GigE TOE achieves the highest bandwidth at close to 6.4 Gbps
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compared to the 5.4 Gbps achieved by SDP/IBA and the 3.9 Gbps achieved by the

SDP/Myrinet implementations3. The results for both event- and polling-based ap-

proaches are similar; thus, we only present the event-based numbers here. The drop

in the bandwidth for SDP/GM/Myrinet at 512-kB message size, is attributed to the

high dependency of the implementation of SDP/GM/Myrinet on L2-cache activity.

Even 10GigE TOE shows a slight drop in performance for very large messages, but

not as drastically as SDP/GM/Myrinet. Our systems use a 512-KB L2-cache and a

relatively slow memory (266-MHz DDR SDRAM) which causes the drop to be signif-

icant. For systems with larger L2-caches, L3-caches, faster memory speeds or better

memory architectures (e.g., NUMA), this drop can be expected to be smaller. Fur-

ther, it is to be noted that the bandwidth for all networks is the same irrespective of

whether a switch is used or not; thus the switches do not appear to be a bottleneck

for single-stream data transfers.

Bidirectional Bandwidth Micro-Benchmark: Similar to the unidirectional

bandwidth test, the 10GigE TOE achieves the highest bandwidth (close to 7 Gbps)

followed by SDP/IBA at 6.4 Gbps and both SDP/Myrinet implementations at about

3.5 Gbps. 10GigE TOE and SDP/IBA seem to perform quite poorly with respect to

the theoretical peak throughput achievable (20Gbps bidirectional). This is attributed

to the PCI-X buses to which these network adapters are connected. The PCI-X bus

(133 MHz/64 bit) is a shared network I/O bus that allows only a theoretical peak

of 8.5 Gbps for traffic in both directions. Further, as mentioned earlier, the memory

used in our systems is relatively slow (266-MHz DDR SDRAM). These, coupled with

3On the Opteron platform, 10GigE achieves up to 7.6Gbps; we expect an improved performance
for the other networks as well. However, due to limitations in our current test-bed, we could
not perform this comparison on the Opteron platform. Further, with 32-bit Xeons being the largest
installation base today, we feel that the presented numbers might be more relevant to the community.
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the header and other traffic overheads, causes these networks to be saturated much

below the theoretical bandwidth that the network can provide. For SDP/Myrinet,

we noticed that both the implementations are quite unstable and have not provided

us with much success in getting performance numbers for message sizes larger than

64KB. Also, the peak bandwidth achievable is only 3.5 Gbps which is actually less

than the unidirectional bandwidth that these implementations provide.
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Figure 8.3: Bi-directional Bandwidth

8.3.2 Multiple Connection Micro-Benchmarks

As mentioned earlier, due to stability reasons, we have not been able to evalu-

ate the performance of several benchmarks with SDP/MX/Myrinet. Hence, for the

benchmarks and applications presented in this Section and Section 8.4, we present

evaluations only with SDP/GM for the Myrinet network.
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Figures 8.4 and 8.5 show the multi-connection experiments performed with the

three networks. These experiments demonstrate scenarios where either a single pro-

cess or multiple processes on the same physical node open a number of connections.

These tests are designed to understand the performance of the three networks in

scenarios where the network has to handle several connections simultaneously.

It is to be noted that for multi-threaded applications the polling-based approach

performs very badly due to its high CPU usage; therefore these results are not shown

in this chapter, and we stick to only the event-based approach for these applications.
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Figure 8.4: Multi-Connection Micro-Benchmarks: (a) Multi-Stream Bandwidth and
(b) Hot-Spot Latency

Multi-Stream Bandwidth: Figure 8.4a illustrates the aggregate throughput

achieved by two nodes performing multiple instances of uni-directional throughput

tests. Because the performance of SDP/GM/Myrinet seems to be a little inconsis-

tent, it is difficult to characterize the performance of Myrinet with respect to the

other networks, but we have observed that SDP/GM/Myrinet generally achieves a

throughput of about 3.15 to 3.75 Gbps. 10GigE TOE and SDP/IBA, on the other
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hand, quite consistently achieve throughputs around 5.9 to 6.2 Gbps with 10GigE

performing slightly better most of the time.

Hot-Spot Latency: Figure 8.4b shows the impact of multiple connections on

small-message transactions. In this experiment, a number of client nodes perform a

point-to-point latency test with the same server forming a hot-spot on the server. We

performed this experiment with one node acting as a server node and the other three

dual-processor nodes hosting a total of 12 client processes. The clients are alloted in a

cyclic manner, so three clients refers to having one client process on each of the three

nodes, six clients refers to having two client processes on each of the three nodes,

and so on. As shown in the figure, SDP/GM/Myrinet performs the best when there

is just one client followed by 10GigE TOE and SDP/IBA, respectively. However, as

the number of clients increase, 10GigE TOE and SDP/IBA scale quite well while

the performance of SDP/GM/Myrinet deteriorates significantly; for 12 clients, for

example, SDP/GM/Myrinet provides the worst performance of the three while the

10GigE TOE performs significantly better than the other two. This shows that the

lookup time for connection-related data structures is performed efficiently enough on

the 10GigE TOE and SDP/IBA implementations and that they scale quite well with

an increasing number of connections.

Fan-Out and Fan-In tests: With the hot-spot test, we have shown that the

lookup time for connection-related data structures is quite efficient on the 10GigE

TOE and SDP/IBA implementations. However, the hot-spot test does not stress the

other resources on the network adapter such as management of memory regions for

buffering data during transmission and reception. In order to stress such resources,

we have designed two other tests, namely fan-out and fan-in. In both these tests,
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one server process carries out unidirectional throughput tests simultaneously with

a number of client threads. The difference being that in a fan-out test, the server

pushes data to the different clients (stressing the transmission path in the implemen-

tation), and in a fan-in test, the clients push data to the server process (stressing the

receive path in the implementation). Figure 8.5 shows the performance of the three

networks for both these tests. As shown in the figure, for both the tests, SDP/IBA

and SDP/GM/Myrinet scale quite well with increasing number of clients. 10GigE

TOE, on the other hand, performs quite well for the fan-in test; however, we see a

slight drop in its performance for the fan-out test with increasing clients.
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Figure 8.5: Multi-Connection Micro-Benchmarks: (a) Fan-in and (b) Fan-out

8.4 Application-Level Evaluation

In this section, we evaluate the performance of different applications across the

three network technologies. Specifically, we evaluate a bio-medical image visualization

tool known as the Virtual Microscope, an iso-surface oil reservoir simulator called Iso-

Surface, a cluster file-system known as the Parallel Virtual File-System (PVFS), and

a popular cluster management tool named Ganglia.
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8.4.1 Data-Cutter Overview and Evaluation

Data-Cutter is a component-based framework [22, 32, 66, 70] that has been de-

veloped by the University of Maryland in order to provide a flexible and efficient

run-time environment for data-intensive applications on distributed platforms. The

Data-Cutter framework implements a filter-stream programming model for develop-

ing data-intensive applications. In this model, the application processing structure is

implemented as a set of components, referred to as filters, that exchange data through

a stream abstraction. Filters are connected via logical streams. A stream denotes a

unidirectional data flow from one filter (i.e., the producer) to another (i.e., the con-

sumer). A filter is required to read data from its input streams and write data to its

output streams only. The implementation of the logical stream uses the sockets in-

terface for point-to-point stream communication. The overall processing structure of

an application is realized by a filter group, which is a set of filters connected through

logical streams. When a filter group is instantiated to process an application query,

the run-time system establishes socket connections between filters placed on different

hosts before starting the execution of the application query. Filters placed on the

same host execute as separate threads. An application query is handled as a unit of

work (UOW) by the filter group. An example is a visualization of a dataset from a

viewing angle. The processing of a UOW can be done in a pipelined fashion; different

filters can work on different data elements simultaneously, as shown in Figure 8.6.

Several data-intensive applications have been designed and developed using the

data-cutter run-time framework. In this chapter, we use two such applications,

namely the Virtual Microscope (VM) and the Iso-Surface oil-reservoir simulation

(ISO) application, for evaluation purposes.
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Figure 8.6: Data-Cutter stream abstraction and support for copies. (a) Data buffers
and end-of-work markers on a stream. (b) P,F,C filter group instantiated using trans-
parent copies.

Virtual Microscope (VM): VM is a data-intensive digitized microscopy applica-

tion. The software support required to store, retrieve, and process digitized slides to

provide interactive response times for the standard behavior of a physical microscope

is a challenging issue [8, 31]. The main difficulty stems from the handling of large

volumes of image data, which can range from a few hundreds of megabytes (MB)

to several gigabytes (GB) per image. At a basic level, the software system should

emulate the use of a physical microscope, including continuously moving the stage

and changing magnification. The processing of client queries requires projecting high-

resolution data onto a grid of suitable resolution and appropriately composing pixels

mapping onto a single grid point.

Iso-Surface Oil-Reservoir Simulation (ISO): Computational models for seismic

analysis of oil reservoirs simulate the seismic properties of a reservoir by using out-

put from oil-reservoir simulations. The main objective of oil-reservoir modeling is

to understand the reservoir properties and predict oil production to optimize re-

turn on investment from a given reservoir, while minimizing environmental effects.

This application demonstrates a dynamic, data-driven approach to solve optimization

problems in oil-reservoir management. Output from seismic simulations are analyzed
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to investigate the change in geological characteristics of reservoirs. The output is

also processed to guide future oil-reservoir simulations. Seismic simulations produce

output that represents the traces of sound waves generated by sound sources and

recorded by receivers on a three-dimensional grid over many time steps. One analy-

sis of seismic datasets involves mapping and aggregating traces onto a 3-dimensional

volume through a process called seismic imaging. The resulting three-dimensional

volume can be used for visualization or to generate input for reservoir simulations.
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Figure 8.7: Data-Cutter Applications: (a) Virtual Microscope (VM) and (b) ISO-
Surface (ISO)

Evaluating Data-Cutter: Figure 8.7a compares the performance of the VM

application over each of the three networks (10GigE, IBA, Myrinet). As shown in the

figure, SDP/IBA outperforms the other two networks. This is primarily attributed to

the worse latency for medium-sized messages for 10GigE TOE and SDP/GM/Myrinet

(shown in Figure 8.2a). Though the VM application deals with large datasets (each

image was about 16MB), the dataset is broken down into small Unit of Work (UOW)
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segments that are processed in a pipelined manner. This makes the application sen-

sitive to the latency of medium-sized messages resulting in better performance for

SDP/IBA compared to 10GigE TOE and SDP/GM/Myrinet.

Figure 8.7b compares the performance of the ISO application for the three net-

works. The dataset used was about 64 MB in size. Again, the trend with respect to

the performance of the networks remains the same with SDP/IBA outperforming the

other two networks.

8.4.2 PVFS Overview and Evaluation

Parallel Virtual File System (PVFS) [67], is one of the leading parallel file sys-

tems for Linux cluster systems today, developed jointly by Clemson University and

Argonne National Lab. It was designed to meet the increasing I/O demands of paral-

lel applications in cluster systems. Typically, a number of nodes in the cluster system

are configured as I/O servers and one of them (either an I/O server or a different

node) as a metadata manager. Figure 8.8 illustrates a typical PVFS environment.

PVFS achieves high performance by striping files across a set of I/O server nodes,

allowing parallel accesses to the data. It uses the native file system on the I/O

servers to store individual file stripes. An I/O daemon runs on each I/O node and

services requests from the compute nodes, in particular the read and write requests.

Thus, data is transferred directly between the I/O servers and the compute nodes. A

manager daemon runs on a metadata manager node. It handles metadata operations

involving file permissions, truncation, file stripe characteristics, and so on. Metadata

is also stored on the local file system. The metadata manager provides a cluster-wide

consistent name space to applications. In PVFS, the metadata manager does not
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Figure 8.8: A Typical PVFS Setup

participate in read/write operations. PVFS supports a set of feature-rich interfaces,

including support for both contiguous and noncontiguous accesses to both memory

and files. PVFS can be used with multiple APIs: a native API, the UNIX/POSIX

API, MPI-IO, and an array I/O interface called Multi- Dimensional Block Interface

(MDBI). The presence of multiple popular interfaces contributes to the wide success

of PVFS in the industry.
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Figure 8.9: Concurrent PVFS Read/Write
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Performance of Concurrent File I/O: In this test, we evaluate the perfor-

mance of PVFS concurrent read/write operations using the pvfs-test program from

the standard PVFS releases. For this test, an MPI program is used to parallelize

file write/read access of contiguous 2-MB data buffers from each compute node. The

native PVFS library interface is used in this test, more details of this program can

be found in [67].

Figure 8.9 shows PVFS file read and write performance on the different networks.

We perform two kinds of tests for both read and write. In the first test, we use just

one server; three clients simultaneously read or write a file from/to this server. In the

second test, we use three servers and stripe the file across all three servers; a single

client reads or writes the stripes from all three servers simultaneously. These two tests

are represented as legends “1S/3C” (representing one server and three clients) and

“3S/1C” (representing three servers and one client), respectively. As shown in the

figure, the 10GigE TOE considerably outperforms the other two networks in both

the tests for read as well as write. This follows the same trend as shown by the

basic bandwidth and fan-in/fan-out micro-benchmark results in Figures 8.2b and 8.5.

SDP/IBA, however, seems to achieve considerably lower performance as compared

to even SDP/GM/Myrinet (which has a much lower theoretical bandwidth: 4 Gbps

compared to the 10 Gbps of IBA).

Performance of MPI-Tile-IO: MPI-Tile-IO [72] is a tile-reading MPI-IO ap-

plication. It tests the performance of tiled access to a two-dimensional dense dataset,

simulating the type of workload that exists in some visualization applications and

numerical applications. In our experiments, two nodes are used as server nodes and

the other two as client nodes running MPI-tile-IO processes. Each process renders a
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1 × 2 array of displays, each with 1024 × 768 pixels. The size of each element is 32

bytes, leading to a file size of 48 MB.
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Figure 8.10: MPI-Tile-IO over PVFS

We evaluate both the read and write performance of MPI-Tile-IO over PVFS.

As shown in Figure 8.10, the 10GigE TOE provides considerably better performance

than the other two networks in terms of both read and write bandwidth. Another

interesting point to be noted is that the performance of all the networks is considerably

worse in this test versus the concurrent file I/O test; this is due to the non-contiguous

data access pattern of the MPI-tile-IO benchmark which adds significant overhead.

8.4.3 Ganglia Overview and Evaluation

Ganglia [1] is an open-source project that grew out of the UC-Berkeley Millen-

nium Project. It is a scalable distributed monitoring system for high-performance

computing systems such as clusters and grids. It is based on a hierarchical design

targeted at federations of clusters. It leverages widely used technologies such as XML
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for data representation, XDR for compact, portable data transport, and RRDtool

for data storage and visualization. It uses carefully engineered data structures and

algorithms to achieve very low per-node overheads and high concurrency.

The Ganglia system comprises of two portions. The first portion comprises of a

server monitoring daemon which runs on each node of the cluster and occasionally

monitors the various system parameters including CPU load, disk space, memory

usage and several others. The second portion of the Ganglia system is a client tool

which contacts the servers in the clusters and collects the relevant information. Gan-

glia supports two forms of global data collection for the cluster. In the first method,

the servers can communicate with each other to share their respective state infor-

mation, and the client can communicate with any one server to collect the global

information. In the second method, the servers just collect their local information

without communication with other server nodes, while the client communicates with

each of the server nodes to obtain the global cluster information. In our experiments,

we used the second approach.
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Figure 8.11: Ganglia: Cluster Management Tool
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Evaluating Ganglia: Figure 8.11 shows the performance of Ganglia for the

different networks. As shown in the figure, the 10GigE TOE considerably outperforms

the other two networks by up to a factor of 11 in some cases. To understand this

performance difference, we first describe the pattern in which Ganglia works. The

client node is an end node which gathers all the information about all the servers

in the cluster and displays it to the end user. In order to collect this information,

the client opens a connection with each node in the cluster and obtains the relevant

information (ranging from 2 KB to 10 KB) from the nodes. Thus, Ganglia is quite

sensitive to the connection time and medium-message latency.

As we had seen in Figures 8.2a and 8.2b, 10GigE TOE and SDP/GM/Myrinet

do not perform very well for medium-sized messages. However, the connection time

for 10GigE is only about 60µs as compared to the millisecond range connection times

for SDP/GM/Myrinet and SDP/IBA. During connection setup, SDP/GM/Myrinet

and SDP/IBA pre-register a set of buffers in order to carry out the required commu-

nication; this operation is quite expensive for the Myrinet and IBA networks since

it involves informing the network adapters about each of these buffers and the cor-

responding protection information. This coupled with other overheads, e.g., state

transitions (INIT to RTR to RTS) that are required during connection setup for IBA,

increase the connection time tremendously for SDP/IBA and SDP/GM/Myrinet. All

in all, the connection setup time dominates the performance of Ganglia in our exper-

iments, resulting in much better performance for the 10GigE TOE.
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8.5 Summary

Traditional Ethernet-based network architectures such as Gigabit Ethernet (GigE)

have delivered significantly worse performance than other high-performance networks

[e.g, InfiniBand (IBA), Myrinet]. In spite of this performance difference, the low

cost of the network components and their backward compatibility with the exist-

ing Ethernet infrastructure have allowed GigE-based clusters to corner 42% of the

Top500 Supercomputer List. With the advent of 10GigE and TCP Offload Engines

(TOEs), we demonstrated that the aforementioned performance gap can largely be

bridged between 10GigE, IBA, and Myrinet via the sockets interface. Our evaluations

show that in most experimental scenarios, 10GigE provides comparable (or better)

performance than IBA and Myrinet. Further, for grid environments, where legacy

TCP/IP/Ethernet is dominant in the wide-area network, IBA and Myrinet have been

practically no shows because of lack of compatibility of these networks with Ether-

net. However, this may soon change with the recent announcement of the Myri-10G

PCI-Express network adapter by Myricom.
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CHAPTER 9

SOCKETS VS RDMA INTERFACE OVER 10-GIGABIT
NETWORKS: AN IN-DEPTH ANALYSIS OF THE

MEMORY TRAFFIC BOTTLENECK

The introduction of gigabit speed networks a few years back had challenged the

traditional TCP/IP implementation in two aspects, namely performance and CPU

requirements. The advent of 10-Gigabit networks such as 10-Gigabit Ethernet and In-

finiBand has added a new dimension of complexity to this problem, Memory Traffic.

While there have been previous studies which show the implications of the mem-

ory traffic bottleneck, to the best of our knowledge, there has been no study which

shows the actual impact of the memory accesses generated by TCP/IP for 10-Gigabit

networks.

In this chapter, we evaluate the various aspects of the TCP/IP protocol suite

for 10-Gigabit networks including the memory traffic and CPU requirements, and

compare these with RDMA capable network adapters, using 10-Gigabit Ethernet

and InfiniBand as example networks. Our measurements show that while the host

based TCP/IP stack has a high CPU requirement, up to about 80% of this overhead is

associated with the core protocol implementation especially for large messages and is

potentially offloadable using the recently proposed TCP Offload Engines or user-level

sockets layers.
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Further, our studies reveal that for 10-Gigabit networks, the sockets layer itself

becomes a significant bottleneck for memory traffic. Especially when the data is

not present in the L2-cache, network transactions generate significant amounts of

memory bus traffic for the TCP protocol stack. As we will see in the later sections,

each byte transferred on the network can generate up to 4 bytes of data traffic on the

memory bus. With the current moderately fast memory buses (e.g., 64bit/333MHz)

and low memory efficiencies (e.g., 65%), this amount of memory traffic limits the

peak throughput applications can achieve to less than 35% of the network’s capability.

Further, the memory bus and CPU speeds have not been scaling with the network

bandwidth [15], pointing to the fact that this problem is only going to worsen in the

future.

We also evaluate the RDMA interface of the InfiniBand architecture to understand

the implications of having RDMA-based extensions to sockets in two aspects: (a) the

CPU requirement for the TCP stack usage and the copies associated with the sockets

interface, (b) the difference in the amounts of memory traffic generated by RDMA

compared to that of the traditional sockets API. Our measurements show that the

RDMA interface requires up to four times lesser memory traffic and has almost zero

CPU requirement for the data sink. These measurements show the potential impacts

of having RDMA-based extensions to sockets on 10-Gigabit networks.

9.1 Background

In this section, we provide a brief background about the TCP protocol suite.

9.1.1 TCP/IP Protocol Suite

The data processing path taken by the TCP protocol stack is broadly classified into

the transmission path and the receive path. On the transmission side, the message
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is copied into the socket buffer, divided into MTU sized segments, data integrity

ensured through checksum computation (to form the TCP checksum) and passed on

to the underlying IP layer. Linux-2.4 uses a combined checksum and copy for the

transmission path, a well known optimization first proposed by Jacobson, et al. [37].

The IP layer extends the checksum to include the IP header and form the IP checksum

and passes on the IP datagram to the device driver. After the construction of a packet

header, the device driver makes a descriptor for the packet and passes the descriptor

to the NIC. The NIC performs a DMA operation to move the actual data indicated

by the descriptor from the socket buffer to the NIC buffer. The NIC then ships the

data with the link header to the physical network and raises an interrupt to inform

the device driver that it has finished transmitting the segment.

On the receiver side, the NIC receives the IP datagrams, DMAs them to the

socket buffer and raises an interrupt informing the device driver about this. The

device driver strips the packet off the link header and hands it over to the IP layer.

The IP layer verifies the IP checksum and if the data integrity is maintained, hands

it over to the TCP layer. The TCP layer verifies the data integrity of the message

and places the data into the socket buffer. When the application calls the read()

operation, the data is copied from the socket buffer to the application buffer.

9.2 Understanding TCP/IP Requirements

In this section, we study the impact of cache misses not only on the performance of

the TCP/IP protocol stack, but also on the amount of memory traffic associated with

these cache misses; we estimate the amount of memory traffic for a typical throughput

test. In Section 9.3, we validate these estimates through measured values.
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Memory traffic comprises of two components: Front Side Bus (FSB) reads and

writes generated by the CPU(s) and DMA traffic generated through the I/O bus

by other devices (NIC in our case). We study the memory traffic associated with

the transmit path and the receive paths separately. Further, we break up each of

these paths into two cases: (a) Application buffer fits in cache and (b) Application

buffer does not fit in cache. In this section, we describe the path taken by the second

case, i.e., when the application buffer does not fit in cache. We also present the

final memory traffic ratio of the first case, but refer the reader to [15] for the actual

data path description due to space restrictions. Figures 9.1a and 9.1b illustrate the

memory accesses associated with network communication.
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Figure 9.1: Memory Traffic for Sockets: (a) Transmit Path; (b) Receive Path

9.2.1 Transmit Path

As mentioned earlier, in the transmit path, TCP copies the data from the applica-

tion buffer to the socket buffer. The NIC then DMAs the data from the socket buffer

and transmits it. The following are the steps involved on the transmission side:
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CPU reads the application buffer (step 1): The application buffer has to be

fetched to cache on every iteration since it does not completely fit into it. However, it

does not have to be written back to memory each time since it is only used for copying

into the socket buffer and is never dirtied. Hence, this operation requires a byte of

data to be transferred from memory for every byte transferred over the network.

CPU writes to the socket buffer (step 2): The default socket buffer size for

most kernels including Linux and Windows Server 2003 is 64KB, which fits in cache

(on most systems). In the first iteration, the socket buffer is fetched to cache and

the application buffer is copied into it. In the subsequent iterations, the socket buffer

stays in one of Exclusive, Modified or Shared states, i.e., it never becomes Invalid.

Further, any change of the socket buffer state from one to another of these three states

just requires a notification transaction or a Bus Upgrade from the cache controller

and generates no memory traffic. So ideally this operation should not generate any

memory traffic. However, the large application buffer size can force the socket buffer

to be pushed out of cache. This can cause up to 2 bytes of memory traffic per network

byte (one transaction to push the socket buffer out of cache and one to fetch it back).

Thus, this operation can require between 0 and 2 bytes of memory traffic per network

byte.

NIC does a DMA read of the socket buffer (steps 3 and 4): When a DMA

request from the NIC arrives, the segment of the socket buffer corresponding to the

request can be either in cache (dirtied) or in memory. In the first case, during the

DMA, most memory controllers perform an implicit write back of the cache lines to

memory. In the second case, the DMA takes place from memory. So, in either case,
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there would be one byte of data transferred either to or from memory for every byte

of data transferred on the network.

Based on these four steps, we can expect the memory traffic required for this case

to be between 2 to 4 bytes for every byte of data transferred over the network. Also,

we can expect this value to move closer to 4 as the size of the application buffer

increases (forcing more cache misses for the socket buffer).

Further, due to the set associative nature of some caches, it is possible that some

of the segments corresponding to the application and socket buffers be mapped to the

same cache line. This requires that these parts of the socket buffer be fetched from

memory and written back to memory on every iteration. It is to be noted that, even

if a cache line corresponding to the socket buffer is evicted to accommodate another

cache line, the amount of memory traffic due to the NIC DMA does not change; the

only difference would be that the traffic would be a memory read instead of an implicit

write back. However, we assume that the cache mapping and implementation are

efficient enough to avoid such a scenario and do not expect this to add any additional

memory traffic.

9.2.2 Receive Path

The memory traffic associated with the receive path is simpler compared to that

of the transmit path. The following are steps involved on the receive path:

NIC does a DMA write into the socket buffer (step 1): When the data

arrives at the NIC, it does a DMA write of this data into the socket buffer. During

the first iteration, if the socket buffer is present in cache and is dirty, it is flushed back

to memory by the cache controller. Only after the buffer is flushed out of the cache is

the DMA write request allowed to proceed. In the subsequent iterations, even if the
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socket buffer is fetched to cache, it would not be in a Modified state (since it is only

being used to copy data into the application buffer). Thus, the DMA write request

would be allowed to proceed as soon as the socket buffer in the cache is invalidated

by the North Bridge (Figure 9.1), i.e., the socket buffer does not need to be flushed

out of cache for the subsequent iterations. This sums up to one transaction to the

memory during this step.

CPU reads the socket buffer (step 2): Again, at this point the socket buffer

is not present in cache, and has to be fetched, requiring one transaction from the

memory. It is to be noted that even if the buffer was present in the cache before the

iteration, it has to be evicted or invalidated for the previous step.

CPU writes to application buffer (steps 3, 4 and 5): Since the application

buffer does not fit into cache entirely, it has to be fetched in parts, data copied to

it, and written back to memory to make room for the rest of the application buffer.

Thus, there would be two transactions to and from the memory for this step (one to

fetch the application buffer from memory and one to write it back).

This sums up to 4 bytes of memory transactions for every byte transferred on the

network for this case. It is to be noted that for this case, the number of memory

transactions does not depend on the cache policy. Table 9.1 gives a summary of

the memory transactions expected for each of the above described cases. Theoretical

refers to the possibility of cache misses due to inefficiencies in the cache policy, set

associativity, etc. Practical assumes that the cache policy is efficient enough to avoid

cache misses due to memory to cache mappings. While the actual memory access

pattern is significantly more complicated than the one described above due to the
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pipelining of data transmission to and from the socket buffer, this model captures the

bulk of the memory transactions and provides a fair enough estimate.

Table 9.1: Memory to Network traffic ratio

fits in cache does not fit in cache

Transmit (Theoretical) 1-4 2-4

Transmit (Practical) 1 2-4

Receive (Theoretical) 2-4 4

Receive (Practical) 2 4

9.3 Experimental Results

In this section, we present some of the experiments we have conducted over 10

Gigabit Ethernet and InfiniBand.

The test-bed used for evaluating the 10-Gigabit Ethernet stack consisted of two

clusters.

Cluster 1: Two Dell2600 Xeon 2.4 GHz 2-way SMP nodes, each with 1GB main

memory (333MHz, DDR), Intel E7501 chipset, 32Kbyte L1-Cache, 512Kbyte L2-

Cache, 400MHz/64-bit Front Side Bus, PCI-X 133MHz/64bit I/O bus, Intel 10GbE/Pro

10-Gigabit Ethernet adapters.

Cluster 2: Eight P4 2.4 GHz IBM xSeries 305 nodes, each with 256Kbyte

main memory and connected using the Intel Pro/1000 MT Server Gigabit Ether-

net adapters. We used Windows Server 2003 and Linux kernel 2.4.18-14smp for our

evaluations. The multi-stream tests were conducted using a FoundryNet 10-Gigabit

Ethernet switch.

The test-bed used for evaluating the InfiniBand stack consisted of the following

cluster.
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Cluster 3: Eight nodes built around SuperMicro SUPER P4DL6 motherboards

and GC chipsets which include 64-bit 133 MHz PCI-X interfaces. Each node has

two Intel Xeon 2.4GHz processors with a 512Kbyte L2 cache and a 400MHz front

side bus. The machines are connected with Mellanox InfiniHost MT23108 DualPort

4x HCA adapter through an InfiniScale MT43132 Eight 4x Port InfiniBand Switch.

The Mellanox InfiniHost HCA SDK version is thca-x86-0.2.0-build-001. The adapter

firmware version is fw-23108-rel-1 17 0000-rc12-build-001. We used the Linux 2.4.7-

10smp kernel version.

9.3.1 10-Gigabit Ethernet

In this section we present the performance delivered by 10-Gigabit Ethernet, the

memory traffic generated by the TCP/IP stack (including the sockets interface) and

the CPU requirements of this stack.

Micro-Benchmark Evaluation

For the micro-benchmark tests, we have studied the impacts of varying different

parameters in the system as well as the TCP/IP stack including (a) Socket Buffer

Size, (b) Maximum Transmission Unit (MTU), (c) Network adapter offloads (check-

sum, segmentation), (d) PCI burst size (PBS), (e) Switch Behavior, (f) TCP window

size, (g) Adapter Interrupt delay settings, (h) Operating System (Linux and Windows

Server 2003) and several others. Most of these micro-benchmarks use the same buffer

for transmission resulting in maximum cache hits presenting the ideal case perfor-

mance achievable by 10-Gigabit Ethernet. Due to this reason, these results tend to

hide a number of issues related to memory traffic. The main idea of this research is

to study the memory bottleneck in the TCP/IP stack. Hence, we have shown only a
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subset of these micro-benchmarks in this chapter. The rest of the micro-benchmarks

can be found in [15].

Single Stream Tests: Figure 9.2a shows the one-way ping-pong latency achieved

by 10-Gigabit Ethernet. We can see that 10-Gigabit Ethernet is able to achieve a

latency of about 37µs for a message size of 256bytes on the Windows Server 2003

platform. The figure also shows the average CPU utilization for the test. We can

see that the test requires about 50% CPU on each side. We have also done a simi-

lar analysis on Linux where 10-Gigabit Ethernet achieves a latency of about 20.5µs

(Figure 9.3a).

Figure 9.2b shows the throughput achieved by 10-Gigabit Ethernet on the Win-

dows Server 2003 platform. The parameter settings used for the experiment were

a socket buffer size of 64Kbytes (both send and receive on each node), MTU of

16Kbytes, checksum offloaded on to the network card and the PCI burst size set to

4Kbytes. 10-Gigabit Ethernet achieves a peak throughput of about 2.5Gbps with a

CPU usage of about 110% (dual processor system). We can see that the amount of

CPU used gets saturated at about 100% though we are using dual processor systems.

This is attributed to the interrupt routing mechanism for the “x86” architecture. The

x86 architecture routes all interrupts to the first processor. For interrupt based pro-

tocols such as TCP, this becomes a huge bottleneck, since this essentially restricts the

transmission side to about one CPU. This behavior is also seen in the multi-stream

transmission tests (in particular the fan-out test) which are provided in the later

sections. The throughput results for the Linux platform are presented in Figure 9.3b.

Multi-Stream Tests: For the multi-stream results, we study the performance

of the host TCP/IP stack in the presence of multiple data streams flowing from or
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Figure 9.2: Micro-Benchmarks for the host TCP/IP stack over 10-Gigabit Ethernet on
the Windows Platform: (a) One-Way Latency (MTU 1.5K); (b) Throughput (MTU
16K)
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into the node. The environment used for the multi-stream tests consisted of one node

with a 10-Gigabit Ethernet adapter and several other nodes connected to the same

switch using a 1-Gigabit Ethernet adapter.

Three main experiments were conducted in this category. The first test was a

Fan-in test, where all the 1-Gigabit Ethernet nodes push data to the 10-Gigabit

Ethernet node through the common switch they are connected to. The second test

was a Fan-out test, where the 10-Gigabit Ethernet node pushes data to all the 1-

Gigabit Ethernet nodes through the common switch. The third test was Dual test,

where the 10-Gigabit Ethernet node performs the fan-in test with half the 1-Gigabit

Ethernet nodes and the fan-out test with the other half. It is to be noted that the

Dual test is quite different from a multi-stream bi-directional bandwidth test where

the server node (10-Gigabit Ethernet node) does both a fan-in and a fan-out test

with each client node (1-Gigabit Ethernet node). The message size used for these

experiments is 10Mbytes. This forces the message not to be in L2-cache during

subsequent iterations.

Figures 9.4a and 9.4b show the performance of the host TCP/IP stack over 10-

Gigabit Ethernet for the Fan-in and the Fan-out tests. We can see that we are able

to achieve a throughput of about 3.5Gbps with a 120% CPU utilization (dual CPU)

for the Fan-in test and about 4.5Gbps with a 100% CPU utilization (dual CPU) for

the Fan-out test. Further, it is to be noted that the server gets saturated in the

Fan-in test for 4 clients. However, in the fan-out test, the throughput continues to

increase from 4 clients to 8 clients. This again shows that with 10-Gigabit Ethernet,

the receiver is becoming a bottleneck in performance mainly due to the high CPU

overhead involved on the receiver side.
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Figure 9.4c shows the performance achieved by the host TCP/IP stack over 10-

Gigabit Ethernet for the Dual test. The host TCP/IP stack is able to achieve a

throughput of about 4.2Gbps with a 140% CPU utilization (dual CPU).
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Figure 9.5: Throughput Test: CPU Pareto Analysis for small messages (64bytes): (a)
Transmit Side, (b) Receive Side

In this section we present a module wise break-up (Pareto Analysis) for the

CPU overhead of the host TCP/IP stack over 10-Gigabit Ethernet. We used the

NTttcp throughput test as a benchmark program to analyze this. Like other micro-

benchmarks, the NTttcp test uses the same buffer for all iterations of the data trans-

mission. So, the pareto analysis presented here is for the ideal case with the max-

imum number of cache hits. For measurement of the CPU overhead, we used the

Intel VTuneTM Performance Analyzer. In short, the VTuneTM Analyzer interrupts

the processor at specified events (e.g., every ‘n’ clock ticks) and records its execution

context at that sample. Given enough samples, the result is a statistical profile of the
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ratio of the time spent in a particular routine. More details about the Intel VTuneTM

Performance Analyzer can be found in [15].

Figures 9.5 and 9.6 present the CPU break-up for both the sender as well as the

receiver for small messages (64bytes) and large messages (16Kbytes) respectively. It

can be seen that in all the cases, the kernel and the protocol stack add up to about

80% of the CPU overhead. For small messages, the overhead is mainly due to the

per-message interrupts. These interrupts are charged into the kernel usage, which

accounts for the high percentage of CPU used by the kernel for small messages. For

larger messages, on the other hand, the overhead is mainly due to the data touching

portions in the TCP/IP protocol suite such as checksum, copy, etc.
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Figure 9.6: Throughput Test: CPU Pareto Analysis for large messages (16Kbytes):
(a) Transmit Size, (b) Receive Side

As it can be seen in the pareto analysis, in cases where the cache hits are high,

most of the overhead of TCP/IP based communication is due to the TCP/IP protocol

processing itself or due to other kernel overheads. This shows the potential benefits of

having TCP Offload Engines in such scenarios where these components are optimized

by pushing the processing to the hardware. However, the per-packet overheads for
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small messages such as interrupts for sending and receiving data segments would still

be present in spite of a protocol offload. Further, as we’ll see in the memory traffic

analysis (the next section), for cases where the cache hit rate is not very high, the

memory traffic associated with the sockets layer becomes very significant forming

a fundamental bottleneck for all implementations which support the sockets layer,

including high performance user-level sockets as well as TCP Offload Engines.

TCP/IP Memory Traffic

For the memory traffic tests, we again used the VTune TM Performance Analyzer.

We measure the number of cache lines fetched and evicted from the processor cache to

calculate the data traffic on the Front Side Bus. Further, we measure the data being

transferred from or to memory from the North Bridge to calculate the memory traffic

(on the Memory Bus). Based on these two calculations, we evaluate the amount of

traffic being transferred over the I/O bus (difference in the amount of traffic on the

Front Side Bus and the Memory Bus).

Single Stream Tests: Figure 9.7a shows the memory traffic associated with

the data being transferred on the network for the sender and the receiver sides. As

discussed in Section 9.2, for small message sizes (messages which fit in the L2-cache),

we can expect about 1 byte of memory traffic per network byte on the sender side and

about 2 bytes of memory traffic per network byte on the receiver side. However, the

amount of memory traffic seems to be large for very small messages. The reason for

this is the TCP control traffic and other noise traffic on the memory bus. Such traffic

would significantly affect the smaller message sizes due to the less amount of memory

traffic associated with them. However, when the message size becomes moderately
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large (and still fits in L2-cache), we can see that the message traffic follows the trend

predicted.

For large message sizes (messages which do not fit in the L2-cache), we can expect

between 2 and 4 bytes of memory traffic per network byte on the sender side and

about 4 bytes of memory traffic per network byte on the receiver side. We can see

that the actual memory to network traffic ratio follows this trend.

These results show that even without considering the host CPU requirements for

the TCP/IP protocol stack, the memory copies associated with the sockets layer can

generate up to 4 bytes of memory traffic per network byte for traffic in each direction,

forming what we call the memory-traffic bottleneck. It is to be noted that while

some TCP Offload Engines try to avoid the memory copies in certain scenarios, the

sockets API can not force a zero copy implementation for all cases (e.g., transactional

protocols such as RPC, File I/O, etc. first read the data header and decide the size of

the buffer to be posted). This forces the memory-traffic bottleneck to be associated

with the sockets API.

Multi-Stream Tests: Figure 9.7b shows the actual memory traffic associated

with the network data transfer during the multi-stream tests. It is to be noted that

the message size used for the experiments is 10Mbytes, so subsequent transfers of the

message need the buffer to be fetched from memory to L2-cache.

The first two legends in the figure show the amount of bytes transferred on the

network and the bytes transferred on the memory bus per second respectively. The

third legend shows 65% of the peak bandwidth achievable by the memory bus. 65% of

the peak memory bandwidth is a general rule of thumb used by most computer com-

panies to estimate the peak practically sustainable memory bandwidth on a memory
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bus when the requested physical pages are non-contiguous and are randomly placed.

It is to be noted that though the virtual address space could be contiguous, this

doesn’t enforce any policy on the allocation of the physical address pages and they

can be assumed to be randomly placed.

It can be seen that the amount of memory bandwidth required is significantly

larger than the actual network bandwidth. Further, for the Dual test, it can be

seen that the memory bandwidth actually reaches within 5% of the peak practically

sustainable bandwidth.

9.3.2 InfiniBand Architecture

In this section, we present briefly the performance achieved by RDMA enabled

network adapters such as InfiniBand.

Figure 9.8a shows the one-way latency achieved by the RDMA write communi-

cation model of the InfiniBand stack for the polling based approach for completion

as well as an event based approach. In the polling approach, the application contin-

uously monitors the completion of the message by checking the arrived data. This

activity makes the polling based approach CPU intensive resulting in a 100% CPU

utilization. In the event based approach, the application goes to sleep after posting

the descriptor. The network adaptor raises an interrupt for the application once the

message arrives. This results in a lesser CPU utilization for the event based scheme.

We see that RDMA write achieves a latency of about 5.5µs for both the polling

based scheme as well as the event based scheme. The reason for both the event based

scheme and the polling based scheme performing alike is the receiver transparency for

RDMA Write operations. Since, the RDMA write operation is completely receiver

transparent, the only way the receiver can know that the data has arrived into its
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buffer is by polling on the last byte. So, in an event-based approach only the sender

would be blocked on send completion using a notification event; the notification over-

head at the sender is however parallelized with the data transmission and reception.

Due to this the time taken by RDMA write for the event-based approach is similar

to that of the polling based approach. Due to the same reason, the CPU overhead in

the event-based approach is 100% (similar to the polling based approach).

RDMA Read on the other hand achieves a latency of about 12.5µs for the polling

based scheme and about 24.5µs for the event based scheme. The detailed results for

RDMA read and the other communication models such as send-receive and RDMA

write with immediate data can be found in [15].

Figure 9.8 shows the throughput achieved by RDMA write. Again, results for

both the polling based approach as well as the event-based approach are presented.

Both approaches seem to perform very close to each other giving a peak through-

put of about 6.6Gbps. The peak throughput is limited by the sustainable bandwidth

on the PCI-X bus. The way the event-based scheme works is that, it first checks

the completion queue for any completion entries present. If there are no completion
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entries present, it requests a notification from the network adapter and blocks while

waiting for the data to arrive. In a throughput test, data messages are sent one

after the other continuously. So, the notification overhead can be expected to be

overlapped with the data transmission overhead for the consecutive messages. This

results in a similar performance for the event-based approach as well as the polling

based approach.

The CPU utilization values are only presented for the event-based approach; those

for the polling based approach stay close to 100% and are not of any particular

interest. The interesting thing to note is that for RDMA, there is nearly zero CPU

utilization for the data sink especially for large messages.

9.3.3 10-Gigabit Ethernet/InfiniBand Comparisons

Figures 9.9a and 9.9b show the latency and throughput comparisons between IBA

and 10-Gigabit Ethernet respectively. In this figure we have skipped the event based

scheme and shown just the polling based scheme. The reason for this is the software

stack overhead in InfiniBand. The performance of the event based scheme depends on

the performance of the software stack to handle the events generated by the network

adapter and hence would be specific to the implementation we are using. Hence, to

get an idea of the peak performance achievable by InfiniBand, we restrict ourselves

to the polling based approach.

We can see that InfiniBand is able to achieve a significantly higher performance

than the host TCP/IP stack on 10-Gigabit Ethernet; a factor of three improvement in

the latency and a up to a 3.5 times improvement in the throughput. This improvement

in performance is mainly due to the offload of the network protocol, direct access to

the NIC and direct placement of data into the memory.
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Figures 9.10a and 9.10b show the CPU requirements and the memory traffic gen-

erated by the host TCP/IP stack over 10-Gigabit Ethernet and the InfiniBand stack.

We can see that the memory traffic generated by the host TCP/IP stack is much

higher (more than 4 times in some cases) as compared to InfiniBand; this differ-

ence is mainly attributed to the copies involved in the sockets layer for the TCP/IP

stack. This result points to the fact that in spite of the possibility of an offload of

the TCP/IP stack on to the 10-Gigabit Ethernet network adapter TCP’s scalabil-

ity would still be restricted by the sockets layer and its associated copies. On the

other hand, an RDMA extended sockets interface can be expected to achieve all the

advantages seen by InfiniBand.

Some of the expected benefits are (1) Low overhead interface to the network, (2)

Direct Data Placement (significantly reducing intermediate buffering), (3) Support

for RDMA semantics, i.e., the sender can handle the buffers allocated on the receiver

node and (4) Most importantly, the amount of memory traffic generated for the

network communication will be equal to the number of bytes going out to or coming

in from the network, thus improving scalability.

9.4 Summary

The compute requirements associated with the TCP/IP protocol suite have been

previously studied by a number of researchers. However, the recently developed 10

Gigabit networks such as 10-Gigabit Ethernet and InfiniBand have added a new

dimension of complexity to this problem, Memory Traffic. While there have been

previous studies which show the implications of the memory traffic bottleneck, to the

best of our knowledge, there has been no study which shows the actual impact of the

memory accesses generated by TCP/IP for 10-Gigabit networks.

181



In this chapter, we first do a detailed evaluation of various aspects of the host-based

TCP/IP protocol stack over 10-Gigabit Ethernet including the memory traffic and

CPU requirements. Next, we compare these with RDMA capable network adapters,

using InfiniBand as an example network. Our measurements show that while the

host based TCP/IP stack has a high CPU requirement, up to 80% of this overhead is

associated with the core protocol implementation especially for large messages and is

potentially offloadable using the recently proposed TCP Offload Engines. However,

the current host based TCP/IP stack also requires multiple transactions of the data

(up to a factor of four in some cases) over the current moderately fast memory buses,

curbing their scalability to faster networks; for 10-Gigabit networks, the host based

TCP/IP stack generates enough memory traffic to saturate a 333MHz/64bit DDR

memory bandwidth even before 35% of the available network bandwidth is used.

Our evaluation of the RDMA interface over the InfiniBand network tries to nail

down some of the benefits achievable by providing RDMA-based extensions to sock-

ets. In particular, we try to compare the RDMA interface over InfiniBand not only

in performance, but also in other resource requirements such as CPU usage, memory

traffic, etc. Our results show that the RDMA interface requires up to four times lesser

memory traffic and has almost zero CPU requirements for the data sink. These mea-

surements show the potential impacts of having RDMA-based extensions to sockets

on 10-Gigabit networks.
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CHAPTER 10

SUPPORTING STRONG COHERENCY FOR ACTIVE
CACHES IN MULTI-TIER DATA-CENTERS OVER

INFINIBAND

With increasing adoption of the Internet as primary means of electronic interac-

tion and communication, E-portal and E-commerce, highly scalable, highly available

and high performance web servers, have become critical for companies to reach, at-

tract, and keep customers. Multi-tier Data-centers have become a central requirement

to providing such services. Figure 10.1 represents a typical multi-tier data-center.

The front tiers consist of front-end servers such as proxy servers that provide web,

messaging and various other services to clients. The middle tiers usually comprise

of application servers that handle transaction processing and implement data-center

business logic. The back-end tiers consist of database servers that hold a persistent

state of the databases and other data repositories. As mentioned in [73], a fourth

tier emerges in today’s data-center environment: a communication service tier be-

tween the network and the front-end server farm for providing edge services such as

caching, resource monitoring and dynamic reconfiguration, load balancing, security,

and others. In this chapter, we concentrate on two of these services, namely caching

and resource monitoring and dynamic reconfiguration.
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Figure 10.1: A Typical Multi-Tier Data-Center

Caching: With ever increasing on-line businesses and services and the growing

popularity of personalized Internet services, dynamic content is becoming increasingly

common [29, 83, 75]. This includes documents that change upon every access, docu-

ments that are query results, documents that embody client-specific information, etc.,

which involve significant computation and communication requirements. Caching is a

widely accepted approach for curbing these requirements and maintaining a high per-

formance. However, caching dynamic content, typically known as Active Caching [29]

has its own challenges: issues such as cache consistency and cache coherence become

more prominent. Efficiently handling these can allow data-centers to sustain a high

performance even for data-centers serving large amounts of dynamic content.

Resource Monitoring and Dynamic Reconfiguration: In the past few years

several researchers have proposed and configured data-centers providing multiple in-

dependent services, known as shared data-centers [33, 59]. For example, several ISPs

and other web service providers host multiple unrelated web-sites on their data-centers
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allowing potential differentiation in the service provided to each of them. The in-

crease in such services results in a growing fragmentation of the resources available

and ultimately in the degradation of the performance provided by the data-center.

Over-provisioning of nodes in the data-center for each service provided is a widely

used approach. In this approach, nodes are alloted to each service depending on the

worst case estimates of the load expected and the nodes available in the data-center.

For example, if a data-center hosts two web-sites, each web-site is provided with a

fixed subset of nodes in the data-center based on the traffic expected for that web-

site. It is easy to see that though this approach gives the best possible performance, it

might incur severe under utilization of resources especially when the traffic is bursty

and directed to a single web-site.

While current generation high-speed networks such as InfiniBand provide a wide

range of capabilities to allow efficient handling of issues such as these (both active

caching as well dynamic reconfigurability), most of the data-center applications are

written using the sockets interface. Rewriting them to use the native network inter-

face is cumbersome and impractical. Using high-performance sockets implementations

such as SDP over InfiniBand is a straight-forward approach for allowing such appli-

cations to benefit from the high performance of the networks without any changes.

However, as we will see in the later sections, while SDP provides a high performance,

it is restricted by the sockets interface itself. Specifically, for many data-center appli-

cations, the two-sided communication interface of sockets (with both the sender and

receiver having to be involved for communication) hampers the performance signifi-

cantly due to the non-uniform load conditions prevalent in data-centers.
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In this chapter, we propose an extended sockets interface where one-sided com-

munication features, similar to the Remote Direct Memory Access (RDMA), are

incorporated into the sockets semantics. Our results demonstrate that with this new

sockets interface, applications such as active caching and dynamic reconfigurability

can achieve close to an order of magnitude improvement in performance while requir-

ing minimal changes.

10.1 Background

In this section, we briefly describe the various schemes previously proposed by

researchers to deal with caching dynamic content as well as dynamic reconfiguration

in shared data-centers.

10.1.1 Web Cache Consistency and Coherence

Traditionally, frequently accessed static content was cached at the front tiers to

allow users a quicker access to these documents. In the past few years, researchers

have come up with approaches of caching certain dynamic content at the front tiers

as well [29]. In the current web, many cache eviction events and uncachable resources

are driven by two server application goals: First, providing clients with a recent or

coherent view of the state of the application (i.e., information that is not too old);

Secondly, providing clients with a self-consistent view of the application’s state as it

changes (i.e., once the client has been told that something has happened, that client

should never be told anything to the contrary). Depending on the type of data being

considered, it is necessary to provide certain guarantees with respect to the view of

the data that each node in the data-center and the users get. These constraints on

the view of data vary based on the application requiring the data.
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Consistency: Cache consistency refers to a property of the responses produced

by a single logical cache, such that no response served from the cache will reflect older

state of the server than that reflected by previously served responses, i.e., a consistent

cache provides its clients with non-decreasing views of the server’s state.

Coherence: Cache coherence refers to the average staleness of the documents

present in the cache, i.e., the time elapsed between the current time and the time

of the last update of the document in the back-end. A cache is said to be strong

coherent if its average staleness is zero, i.e., a client would get the same response

whether a request is answered from cache or from the back-end.

Web Cache Consistency

In a multi-tier data-center environment many nodes can access data at the same

time (concurrency). Data consistency provides each user with a consistent view of the

data, including all visible (committed) changes made by the user’s own updates and

the updates of other users. That is, either all the nodes see a completed update or no

node sees an update. Hence, for strong consistency, stale view of data is permissible,

but partially updated view is not.

Several different levels of consistency are used based on the nature of data being

used and its consistency requirements. For example, for a web site that reports

football scores, it may be acceptable for one user to see a score, different from the

scores as seen by some other users, within some frame of time. There are a number

of methods to implement this kind of weak or lazy consistency models.

The Time-to-Live (TTL) approach, also known as the ∆-consistency approach,

proposed with the HTTP/1.1 specification, is a popular weak consistency (and weak

coherence) model currently being used. This approach associates a TTL period with
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each cached document. On a request for this document from the client, the front-end

node is allowed to reply back from their cache as long as they are within this TTL

period, i.e., before the TTL period expires. This guarantees that document cannot

be more stale than that specified by the TTL period, i.e., this approach guarantees

that staleness of the documents is bounded by the TTL value specified.

Researchers have proposed several variations of the TTL approach including Adap-

tive TTL [39] and MONARCH [61] to allow either dynamically varying TTL val-

ues (as in Adaptive TTL) or document category based TTL classification (as in

MONARCH ). There has also been considerable amount of work on Strong Consis-

tency algorithms [26, 25].

Web Cache Coherence

Typically, when a request reaches the proxy node, the cache is checked for the

file. If the file was previously requested and cached, it is considered a cache hit and

the user is served with the cached file. Otherwise the request is forwarded to its

corresponding server in the back-end of the data-center.

The maximal hit ratio in proxy caches is about 50% [75]. Majority of the cache

misses are primarily due to the dynamic nature of web requests. Caching dynamic

content is much more challenging than static content because the cached object is

related to data at the back-end tiers. This data may change, thus invalidating the

cached object and resulting in a cache miss. The problem providing consistent caching

for dynamic content has been well studied and researchers have proposed several weak

as well as strong cache consistency algorithms [26, 25, 83]. However, the problem of

maintaining cache coherence has not been studied as much.
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The two popular coherency models used in the current web are immediate or

strong coherence and bounded staleness. The bounded staleness approach is similar to

the previously discussed TTL based approach. Though this approach is efficient with

respect to the number of cache hits, etc., it only provides a weak cache coherence

model. On the other hand, immediate coherence provides a strong cache coherence.

With immediate coherence, caches are forbidden from returning a response other

than that which would be returned were the origin server contacted. This guarantees

semantic transparency, provides Strong Cache Coherence, and as a side-effect also

guarantees Strong Cache Consistency. There are two widely used approaches to

support immediate coherence. The first approach is pre-expiring all entities (forcing

all caches to re-validate with the origin server on every request). This scheme is

similar to a no-cache scheme. The second approach, known as client-polling, requires

the front-end nodes to inquire from the back-end server if its cache is valid on every

cache hit.

The no-caching approach to maintain immediate coherence has several disadvan-

tages:

• Each request has to be processed at the home node tier, ruling out any caching

at the other tiers

• Propagation of these requests to the back-end nodes over traditional protocols

can be very expensive

• For data which does not change frequently, the amount of computation and

communication overhead incurred to maintain strong coherence could be very

high, requiring more resources
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These disadvantages are overcome to some extent by the client-polling mecha-

nism. In this approach, the proxy server, on getting a request, checks its local cache

for the availability of the required document. If it is not found, the request is for-

warded to the appropriate application server in the inner tier and there is no cache

coherence issue involved at this tier. If the data is found in the cache, the proxy

server checks the coherence status of the cached object by contacting the back-end

server(s). If there were updates made to the dependent data, the cached document is

discarded and the request is forwarded to the application server tier for processing.

The updated object is now cached for future use. Even though this method involves

contacting the back-end for every request, it benefits from the fact that the actual

data processing and data transfer is only required when the data is updated at the

back-end. This scheme can potentially have significant benefits when the back-end

data is not updated very frequently. However, this scheme also has disadvantages,

mainly based on the traditional networking protocols:

• Every data document is typically associated with a home-node in the data-center

back-end. Frequent accesses to a document can result in all the front-end nodes

sending in coherence status requests to the same nodes potentially forming a

hot-spot at this node

• Traditional protocols require the back-end nodes to be interrupted for every

cache validation event generated by the front-end

In this chapter, we focus on this model of cache coherence and analyze the various

impacts of the advanced features provided by InfiniBand on this.
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10.1.2 Shared Cluster-Based Data-Center Environment

A clustered data-center environment essentially tries to utilize the benefits of

a cluster environment (e.g., high performance-to-cost ratio) to provide the services

requested in a data-center environment (e.g., web hosting, transaction processing). As

mentioned earlier, researchers have proposed and configured data-centers to provide

multiple independent services, such as hosting multiple web-sites, forming what is

known as shared data-centers.

Figure 10.2 shows a higher level layout of a shared data-center architecture host-

ing multiple web-sites. External clients request documents or services from the data-

center over the WAN/Internet through load-balancers using higher level protocols

such as HTTP. The load-balancers on the other hand serve the purpose of exposing

a single IP address to all the clients while maintaining a list of several internal IP ad-

dresses to which they forward the incoming requests based on a pre-defined algorithm

(e.g., round-robin).

While hardware load-balancers are commonly available today, they suffer from

being based on a pre-defined algorithm and are difficult to be tuned based on the

requirements of the data-center. On the other hand, though software load-balancers

are easy to modify and tuned based on the data-center requirements, they can poten-

tially form bottlenecks themselves for highly loaded data-centers. In the past, several

researchers have proposed the use of an additional cluster of nodes (known as the

edge tier) [73] to perform certain services such as intelligent load-balancing, caching,

etc [59]. Requests can be forwarded to this cluster of software load-balancers either

by the clients themselves by using techniques such as DNS aliasing, or by using an

additional hardware load-balancer.
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The servers inside the clustered data-center provide the actual services such as

web-hosting, transaction processing, etc. Several of these services require computa-

tionally intensive processing such as CGI scripts, Java servlets and database query

operations (table joins, etc). This makes the processing on the server nodes CPU

intensive in nature.

10.2 Providing Strong Cache Coherence

In this section, we describe the architecture we use to support strong cache coher-

ence. We first provide the basic design of the architecture for any generic protocol.

Next, we point out several optimizations possible in the design using the one-sided

communication and atomic operation features provided by the extended sockets in-

terface over InfiniBand.

10.2.1 Basic Design

As mentioned earlier, there are two popular approaches to ensure cache coherence:

Client-Polling and No-Caching. In this research, we focus on the Client-Polling ap-

proach to demonstrate the potential benefits of InfiniBand in supporting strong cache

coherence.

While the HTTP specification allows a cache-coherent client-polling architecture

(by specifying a TTL value of NULL and using the ‘‘get-if-modified-since’’

HTTP request to perform the polling operation), it has several issues: (1) This scheme

is specific to sockets and cannot be used with other programming interfaces such as
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InfiniBand’s native Verbs layers (e.g.: VAPI), (2) In cases where persistent connec-

tions are not possible (HTTP/1.0 based requests, secure transactions, etc), connec-

tion setup time between the nodes in the data-center environment tends to take up

a significant portion of the client response time, especially for small documents.
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Figure 10.3: Strong Cache Coherence Protocol

In the light of these issues, we present an alternative architecture to perform

Client-Polling. Figure 10.3 demonstrates the basic coherency architecture used in this

research. The main idea of this architecture is to introduce external helper modules

that work along with the various servers in the data-center environment to ensure

cache coherence. All issues related to cache coherence are handled by these modules
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and are obscured from the data-center servers. It is to be noted that the data-center

servers require very minimal changes to be compatible with these modules.
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Figure 10.4: Interaction between Data-Center Servers and Modules

The design consists of a module on each physical node in the data-center envi-

ronment associated with the server running on the node, i.e., each proxy node has

a proxy module, each application server node has an associated application module,

etc. The proxy module assists the proxy server with validation of the cache on every

request. The application module, on the other hand, deals with a number of things

including (a) Keeping track of all updates on the documents it owns, (b) Locking ap-

propriate files to allow a multiple-reader-single-writer based access priority to files, (c)

Updating the appropriate documents during update requests, (d) Providing the proxy

module with the appropriate version number of the requested file, etc. Figure 10.4

demonstrates the functionality of the different modules and their interactions.

Proxy Module: On every request, the proxy server contacts the proxy module

through IPC to validate the cached object(s) associated with the request. The proxy

module does the actual verification of the document with the application module on

the appropriate application server. If the cached value is valid, the proxy server is
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allowed to proceed by replying to the client’s request from cache. If the cache is

invalid, the proxy module simply deletes the corresponding cache entry and allows

the proxy server to proceed. Since the document is now not in cache, the proxy server

contacts the appropriate application server for the document. This ensures that the

cache remains coherent.

Application Module: The application module is slightly more complicated than

the proxy module. It uses multiple threads to allow both updates and read accesses

on the documents in a multiple-reader-single-writer based access pattern. This is

handled by having a separate thread for handling updates (referred to as the update

thread here on). The main thread blocks for IPC requests from both the application

server and the update thread. The application server requests to read a file while an

update thread requests to update a file. The main thread of the application module,

maintains two queues to ensure that the file is not accessed by a writer (update

thread) while the application server is reading it (to transmit it to the proxy server)

and vice-versa.

On receiving a request from the proxy, the application server contacts the ap-

plication module through an IPC call requesting for access to the required docu-

ment (IPC READ REQUEST). If there are no ongoing updates to the document,

the application module sends back an IPC message giving it access to the document

(IPC READ PROCEED), and queues the request ID in its Read Queue. Once the

application server is done with reading the document, it sends the application mod-

ule another IPC message informing it about the end of the access to the document

(IPC READ DONE). The application module, then deletes the corresponding entry

from its Read Queue.
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When a document is to be updated (either due to an update server interaction or

an update query from the user), the update request is handled by the update thread.

On getting an update request, the update thread initiates an IPC message to the

application module (IPC UPDATE REQUEST). The application module on seeing

this, checks its Read Queue. If the Read Queue is empty, it immediately sends an IPC

message (IPC UPDATE PROCEED) to the update thread and queues the request

ID in its Update Queue. On the other hand, if the Read Queue is not empty, the up-

date request is still queued in the Update Queue, but the IPC UPDATE PROCEED

message is not sent back to the update thread (forcing it to hold the update), until

the Read Queue becomes empty. In either case, no further read requests from the ap-

plication server are allowed to proceed; instead the application module queues them

in its Update Queue, after the update request. Once the update thread has completed

the update, it sends an IPC UPDATE DONE message to the update module. At this

time, the application module deletes the update request entry from its Update Queue,

sends IPC READ PROCEED messages for every read request queued in the Update

Queue and queues these read requests in the Read Queue, to indicate that these are

the current readers of the document.

It is to be noted that if the Update Queue is not empty, the first request queued

will be an update request and all other requests in the queue will be read requests.

Further, if the Read Queue is empty, the update is currently in progress. Table 10.1

tries to summarize this information.
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Table 10.1: IPC message rules

IPC TYPE Read Queue State Update Queue State Rule
IPC READ REQUEST Empty Empty 1. Send IPC READ PROCEED to proxy

2. Enqueue Read Request in Read Queue
IPC READ REQUEST Not Empty Empty 1. Send IPC READ PROCEED to proxy

2. Enqueue Read Request in Read Queue
IPC READ REQUEST Empty Not Empty 1. Enqueue Read Request in Update Queue
IPC READ REQUEST Not Empty Not Empty Enqueue the Read Request in the Update Queue

IPC READ DONE Empty Not Empty Erroneous State. Not Possible.
IPC READ DONE Not Empty Empty 1. Dequeue one entry from Read Queue.
IPC READ DONE Not Empty Not Empty 1. Dequeue one entry from Read Queue

2. If Read Queue is now empty, Send
IPC UPDATE PROCEED to head of Update Queue

IPC UPDATE REQUEST Empty Empty 1. Enqueue Update Request in Update Queue
2. Send IPC UPDATE PROCEED

IPC UPDATE REQUEST Empty Not Empty Erroneous state. Not Possible
IPC UPDATE REQUEST Not Empty Empty 1. Enqueue Update Request in Update Queue
IPC UPDATE REQUEST Not Empty Not Empty Erroneous State. Not possible

IPC UPDATE DONE Empty Empty Erroneous State. Not possible
IPC UPDATE DONE Empty Not Empty 1. Dequeue Update Request from Update Queue

2. For all Read Requests in Update Queue:
- Dequeue Read Requests from Update Queue
- Send IPC READ PROCEED
- Enqueue in Read Queue

IPC UPDATE DONE Not Empty Not Empty Erroneous State. Not Possible.
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10.2.2 Strong Coherency Model using the Extended Sockets
Interface

In this section, we point out several optimizations possible in the design described,

using the advanced features provided by the extended sockets interface over Infini-

Band. In Section 12.2 we provide the performance achieved by the extended sockets

optimized architecture.

As described earlier, on every request the proxy module needs to validate the

cache corresponding to the document requested. In traditional protocols such as

TCP/IP, this requires the proxy module to send a version request message to the

version thread4, followed by the version thread explicitly sending the version number

back to the proxy module. This involves the overhead of the TCP/IP protocol stack

for the communication in both directions. Several researchers have provided solutions

such as SDP to get rid of the overhead associated with the TCP/IP protocol stack

while maintaining the sockets API. However, the more important concern in this case

is the processing required at the version thread (e.g. searching for the index of the

requested file and returning the current version number).

Application servers typically tend to perform several computation intensive tasks

including executing CGI scripts, Java applets, etc. This results in a tremendously

high CPU requirement for the main application server itself. Allowing an additional

version thread to satisfy version requests from the proxy modules results in a high

CPU usage for the module itself. Additionally, the large amount of computation

carried out on the node by the application server results in significant degradation

in performance for the version thread and other application modules running on

4Version Thread is a separate thread spawned by the application module to handle version re-
quests from the proxy module
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the node. This results in a delay in the version verification leading to an overall

degradation of the system performance.

In this scenario, it would be of great benefit to have a one-sided communication

operation where the proxy module can directly check the current version number

without interrupting the version thread. Extended sockets over InfiniBand provides

an one-sided GET operation which allows the initiator node to directly read data

from the remote node’s memory. This feature of extended sockets makes it an ideal

choice for this scenario. In our implementation, we rely on the GET operation for the

proxy module to get information about the current version number of the required

file. Figure 10.5 demonstrates the extended sockets optimized coherency architecture.
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10.3 Design of Reconfiguration Based on Remote Memory
Operations

In this section, we describe the basic design issues in the dynamic reconfigurability

scheme and the details about the implementation of this scheme using the extended

sockets interface over InfiniBand.

10.3.1 Reconfigurability Support

Request patterns seen over a period of time, by a shared data-center, may vary

significantly in terms of the ratio of requests for each co-hosted web-site. For exam-

ple, interesting documents or dynamic web-pages becoming available and unavailable

might trigger bursty traffic for some web-site at some time and for some other web-site

at a different time. This naturally changes the resource requirements of a particular

co-hosted web site from time to time. The basic idea of reconfigurability is to utilize

the idle nodes of the system to satisfy the dynamically varying resource requirements

of each of the individual co-hosted web-sites in the shared data-center. Dynamic re-

configurability of the system requires some extent of functional equivalence between

the nodes of the data-center. We provide this equivalence by enabling software ho-

mogeneity such that each node is capable of belonging to any web-site in the shared

data-center. Depending on the current demands (e.g., due to a burst of requests to

one web-site), nodes reconfigure themselves to support these demands.

Support for Existing Applications: A number of applications have been devel-

oped in the data-center environment over the span of several years to process requests

and provide services to the end user; modifying them to allow dynamic reconfigura-

bility is impractical. To avoid making these cumbersome changes to the existing

applications, our design makes use of external helper modules which work alongside
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the applications to provide effective dynamic reconfiguration. Tasks related to system

load monitoring, maintaining global state information, reconfiguration, etc. are han-

dled by these helper modules in an application transparent manner. These modules,

running on each node in the shared data-center, reconfigure nodes in the data-center

depending on current request and load patterns. They use the run-time configuration

files of the data-center applications to reflect these changes. The servers on the other

hand, just continue with the request processing, unmindful of the changes made by

the modules.

Load-Balancer Based Reconfiguration: Two different approaches could be

taken for reconfiguring the nodes: Server-based reconfiguration and Load-balancer

based reconfiguration. In server-based reconfiguration, when a particular server de-

tects a significant load on itself, it tries to reconfigure a relatively free node that is

currently serving some other web-site content. Though intuitively the loaded server

itself is the best node to perform the reconfiguration (based on its closeness to the re-

quired data and the number of messages required), performing reconfiguration on this

node adds a significant amount of load to an already loaded server. Due to this rea-

son, reconfiguration does not happen in a timely manner and the overall performance

is affected adversely. On the other hand, in load-balancer based reconfiguration, the

edge servers (functioning as load-balancers) detect the load on the servers, find a

free server to alleviate the load on the loaded server and perform the reconfiguration

themselves. Since the shared information like load, server state, etc. is closer to the

servers, this approach incurs the cost of requiring more network transactions for its

operations.
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Remote Memory Operations Based Design: As mentioned earlier, by their

very nature the server nodes are compute intensive. Execution of CGI-Scripts, business-

logic, servlets, database processing, etc. are typically very taxing on the server CPUs.

So, the helper modules can potentially be starved for CPU on these servers. Though

in theory the helper modules on the servers can be used to share the load information

through explicit two-sided communication, in practice, such communication does not

perform well [64].

Extended sockets over InfiniBand, on the other hand, provides one-sided remote

memory operations (like RDMA and Remote Atomics) that allow access to remote

memory without interrupting the remote node. In our design, we use these operations

to perform load-balancer based server reconfiguration in a server transparent manner.

Since the load-balancer is performing the reconfiguration with no interruptions to the

server CPUs, this one-sided operation based design is highly resilient to server load.

The major design challenges and issues involved in dynamic adaptability and

reconfigurability of the system are listed below.

• Providing a System Wide Shared State

• Concurrency Control to avoid Live-locks and Starvation

• Avoiding server thrashing through history aware reconfiguration

• Tuning the reconfigurability module sensitivity

We present these challenges in the following few sub-sections.

System Wide Shared State

As discussed earlier, the external helper modules present in the system handle

various issues related to reconfigurability. However, the decision each module needs
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to make is pertinent to the global state of the system and cannot be made based on

the view of a single node. So, these modules need to communicate with each other

to share such information regarding the system load, current configuration of the

system, etc. Further, these communications tend to be asynchronous in nature. For

example, the server nodes are not aware about when a particular load-balancer might

require their state information.

An interesting point to note in this communication pattern is the amount of

replication in the information exchanged between the nodes. For example, let us

consider a case where the information is being shared between the web-site ’A’ and

the load-balancers in the shared data-center. Here, each node serving web-site ’A’

provides its state information to each one of the load-balancing nodes every time they

need it, i.e., the same information needs to be communicated with every node that

needs it.

Based on these communication patterns, intuitively a global shared state seems

to be the ideal environment for efficient distribution of data amongst all the nodes.

In this architecture each node can write its relevant information into the shared state

and the other nodes can asynchronously read this information without interrupting

the source node. This architecture essentially depicts a producer-consumer scenario

for non-consumable resources.

One approach for implementing such a shared state, is by distributing the data

across the physical memories of various nodes and allowing the nodes in the data-

center to read or write into these memory locations. While an implementation of such

a logical shared state is possible using the traditional TCP/IP based sockets interface

(with the modules explicitly reading and communicating the data upon request from
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other nodes), such an implementation would lose out on all the benefits a shared

state could provide. In particular: (i) All communication needs to be explicitly

performed by the server nodes by sending (replicated) information to each of the

load-balancers and (ii) Asynchronous requests from the nodes need to be handled by

either using a signal based mechanism (using the SIGIO signal handler) or by having

a separate thread block for incoming requests, both of which require the server node

host intervention.

Further, as mentioned earlier and observed in our previous work [64], due to

various factors such as the skew and the load on the server nodes, even a simple

two sided communication operation might lead to a significant degradation in the

performance.

On the other hand, extended sockets provides several advanced features such

as one-sided communication operations. In our implementation, each node writes

information related to itself on its local memory. Other nodes needing this information

can directly read this information using a GET operation without disturbing this

node at all. This implementation of a logical shared state retains the efficiencies of

the initially proposed shared state architecture, i.e., each node can write data into its

shared state and the other nodes can read data asynchronously from the shared state

without interrupting the source node.

Shared State with Concurrency Control

The logical shared state described in Section 10.3.1 is a very simplistic view of

the system. The nodes use the information available and change the system to the

best possible configuration. However, for using this logical shared state, several issues

need to be taken into consideration.
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As shown in Figure 10.6, each load-balancer queries the load on each server at

regular intervals. On detecting a high load on one of the servers, the load-balancer

selects a lightly loaded node serving a different web-site, and configures it to ease the

load on the loaded server. However, to avoid multiple simultaneous transitions and

hot-spot effects during reconfiguration, additional logic is needed.

In our design, we propose an architecture using a two-level hierarchical locking

with dual update counters to address these problems.

As shown in Figure 10.7, each web-site has an unique internal lock. This lock

ensures that exactly one of the multiple load-balancers handling requests for the

same web-site, can attempt a conversion of a server node, thus avoiding multiple

simultaneous conversions. After acquiring this internal lock (through a remote atomic

compare-and-swap operation), the load-balancer selects a lightly loaded server and

performs a second remote atomic operation to configure that server to serve the

loaded web-site. This second atomic operation (atomic compare-and-swap) also acts

as a mutually exclusive lock between load-balancers that are trying to configure the

free server to serve their respective web-sites.

It is to be noted that after a reconfiguration is made, some amount of time is taken

for the load to get balanced. However, during this period of time other load balancers

can still detect a high load on the servers and can possibly attempt to reconfigure more

free nodes. To avoid this unnecessary reconfiguration of multiple nodes, each relevant

load-balancer needs to be notified about any recent reconfiguration done, so that it

can wait for some amount of time before it checks the system load and attempts

a reconfiguration. In our design, each load-balancer keeps a local update counter

and a shared update counter to keep track of all reconfigurations. Before making a
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reconfiguration, a check is made to see if the local update counter and the shared

update counter are equal. In case they are equal, a reconfiguration is made and the

shared update counters of all the other relevant load-balancers is incremented (using

atomic fetch-and-add). Otherwise, if the shared update counter is more than the

local update counter, it indicates a very recent reconfiguration, so no reconfiguration

is made at this instance by this load-balancer. However, the local update counter

is updated to the shared update counter. This ensures that each high load event is

handled by only one load-balancer.
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Figure 10.6: Concurrency Control for Shared State
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History Aware Reconfiguration

Due to the irregular nature of the incoming requests, a small burst of similar

requests might potentially trigger a re-configuration in the data-center. Because of

this, small bursts of similar requests can cause nodes in the shared data-center to

be moved between the various co-hosted web-sites to satisfy the instantaneous load,

resulting in thrashing in the data-center configuration.
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To avoid such thrashing, in our scheme, we allow a history aware reconfiguration of

the nodes, i.e., the nodes serving one web-site are re-allocated to a different web-site

only if the load to the second web-site stays high for a pre-defined period of time T.

However, this approach has its own trade-offs. A small value for T could result in

thrashing in the data-center environment. On the other hand, a large value of T could

make the approach less respondent to bursty traffic providing a similar performance

as that of the non-reconfigurable or rigid system. The optimal value of T depends on

the kind of workload and request pattern. While we recognize the importance of the

value of T, in this chapter, we do not concentrate on the effect of its variation and

fix it to a pre-defined value for all the experiments.

Reconfigurability Module Sensitivity

As mentioned earlier, the modules on the load-balancers occasionally read the

system information from the shared state in order to decide the best configuration at

that instant of time. The time interval between two consecutive checks is a system

parameter S referring to the sensitivity of the external helper modules. A small value

of S allows a high degree of sensitivity, i.e., the system is better respondent to a

variation in the workload characteristics. However, it would increase the overhead on

the system due to the frequent monitoring of the state. On the other hand, a large

value of S allows a low degree of sensitivity, i.e., the system is less respondent to

variation in the workload characteristics. At the same time, it would also result in a

lower overhead on the system to monitor the state.

10.4 Experimental Results

In this section, we first show the micro-benchmark level performance given by

VAPI, SDP and IPoIB. Next, we analyze the performance of a cache-coherent 2-tier
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data-center environment. Cache coherence is achieved using the Client-Polling based

approach in the architecture described in Section 10.2.

All our experiments used a cluster system consisting of 8 nodes built around Super-

Micro SUPER P4DL6 motherboards and GC chipsets which include 64-bit 133 MHz

PCI-X interfaces. Each node has two Intel Xeon 2.4 GHz processors with a 512 kB L2

cache and a 400 MHz front side bus. The machines are connected with Mellanox In-

finiHost MT23108 DualPort 4x HCA adapter through an InfiniScale MT43132 Eight

4x Port InfiniBand Switch. The Mellanox InfiniHost HCA SDK version is thca-x86-

0.2.0-build-001. The adapter firmware version is fw-23108-rel-1 18 0000. We used the

Linux 2.4.7-10 kernel.

10.4.1 Micro-benchmarks

In this section, we compare the ideal case performance achievable by IPoIB and

InfiniBand VAPI using a number of micro-benchmark tests. Since extended sockets

defaults back to SDP for regular sockets function calls and to the native VAPI in-

terface for extended calls such as one-sided GET/PUT operations, its performance

is very similar to SDP or VAPI (depending on what calls are used). Thus, these

numbers are not explicitly shown in this figure.

Figure 10.8 a shows the one-way latency achieved by IPoIB, VAPI Send-Receive,

RDMA Write, RDMA Read and SDP for various message sizes. Send-Receive achieves

a latency of around 7.5µs for 4 byte messages compared to a 30µs achieved by IPoIB,

27µs achieved by SDP and 5.5µs and 10.5µs achieved by RDMA Write and RDMA

Read, respectively. Further, with increasing message sizes, the difference between the

latency achieved by native VAPI, SDP and IPoIB tends to increase.

210



Latency

0

20

40

60

80

100

120

140

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size 

L
at

en
cy

 (
u

s)

Send/Recv

RDMA Write

RDMA Read

IPoIB

SDP

Bandwidth

0

100

200

300

400

500

600

700

800

900

4 16 64 256 1024 4096 16384 65536

Message Size

B
an

d
w

id
th

 (
M

B
p

s)

Send/Recv

RDMA Write

RDMA Read

IPoIB

SDP

Figure 10.8: Micro-Benchmarks: (a) Latency, (b) Bandwidth

Figure 10.8b shows the uni-directional bandwidth achieved by IPoIB, VAPI Send-

Receive and RDMA communication models and SDP. VAPI Send-Receive and both

RDMA models perform comparably with a peak throughput of up to 840Mbytes/s

compared to the 169Mbytes/s achieved by IPoIB and 500Mbytes/s achieved by SDP.

We see that VAPI is able to transfer data at a much higher rate as compared to

IPoIB and SDP. This improvement in both the latency and the bandwidth for VAPI

compared to the other protocols is mainly attributed to the zero-copy communication

in all VAPI communication models.

10.4.2 One-sided vs Two-sided Communication

In this section, we present performance results showing the impact of the loaded

conditions in the data-center environment on the performance of RDMA Read and

IPoIB. The results for the other communication models can be found in [17].

We emulate the loaded conditions in the data-center environment by performing

background computation and communication operations on the server while the load-

balancer performs the test with a separate thread on the server. This environment
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emulates a typical cluster-based shared data-center environment where multiple server

nodes communicate periodically and exchange messages, while the load balancer,

which is not as heavily loaded, attempts to get the load information from the heavily

loaded machines.

The performance comparison of RDMA Read and IPoIB for this experiment is

shown in Figure 10.9. We observe that the performance of IPoIB degrades signif-

icantly with the increase in the background load. On the other hand, one-sided

communication operations such as RDMA show absolutely no degradation in the

performance. These results show the capability of one-sided communication primi-

tives in the data-center environment.
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10.4.3 Strong Cache Coherence

In this section, we analyze the performance of a cache-coherent 2-tier data-center

environment consisting of three proxy nodes and one application server running
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Figure 10.10: Data-Center Throughput: (a) Zipf Distribution, (b) WorldCup Trace

Apache-2.0.52. Cache coherency was achieved using the Client-Polling based ap-

proach described in Section 10.2. We used three client nodes, each running three

threads, to fire requests to the proxy servers.

Two kinds of traces were used for the results. The first trace consists of 20 files of

sizes varying from 200bytes to 1Mbytes. The access frequencies for these files follow

a Zipf distribution [85]. The second trace is a 20,000 request subset of the WorldCup

trace [9]. For all experiments, accessed documents were randomly updated by a

separate update server with a delay of one second between the updates.

The HTTP client was implemented as a multi-threaded parallel application with

each thread independently firing requests at the proxy servers. Each thread could

either be executed on the same physical node or on a different physical nodes. The

architecture and execution model is similar to the WebStone workload generator [62].

As mentioned earlier, application servers are typically compute intensive mainly

due to their support to several compute intensive applications such as CGI script

execution, Java applets, etc. This typically spawns several compute threads on the
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application server node using up the CPU resources. To emulate this kind of behavior,

we run a number of compute threads on the application server in our experiments.

Figure 10.10(a) shows the throughput for the first trace (ZipF distribution). The

x-axis shows the number of compute threads running on the application server node.

The figure shows an evaluation of the proposed architecture implemented using IPoIB,

SDP and Extended sockets and compares it with the response time obtained in the

absence of a caching mechanism. We can see that the proposed architecture performs

equally well for all three (IPoIB, SDP and Extended sockets) for a low number of

compute threads; All three achieve an improvement of a factor of 1.5 over the no-

cache case. This shows that two-sided communication is not a huge bottleneck in the

module as such when the application server is not heavily loaded.

As the number of compute threads increases, we see a considerable degradation

in the performance in the no-cache case as well as the Socket-based implementations

using IPoIB and SDP. The degradation in the no-cache case is quite expected, since

all the requests for documents are forwarded to the back-end. Having a high compute

load on the back-end would slow down the application server’s replies to the proxy

requests.

The degradation in the performance for the Client-Polling architecture with IPoIB

and SDP is attributed to the two sided communication of these protocols and the

context switches taking place due to the large number of threads. This results in a

significant amount of time being spent by the application modules just to get access

to the system CPU. It is to be noted that the version thread needs to get access to

the system CPU on every request in order to reply back to the proxy module’s version

number requests.
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On the other hand, the Client-Polling architecture with extended sockets does not

show any significant drop in performance. This is attributed to the one-sided RDMA

operations supported by InfiniBand that are completely performed on hardware. For

example, the version number retrieval from the version thread is done by the proxy

module using an extended sockets GET operation. That is, the version thread does

not have to get access to the system CPU; the proxy thread can retrieve the ver-

sion number information for the requested document without any involvement of the

version thread.

The throughput achieved by the WorldCup trace (Figure 10.10(b)) also follows the

same pattern as above. With a large number of compute threads already competing

for the CPU, the wait time for this remote process to acquire the CPU can be quite

high, resulting in this degradation of performance.

10.4.4 Performance of Reconfigurability

In this section, we present the basic performance benefits achieved by the dynamic

reconfigurability scheme as compared to a traditional data-center which does not have

any such support.

Performance with Burst Length

In this section, we present the performance of the dynamic reconfigurability scheme

as compared to the rigid configuration and the over-provisioning schemes in a data-

center hosting three web-sites (nodes alloted in the ratio 3:3:2). For the workload, we

have used a single file trace with a file size of 1 KB. Results for other file sizes, ZipF

based traces [85] and a real World-Cup trace [9] can be found in [17].

Figure 10.11 shows the performance of the dynamic reconfigurability scheme as

compared to the rigid configuration and over-provisioning schemes for varying burst
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length in the traffic. In a rigid configuration if there is a burst of traffic for the first

website only three nodes are used and the remaining 5 nodes are relatively idle. The

rigid configuration achieves an aggregate throughput of about 26,000 Transactions Per

Second (TPS) in this scenario. In the over-provisioning scheme, a maximum of 6 nodes

are assigned to the web-site being loaded. The maximum throughput achievable in

this best configuration is around 51,000 TPS. However, in the reconfiguration scheme

we see that the performance depends mainly on the burstiness of the traffic. If the

burst length is too short, reconfiguration seems to perform comparably with the rigid

scheme but for huge bursts reconfiguration achieves performance close to that of the

over-provisioning scheme. The performance of reconfiguration for low burst lengths

is comparable with the rigid scheme mainly due to the switching time overhead, i.e.,

the time required for the nodes to be reconfigured to the optimal configuration. This

switching time, however, can be tuned by varying the sensitivity value addressed in

Section 10.3.1. For high bursts, the reconfiguration switching time is negligible and

gets amortized.

Node Utilization

In case of shared data-centers, the logically partitioned sets of nodes serve the

individual web-sites. Due to this partitioning and possible unbalanced request load,

the nodes serving a particular web-site might be over-loaded even when other nodes in

the system are not being utilized. These un-utilized servers could typically be used to

share the load on the loaded web-site to yield better overall data-center performance.

In this section we measure the effective node utilization of our approach and

compare it with the rigid and the over-provisioned cases. The effective node utilization
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Figure 10.11: Impact of Burst Length

is measured as the total number of nodes being fully used by the data-center to serve

a particular web-site.
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Figure 10.12: Node Utilization in a data-center hosting 3 web-sites with burst length
(a) 512 (b) 8k

Figure 10.12 shows the node utilization for a shared data-center having three co-

hosted web-sites. The rigid case has a constant node utilization of three nodes since
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it is statically configured. The over-provisioned case can use a maximum of 6 nodes

(leaving 1 node for each of the other web-sites).

In figure 10.12a, we can see that for non-bursty traffic (burst length = 512), the

reconfiguration scheme is not able to completely utilize the maximum available nodes

because the switching time between configurations is comparable to the time required

to serve the burst length of requests. It is to be noted that it performs comparably

with the rigid scheme.

Further, nodes switching to one of the web-sites incurs a penalty for the requests

coming to the other web-sites. For example, a burst of requests for web-site ’A’ might

cause all the nodes to shift accordingly. So, at the end of this burst web-site ’A’ would

have six nodes while the other 2 web-sites have one node each. At this time, a burst

of requests to any of the other web-sites would result in a node utilization of one.

This causes a drop in the number of nodes used for reconfigurability as shown in the

figure.

Figure 10.12b shows the node utilization with a burst length of 8096. We can

see that for large burst lengths the switching time for our reconfigurability scheme

is negligible. And for large periods of time, the maximum number of nodes are fully

utilized.

10.5 Summary

Several data-center applications and their extensions have been written using the

sockets interface in the past. However, due to the uneven load conditions in the

data-center environments, such an interface is not the best in several scenarios. For
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example, several enhancements previously proposed by researchers, such as the client-

polling scheme for dynamic or active data caching and dynamic reconfigurability of

resources, have suffered from mediocre performance benefits because of being throt-

tled by the performance of the underlying sockets library and accordingly have not

had much success.

In this chapter, we proposed an extended sockets interface that extends the stan-

dard sockets interface with advanced features offered by high-speed networks such

as one-sided communication operations. We demonstrated that the extended sockets

interface can provide close to order of magnitude benefits for several applications in

the data-center environment, including active caching and dynamic reconfigurability

schemes.
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CHAPTER 11

SUPPORTING IWARP COMPATIBILITY AND
FEATURES FOR REGULAR NETWORK ADAPTERS

Though TOEs have been able to handle most of the inefficiencies of the host-

based TCP/IP stack, they are still plagued with some of the limitations in order to

maintain backward compatibility with the existing infrastructure and applications.

For example, the traditional sockets interface is often not the best interface to allow

high performance communication [15, 56, 64, 17]. Several techniques used with the

sockets interface (e.g., peek-and-post, where the receiver first posts a small buffer to

read the header information and then decides the length of the actual data buffer to

be posted) make it difficult to efficiently perform zero-copy data transfers with such

an interface.

Several new initiatives by IETF such as iWARP and Remote Direct Data Place-

ment (RDDP) [11], were started to tackle such limitations with basic TOEs and other

POEs. The iWARP standard, when offloaded on to the network adapter, provides two

primary extensions to the TOE stack: (i) it exposes a rich interface including zero-

copy, asynchronous and one-sided communication primitives and (ii) it extends the

TCP/IP implementation on the TOE to allow such communication while maintaining

compatibility with the existing TCP/IP implementations.
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With such aggressive initiatives in the offloading technology present on network

adapters, the user market is now distributed amongst these various technology levels.

Several users still use regular Ethernet network adapters (42.4% of the Top500 su-

percomputers use Ethernet with most, if not all, of them relying on regular Gigabit

Ethernet adapters [51]) which do not perform any kind of protocol offload; then we

have users who utilize the offloaded protocol stack provided with TOEs; finally with

the advent of the iWARP standard, a part of the user group is also moving towards

such iWARP-capable networks.

TOEs and regular Ethernet network adapters have been compatible with respect

to both the data format sent out on the wire (Ethernet + IP + TCP + data payload)

as well as with the interface they expose to the applications (both using the sockets

interface). With iWARP capable network adapters, such compatibility is disturbed

to some extent. For example, currently an iWARP-capable network adapter can only

communicate with another iWARP-capable network adapter5. Also, the interface

exposed by the iWARP-capable network is no longer sockets; it is a much richer and

newer interface.

For a wide-spread usage, network architectures need to maintain compatibility

with the existing and widely used network infrastructure. Thus, for a wide-spread

acceptance of iWARP, two important extensions seem to be quite necessary.

1. Let us consider a scenario where a server handles requests from various client

nodes (Figure 11.1). In this scenario, for performance reasons, it is desirable for

the server to use iWARP for all communication (e.g., using an iWARP-capable

network adapter). The client on the other hand might NOT be equipped with

5The intermediate switches, however, need not support iWARP.

221



an iWARP-capable network card (e.g., it might use a regular Fast Ethernet or

Gigabit Ethernet adapter or even a TOE). For such and various other scenarios,

it becomes quite necessary to have a software implementation of iWARP on

such networks in order to maintain compatibility with the hardware offloaded

iWARP implementations.

2. Though the iWARP interface provides a richer feature-set as compared to the

sockets interface, it requires applications to be rewritten with this interface.

While this is not a concern for new applications, it is quite cumbersome and

impractical to port existing applications to use this new interface. Thus, it is

desirable to have an interface which provides a two-fold benefit: (i) it allows

existing applications to run directly without any modifications and (ii) it exposes

the richer feature set of iWARP such as zero-copy, asynchronous and one-sided

communication to the applications to be utilized with minimal modifications.

In general, we would like to have a software stack which would provide the above

mentioned extensions for regular Ethernet network adapters as well as TOEs. In

this chapter, however, we focus only on regular Ethernet adapters and design and

implement a software stack to provide both these extensions. Specifically, (i) the

software stack emulates the functionality of the iWARP stack in software to provide

compatibility for regular Ethernet adapters with iWARP capable networks and (ii) it

provides applications with an extended sockets interface that provides the traditional

sockets functionality as well as functionality extended with the rich iWARP features.

11.1 Background

In this section, we provide a brief background about the iWARP standard.
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Figure 11.1: Multiple clients with regular network adapters communicating with
servers using iWARP-capable network adapters.

11.1.1 iWARP Specification Overview

The iWARP standard comprises of up to three protocol layers on top of a reliable

IP-based protocol such as TCP: (i) RDMA interface, (ii) Direct Data Placement

(DDP) layer and (iii) Marker PDU Aligned (MPA) layer.

The RDMA layer is a thin interface which allows applications to interact with the

DDP layer. The DDP layer uses an IP based reliable protocol stack such as TCP to

perform the actual data transmission. The MPA stack is an extension to the TCP/IP

stack in order to maintain backward compatibility with the existing infrastructure.

Details about the DDP and MPA layers are provided in the subsequent sections.

Direct Data Placement (DDP)

The DDP standard was developed to serve two purposes. First, the protocol

should be able to provide high performance in SAN and other controlled environments
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by utilizing an offloaded protocol stack and zero-copy data transfer between host

memories. Second, the protocol should maintain compatibility with the existing IP

infrastructure using an implementation over an IP based reliable transport layer stack.

Maintaining these two features involves novel designs for several aspects. We describe

some of these in this section.

In-Order Delivery and Out-of-Order Placement: DDP relies on de-coupling

of placement and delivery of messages, i.e., placing the data in the user buffer is

performed in a decoupled manner with informing the application that the data has

been placed in its buffer. In this approach, the sender breaks the message into multiple

segments of MTU size; the receiver places each segment directly into the user buffer,

performs book-keeping to keep track of the data that has already been placed and

once all the data has been placed, informs the user about the arrival of the data. This

approach has two benefits: (i) there are no copies involved in this approach and (ii)

suppose a segment is dropped, the future segments do not need to be buffered till this

segment arrives; they can directly be placed into the user buffer as and when they

arrive. The approach used, however, involves two important features to be satisfied

by each segment: Self-Describing and Self-Contained segments.

The Self-Describing property of segments involves adding enough information in

the segment header so that each segment can individually be placed at the appro-

priate location without any information from the other segments. The information

contained in the segment includes the Message Sequence Number (MSN), the Offset

in the message buffer to which the segment has to be placed (MO) and others. Self-

Containment of segments involves making sure that each segment contains either a
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part of a single message, or the whole of a number of messages, but not parts of more

than one message.

Middle Box Fragmentation: DDP is an end-to-end protocol. The intermediate

nodes do not have to support DDP. This means that the nodes which forward the

segments between two DDP nodes, do not have to follow the DDP specifications.

In other words, DDP is transparent to switches with IP forwarding and routing.

However, this might lead to a problem known as “Middle Box Fragmentation” for

Layer-4 or above switches.

Layer-4 switches are transport protocol specific and capable of making more in-

telligent decisions regarding the forwarding of the arriving message segments. The

forwarding in these switches takes place at the transport layer (e.g., TCP). The mod-

ern load-balancers (which fall under this category of switches) allow a hardware based

forwarding of the incoming segments. They support optimization techniques such as

TCP Splicing [38] in their implementation. The problem with such an implemen-

tation is that, there need not be a one-to-one correspondence between the segments

coming in and the segments going out. This means that the segments coming in might

be re-fragmented and/or re-assembled at the switch. This might require buffering at

the receiver node, since the receiver cannot recognize the DDP headers for each seg-

ments. This mandates that the protocol not assume the self-containment property at

the receiver end, and add additional information in each segment to help recognize

the DDP header.
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Marker PDU Aligned (MPA)

In case of “Middle Box Fragmentation”, the self-containment property of the

segments might not hold true. The solution for this problem needs to have the

following properties:

• It must be independent of the segmentation algorithm used by TCP or any layer

below it.

• A deterministic way of determining the segment boundaries are preferred.

• It should enable out-of-order placement of segments. In the sense, the placement

of a segment must not require information from any other segment.

• It should contain a stronger data integrity check like the Cyclic Redundancy

Check (CRC).

The solution to this problem involves the development of the MPA protocol [43].

Figure 11.2 illustrates the new segment format with MPA. This new segment is known

as the FPDU or the Framing Protocol Data Unit. The FPDU format has three

essential changes:

• Markers: Strips of data to point to the DDP header in case of middle box

fragmentation

• Cyclic Redundancy Check (CRC): A Stronger Data Integrity Check

• Segment Pad Bytes

The markers placed as a part of the MPA protocol are strips of data pointing to

the MPA header and spaced uniformly based on the TCP sequence number. This
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Figure 11.2: Marker PDU Aligned (MPA) protocol Segment format

provides the receiver with a deterministic way to find the markers in the received

segments and eventually find the right header for the segment.

11.2 Designing Issues and Implementation Details

To provide compatibility for regular Ethernet network adapters with hardware

offloaded iWARP implementations, we propose a software stack to be used on the

various nodes. We break down the stack into two layers, namely, the Extended sockets

interface and the iWARP layer as illustrated in Figure 11.3. Amongst these two layers,

the Extended sockets interface is generic for all kinds of iWARP implementations; for

example it can be used over the software iWARP layer for regular Ethernet networks

presented in this chapter, over a software iWARP layer for TOEs, or over hardware

offloaded iWARP implementations. Further, for the software iWARP layer for regular

Ethernet networks, we propose two kinds of implementations: user-level iWARP and

kernel-level iWARP. Applications, however, only interact with the extended sockets

interface which in turn uses the appropriate iWARP stack available on the system.
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Figure 11.3: Extended sockets interface with different Implementations of iWARP:
(a) User-Level iWARP (for regular Ethernet networks), (b) Kernel-Level iWARP
(for regular Ethernet networks), (c) Software iWARP (for TOEs) and (d) Hardware
offloaded iWARP (for iWARP-capable network adapters).

In this chapter, we only concentrate on the design and implementation of the stack

on regular Ethernet network adapters (Figures 11.3a and 11.3b).

11.2.1 Extended Sockets Interface

The extended sockets interface is designed to serve two purposes. First, it pro-

vides a transparent compatibility for existing sockets based applications to run with-

out any modifications. Second, it exposes the richer interface provided by iWARP

such as zero-copy, asynchronous and one-sided communication to the applications to

utilize as and when required with minimal modifications. For existing sockets appli-

cations (which do not use the richer extensions of the extended sockets interface),

the interface just passes on the control to the underlying sockets layer. This under-

lying sockets layer could be the traditional host-based TCP/IP sockets for regular

Ethernet networks or a High Performance Sockets layer on top of TOEs [44] or other
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POEs [16, 18, 14]. For applications which DO use the richer extensions of the ex-

tended sockets interface, the interface maps the calls to appropriate calls provided by

the underlying iWARP implementation. Again, the underlying iWARP implementa-

tion could be a software implementation (for regular Ethernet network adapters or

TOEs) or a hardware implementation.

In order to extend the sockets interface to support the richer interface provided by

iWARP, certain sockets based calls need to be aware of the existence of iWARP. The

setsockopt() system call, for example, is a standard sockets call. But, it can be used

to set a given socket to IWARP MODE. All future communication using this socket

will be transferred using the iWARP implementation. Further, read(), write() and

several other socket calls need to check if the socket mode is set to IWARP MODE

before carrying out any communication. This requires modifications to these calls,

while making sure that existing sockets applications (which do not use the extended

sockets interface) are not hampered.

In our implementation of the extended sockets interface, we carried this out by

overloading the standard libc library using our own extended sockets interface. This

library first checks whether a given socket is currently in IWARP MODE. If it is, it

carries out the standard iWARP procedures to transmit the data. If it is not, the

extended sockets interface dynamically loads the libc library to pass on the control to

the traditional sockets interface for the particular call.

11.2.2 User-Level iWARP

In this approach, we designed and implemented the entire iWARP stack in user

space above the sockets layer (Figure 11.3a). Being implemented in user-space and
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above the sockets layer, this implementation is very portable across various hardware

and software platforms6. However, the performance it can deliver might not be opti-

mal. Extracting the maximum possible performance for this implementation requires

efficient solutions for several issues including (i) supporting gather operations, (ii)

supporting non-blocking operations, (iii) asynchronous communication, (iv) handling

shared queues during asynchronous communication and several others. In this sec-

tion, we discuss some of these issues and propose various solutions to handle these

issues.

Gather operations supported by the iWARP specifications: The iWARP

specification defines gather operations for a list of data segments to be transmitted.

Since, the user-level iWARP implementation uses TCP as the underlying mode of

communication, there are interesting challenges to support this without any additional

copy operations. Some of the approaches we considered are as follows:

1. The simplest approach would be to copy data into a standard buffer and send

the data out from this buffer. This approach is very simple but would require

an extra copy of the data.

2. The second approach is to use the scatter-gather readv() and writev() calls

provided by the traditional sockets interface. Though in theory traditional

sockets supports scatter/gather of data using readv() and writev() calls, the

actual implementation of these calls is specific to the kernel. It is possible (as

is currently implemented in the 2.4.x linux kernels) that the data in these list

6Though the user-level iWARP implementation is mostly in the user-space, it requires a small
patch in the kernel to extend the MPA CRC to include the TCP header too and to provide infor-
mation about the TCP sequence numbers used in the connection in order to place the markers at
appropriate places (this cannot be done from user-space).
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of buffers be sent out as different messages and not aggregated into a single

message. While this is perfectly fine with TCP, it creates a lot of fragmentation

for iWARP, forcing it to have additional buffering to take care of this.

3. The third approach is to use the TCP CORK mechanism provided by TCP/IP.

The TCP CORK socket option allows data to be pushed into the socket buffer.

However, until the entire socket buffer is full, data is not sent onto the network.

This allows us to copy all the data from the list of the application buffers

directly into the TCP socket buffers before sending them out on to the network,

thus saving an additional copy and at the same time guaranteeing that all the

segments are sent out as a single message.

Non-blocking communication operations support: As with iWARP, the

extended sockets also supports non-blocking communication operations. This means

that the application layer can just post a send descriptor; once this is done, it can

carry out with its computation and check for completion at a later time. In our ap-

proach, we use a multi-threaded design for user-level iWARP to allow non-blocking

communication operations (Figure 11.4). As shown in the figure, the application

thread posts a send and a receive to the asynchronous threads and returns control

to the application; these asynchronous threads take care of the actual data trans-

mission for send and receive, respectively. To allow the data movement between the

threads, we use pthreads() rather than fork(). This approach gives the flexibility of

a shared physical address space for the application and the asynchronous threads.

The pthreads() specification states that all pthreads should share the same process

ID (pid). Operating Systems such as Solaris follow this specification. However, due
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Figure 11.4: Asynchronous Threads Based Non-Blocking Operations

to the flat architecture of Linux, this specification was not followed in the Linux im-

plementation. This means that all pthreads() have a different PID in Linux. We

use this to carry out inter-thread communication using inter-process communication

(IPC) primitives.

Asynchronous communication supporting non-blocking operations: In

the previous issue (non-blocking communication operations support), we chose to use

pthreads to allow cloning of virtual address space between the processes. Commu-

nication between the threads was intended to be carried out using IPC calls. The

iWARP specification does not require a shared queue for the multiple sockets in an

application. Each socket has separate send and receive work queues where descriptors

posted for that socket are placed. We use UNIX socket connections between the main

thread and the asynchronous threads. The first socket set to IWARP MODE opens a

connection with the asynchronous threads and all subsequent sockets use this connec-

tion in a persistent manner. This option allows the main thread to post descriptors in
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a non-blocking manner (since the descriptor is copied to the socket buffer) and at the

same time allows the asynchronous thread to use a select() call to make progress

on all the IWARP MODE sockets as well as the inter-process communication. It is

to be noted that though the descriptor involves an additional copy by using this ap-

proach, the size of a descriptor is typically very small (around 60 bytes in the current

implementation), so this copy does not affect the performance too much.

11.2.3 Kernel-Level iWARP

The kernel-level iWARP is built directly over the TCP/IP stack bypassing the

traditional sockets layer as shown in Figure 11.3b. This implementation requires

modifications to the kernel and hence is not as portable as the user-level implemen-

tation. However, it can deliver a better performance as compared to the user-level

iWARP. The kernel-level design of iWARP has several issues and design challenges.

Some of these issues and the solutions chosen for them are presented in this section.

Though most part of the iWARP implementation can be done completely above

the TCP stack by just inserting modules (with appropriate symbols exported from

the TCP stack), there are a number of changes that are required for the TCP stack

itself. For example, ignoring the remote socket buffer size, efficiently handling out-

of-order segments, etc. require direct changes in the core kernel. This forced us to

recompile the linux kernel as a patched kernel. We have modified the base kernel.org

kernel version 2.4.18 to the patched kernel to facilitate these changes.

Immediate copy to user buffers: Since iWARP provides non-blocking com-

munication, copying the received data to the user buffers is a tricky issue. One simple
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solution is to copy the message to the user buffer when the application calls a com-

pletion function, i.e., when the data is received the kernel just keeps it with itself and

when the application checks with the kernel if the data has arrived, the actual copy

to the user buffer is performed. This approach, however, loses out on the advantages

of non-blocking operations as the application has to block waiting for the data to be

copied while checking for the completion of the data transfer. Further, this approach

requires another kernel trap to perform the copy operation.

The approach we used in our implementation is to immediately copy the received

message to the user buffer as soon as the kernel gets the message. An important

issue to be noted in this approach is that since multiple processes can be running on

the system at the same time, the current process scheduled can be different with the

owner of the user buffer for the message; thus we need a mechanism to access the user

buffer even when the process is not currently scheduled. To do this, we pin the user

buffer (prevent it from being swapped out) and map it to a kernel memory area. This

ensures that the kernel memory area and the user buffer point to the same physical

address space. Thus, when the data arrives, it is immediately copied to the kernel

memory area and is automatically reflected into the user buffer.

User buffer registration: The iWARP specification defines an API for the

buffer registration, which performs pre-communication processes such as buffer pin-

ning, address translation between virtual and physical addresses, etc. These op-

erations are required mainly to achieve a zero-copy data transmission on iWARP

offloaded network adapters. Though this is not critical for the kernel-level iWARP
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implementation as it anyway performs a copy, this can protect the buffer from be-

ing swapped out and avoid the additional overhead for page fetching. Hence, in our

approach, we do pin the user-buffer.

Efficiently handling out-of-order segments: iWARP allows out-of-order place-

ment of data. This means that out-of-order segments can be directly placed into the

user-buffer without waiting for the intermediate data to be received. In our design,

this is handled by placing the data directly and maintaining a queue of received seg-

ment sequence numbers. At this point, technically, the received data segments present

in the kernel can be freed once they are copied into the user buffer. However, the

actual sequence numbers of the received segments are used by TCP for acknowledg-

ments, re-transmissions, etc. Hence, to allow TCP to proceed with these without any

hindrance, we defer the actual freeing of these segments till their sequence numbers

cross TCP’s unacknowledged window.

11.3 Experimental Evaluation
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Figure 11.5: Micro-Benchmark Evaluation for applications using the standard sockets
interface: (a) Ping-pong latency and (b) Uni-directional bandwidth
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In this section, we perform micro-benchmark level experimental evaluations for

the extended sockets interface using the user- and kernel-level iWARP implementa-

tions. Specifically, we present the ping-pong latency and uni-directional bandwidth

achieved in two sets of tests. In the first set of tests, we measure the performance

achieved for standard sockets based applications; for such applications, the extended

sockets interface does basic processing to ensure that the applications do not want to

utilize the extended interface (by checking if the IWARP MODE is set) and passes on

the control to the traditional sockets layer. In the second set of tests, we use applica-

tions which utilize the richer extensions provided by the extended sockets interface;

for such applications, the extended sockets interface utilizes the software iWARP

implementations to carry out the communication.

The latency test is carried out in a standard ping-pong fashion. The sender sends a

message and waits for a reply from receiver. The time for this is recorded by the sender

and it is divided by two to get the one-way latency. For measuring the bandwidth, a

simple window based approach was followed. The sender sends WindowSize number

of messages and wait for a message from the receiver for every WindowSize messages.

The experimental test-bed used is as follows: Two Pentium III 700MHz Quad

machines, each with an L2-cache size of 1 MB and 1 GB of main memory. The

interconnect was a Gigabit Ethernet network with Alteon NICs on each machine

connected using a Packet Engine switch. We used the RedHat 9.0 linux distribution

installed with the kernel.org kernel version 2.4.18.

The results for the applications with the standard unmodified sockets interface

are presented in Figure 11.5. As shown in the figure, the extended sockets interface
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adds very minimal overhead to existing sockets applications for both the latency and

the bandwidth tests.

For the applications using the extended interface, the results are shown in Fig-

ure 11.6. We can see that the user- and kernel-level iWARP implementations incur

overheads of about 100µs and 5µs respectively, as compared to TCP/IP. There are

several reasons for this overhead. First, the user- and kernel-level iWARP implemen-

tations are built over sockets and TCP/IP respectively; so they are not expected to

give a better performance than TCP/IP itself. Second, the user-level iWARP im-

plementation has additional threads for non-blocking operations and requires IPC

between threads. Also, the user-level iWARP implementation performs locking for

shared queues between threads. However, it is to be noted that the basic purpose

of these implementations is to allow compatibility for regular network adapters with

iWARP-capable network adapters and the performance is not the primary goal of

these implementation. We can observe that both user- and kernel-level iWARP im-

plementations can achieve a peak bandwidth of about 550Mbps. An interesting result

in the figure is that the bandwidth of the user- and kernel-level iWARP implementa-

tions for small and medium message sizes is significantly lesser compared to TCP/IP.

This is mainly because the iWARP implementations disable Nagle’s algorithm in

order to try to maintain message boundaries. For large messages, we see some degra-

dation compared to TCP/IP due to the additional overhead of CRC data integrity

performed by the iWARP implementations.
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Figure 11.6: Micro-Benchmark Evaluation for applications using the extended
iWARP interface: (a) Ping-pong latency and (b) Uni-directional bandwidth

11.4 Summary

Several new initiatives by IETF such as iWARP and Remote Direct Data Place-

ment (RDDP) [11], were started to tackle the various limitations with TOEs while

providing a completely new and feature rich interface for applications to utilize. For

a wide-spread acceptance of these initiatives, however, two important issues need

to be considered. First, software compatibility needs to be provided for regular net-

work adapters (which have no offloaded protocol stack) with iWARP-capable network

adapters. Second, the predecessors of iWARP-capable network adapters such as TOEs

and host-based TCP/IP stacks used the sockets interface for applications to utilize

them while the iWARP-capable networks provide a completely new and richer inter-

face. Rewriting existing applications using the new iWARP interface is cumbersome

and impractical. Thus, it is desirable to have an extended sockets interface which

provides a two-fold benefit: (i) it allows existing applications to run directly without
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any modifications and (ii) it exposes the richer feature set of iWARP such as zero-

copy, asynchronous and one-sided communication to the applications to be utilized

with minimal modifications. In this research, we have designed and implemented a

software stack to provide both these extensions.
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CHAPTER 12

UNDERSTANDING THE ISSUES IN DESIGNING
IWARP FOR 10-GIGABIT ETHERNET TOE ADAPTERS

The iWARP standard is designed around two primary goals: (i) to provide rich and

advanced features including zero-copy, asynchronous and one-sided communication

primitives to applications and (ii) to allow such communication while maintaining

compatibility with the existing TCP/IP/Ethernet based infrastructure (e.g., switches,

routers, load-balancers, firewalls).

In this chapter, we study the performance overheads associated with iWARP in

maintaining this compatibility. In order to do this, we propose three implementations

of iWARP over TCP offload engines – a software implementation (where the iWARP

stack is completely implemented in software – Figure 11.3(c)), a NIC-offloaded im-

plementation (where the iWARP stack is completely implemented on the network

adapter – Figure 11.3(d)) and a hybrid hardware-software implementation (where

part of the iWARP stack is implemented on the NIC and part of it on the host).

It is to be noted that these three schemes only differ in where the iWARP stack

is implemented; the TCP/IP stack is implemented in hardware (TOE) for all three

approaches.
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Our experimental results show that neither a completely software-based implemen-

tation nor a completely NIC-based implementation can provide the best performance

for iWARP, mainly due to the overheads the stack introduces in order to maintain

backward compatibility with the existing infrastructure. On the other hand, a hy-

brid hardware-software approach which utilizes both the host to handle some aspects

and the NIC to handle the remaining aspects of the iWARP stack provides a better

performance than either approach. Specifically, the hybrid approach achieves close

to 2X better performance as compared to the hardware implementation and close to

4X better performance as compared to the software implementation.

12.1 Design Choices for iWARP over 10-Gigabit Ethernet

In this section, we will describe the different design choices for implementing a

complete iWARP implementation over 10-Gigabit Ethernet. In particular, we de-

scribe three design choices: (i) Software iWARP, (ii) NIC-offloaded iWARP and (iii)

Host-assisted iWARP.

12.1.1 Software iWARP Implementation

Software iWARP is a completely host-based implementation of iWARP, i.e., all

aspects of the iWARP stack are implemented in software (Figure 12.1(a)). It is a

generic implementation which can be used on any Ethernet adapter while maintaining

complete compatibility with hardware iWARP implementations. There are several

design aspects associated with improving the performance of this implementation,

which we had described in our previous work [13]. The details of this design are

provided in Chapter 11 and are skipped in this section.
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12.1.2 NIC-offloaded iWARP Implementation

NIC-offloaded iWARP is a completely hardware-based implementation of iWARP,

i.e., all aspects of the iWARP stack are implemented on the network adapter (Fig-

ure 12.1(b)). Specifically, the CRC, the marker placement, RDDP header generation

and multiplexing/de-multiplexing of packets to connections is performed completely

on the network adapterSince the Chelsio T110 network adapters are not completely

programmable, the RDDP headers generated are actually garbage data; however, this

does not change the correctness of our evaluation..

The iWARP specification states that the markers have to be placed at every 512

bytes in the data stream. Now, for the NIC-offloaded iWARP, this can be imple-

mented in two ways:

1. In the first approach, the NIC can download large segments of data to the

network adapter and move it around in NIC memory to insert the markers

at appropriate locations. This approach deals with only one DMA transfer

for the entire data from host memory to the NIC memory. However, for the

markers to be inserted, two additional memory transactions are required on the

NIC memory apart from the two memory transactions required for moving the

data from host memory to the NIC and from the NIC to the wire, i.e., four

memory transactions are required for transferring data in each direction on the

network adapter. Thus, to saturate the uni-directional bandwidth of a 10Gbps

link, a memory bandwidth of 40Gbps is required on the network adapter and

several clock cycles to perform this processing itself. This makes the resource

requirements on the NIC quite high.
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2. In this approach, the NIC DMAs only (approximately) 512-byte segments from

the host memory and adds appropriate markers at the end of each 512-byte

segment. This approach does not require any additional NIC memory traffic

for marker placement; however, this approach relies on DMAs of small 512-byte

segments, thus increasing the number of DMA operations that are associated

with a message transmission or reception.

In our design of the NIC-offloaded iWARP, we used the second approach based

on multiple small DMA operations.

12.1.3 Hybrid Host-assisted iWARP Implementation

Host-assisted iWARP is a hybrid hardware-software implementation of iWARP

(Figure 12.1(c)). Specifically, the CRC, RDDP header generation and multiplexing/de-

multiplexing of packets to connections is performed on the network adapter. The

marker placement, however, is done in host-space. We use a copy-based scheme

to place the markers in the appropriate positions in this approach, i.e., the memory

transactions involving placing the markers is performed at the host. In this approach,

the NIC does not have to deal with any additional memory transactions or processing

overhead associated with moving data to insert markers. However, the host has to

perform additional processing, such as moving data in host-space in order to insert

the appropriate markers.

12.2 Performance Results

In this section we describe our evaluation framework and compare the performance

of the different designs.
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12.2.1 Experimental testbed

We use a cluster of four nodes built around SuperMicro SUPER X5DL8-GG moth-

erboards with ServerWorks GC LE chipsets, which include 133-MHz PCI-X interfaces.

Each node has two Intel Xeon 3.0 GHz processors with a 512-KB cache and a 533

MHz front-side bus and 2 GB of 266-MHz DDR SDRAM. The nodes are connected

with the Chelsio T110 10-Gigabit Ethernet TCP Offload Engines.

12.2.2 iWARP Evaluation

In this section, we evaluate the three different mechanisms proposed to implement

iWARP. Software iWARP which is the most generic and portable approach [13], NIC

offloaded iWARP described in Section 12.1.2 and Host Assisted iWARP described in

Section 12.1.3. We use the standard ping-pong latency and unidirectional bandwidth

microbenchmarks to compare these three different design choices.

As seen in Figure 12.2, for the small message latency as well as uni-directional

throughput tests, the NIC-offloaded iWARP performs the best. The software iWARP

naturally performs the worst because of the overhead of the protocol processing, as

described in Section 12.1.1. However, when the message size increases, host-assisted

iWARP starts to outperform the NIC-offloaded iWARP. This reversal in trend is

attributed to the marker placement processing which is performed on the host for the

host-assisted iWARP scheme and on the NIC for NIC-offloaded iWARP as discussed

in Section 12.2.2. For large messages, the DMA operations become a significant

bottleneck causing the saturation in performance as shown in Figure 12.2(b).

We also performed another experiment to evaluate the impact of the marker place-

ment. We use the same latency, bandwidth tests described above, but vary the marker

245



�
ßi÷��¯ÆÝ%ô�

Ã

ñÃ

�Ã

�Ã

6Ã

ÚÃ

dÃ

ñ � 6 M ñd �� d6 ñ�M �Úd Úñ� ñ{ �{
�Ý~~¯<Ý�©�ÀÝ�"g�ÆÝ~¬

�¯
ÆÝ%

ô�
�"×

~¬

�±JSj���j¯�Ý���
ßi÷

©j�Æ3¯aÝ��
ßi÷

®j~ÆS¯~~�~ÆÝ���
ßi÷

�
ßi÷�È¯%�3��Æ¦

Ã

ñÃÃÃ

�ÃÃÃ

�ÃÃÃ

6ÃÃÃ

ÚÃÃÃ

dÃÃÃ

ÔÃÃÃ

ñ � 6 M ñd �� d6 ñ�M �Úd Úñ� ñ{ �{ 6{ M{ ñd{ ��{ d6{ ñ�M
{
�Úd

{
�Ý~~¯<Ý�©�ÀÝ�"g�ÆÝ~¬

È¯
%�

3��
Æ¦�

"�
g½

~¬

�±JSj���j¯�Ý���
ßi÷
©j�Æ3¯aÝ��
ßi÷
®j~ÆS¯~~�~ÆÝ���
ßi÷

Figure 12.2: iWARP Micro-benchmarks: (a) Latency (b) Bandwidth

separation from 512 bytes (standard iWARP specification) to larger sizes (not com-

pliant with the iWARP specification).

As shown in Figure 12.3, as the marker separation increases, NIC-offloaded iWARP

starts improving in performance. We can draw the following conclusion that if we want

complete compatibility with the specification, host assisted design is the best option.

It is to be noted that though a larger marker separation size increases the buffering

requirements on the network adapters for out-of-order arrived packets, in most SAN

environments this is not a serious concern. In such environments, if complete com-

patibility is not an requirement, then the NIC-offloaded design with increased marker

separation size is a good option.

12.3 Summary

The iWARP standard is designed around two primary goals: (i) to provide rich

and advanced features including zero-copy, asynchronous and one-sided communi-

cation primitives to applications and (ii) to allow such communication while main-

taining compatibility with the existing TCP/IP/Ethernet based infrastructure (e.g.,
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Figure 12.3: Impact of marker separation on iWARP performance: (a) Latency (b)
Bandwidth

switches, routers, load-balancers, firewalls). In this chapter, we study the performance

overheads associated with iWARP in maintaining this compatibility. In order to do

this, we propose three implementations of iWARP – a complete software implemen-

tation (based on our previous work), a complete NIC-based implementation on the

Chelsio T110 adapters and a hybrid hardware-software implementation. Our experi-

mental results show that, when complete compatibility with the iWARP specification

is required, neither a completely software-based implementation nor a completely

NIC-based implementation can provide the best performance for iWARP, mainly due

to the overheads the stack introduces in order to maintain backward compatibility

with the existing infrastructure. On the other hand, a hybrid hardware-software ap-

proach which utilizes both the host to handle some aspects and the NIC to handle

the remaining aspects of the iWARP stack provides a better performance than either

approach. Specifically, the hybrid approach achieves close to 2X better performance

as compared to the hardware implementation and close to 4X better performance as
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compared to the software implementation. On the other hand, when complete com-

patibility with the iWARP specification is not required, the NIC-offloaded iWARP

performs the best.
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CHAPTER 13

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

With several high-speed networks being introduced in the market, each having

its own communication interface or “language” that it exposes to end applications,

portability for applications over various networks has become a topic of extensive

research. Programming models such as Sockets, Message Passing Interface (MPI),

Shared memory models, etc., have been widely accepted as the primary means for

achieving such portability. This dissertation investigates the different design choices

for implementing one such programming model, i.e., Sockets, in various high-speed

network environments (e.g., InfiniBand, 10-Gigabit Ethernet).

13.1 Summary of Research Contributions

The dissertation targets three important sub-problems within the sockets pro-

gramming model: (a) designing efficient sockets implementations to allow existing

applications to be directly and transparently deployed on to clusters connected with

high-speed networks; (b) analyzing the limitations of the sockets interface in vari-

ous domains and extending it with features that applications need but are currently

missing; and (c) designing a communication substrate to allow compatibility between
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various kinds of protocol stacks belonging to a common network family (e.g., Ether-

net). In order to tackle these three sub-problems, we propose a framework consisting

of three different components, namely the high performance sockets component, the

extended sockets component and the wire-protocol compatibility component. We

provide details of our findings in each of these three components in the following

sub-sections.

13.1.1 High Performance Sockets

The high performance sockets aims at providing high performance for applications

without requiring any modifications. We have designed various high performance

sockets implementations for several networks including Gigabit Ethernet, GigaNet

cLAN, InfiniBand and 10-Gigabit Ethernet as described in Chapters 2, 3, 4, 5, 6,

7 and 8. Our designs have shown performance improvements close to 6X as com-

pared to traditional TCP/IP in some cases. For InfiniBand, we also proposed several

extensions such as packetized flow control, asynchronous zero-copy communication,

etc., to the industry standard high-performance sockets specification, Sockets Direct

Protocol (SDP), to improve the performance further.

13.1.2 Extended Sockets Interface

In the extended sockets interface component, we challenge the sockets semantics

itself and question whether the interface is rich enough to support current and next-

generation applications or whether it needs to be extended. We analyzed the resource

usage (e.g., CPU, memory traffic) associated with the standard sockets interface in

Chapter 9 and evaluated a web data-center in Chapter 10; both studies revealed that
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a sockets interface extended with features like RDMA can provide significant benefits

to the application performance of close to 10 times in some cases.

13.1.3 Wire-protocol Compatibility for Ethernet Adapters

While achieving the best performance is highly desired, this has to be done in a

globally compatible manner, i.e., all networks should be able to transparently take ad-

vantage of the proposed performance enhancements while interacting with each other.

This, of course, is an open problem. In the wire-protocol compatibility component,

we picked a subset of this problem to provide such compatibility within the Ether-

net family while trying to maintain most of the performance of the networks. We

proposed different designs for achieving such compatibility and showed that with less

than 5% degradation in the performance, we can achieve wire protocol compatibility

between TCP offload engines and iWARP capable adapters.

13.2 Future Research Directions

Apart from the work done in this dissertation, there are several aspects that

require further research to complete the understanding and analysis of the proposed

research area. In this section, we will discuss some of these aspects.

13.2.1 Multi-network Sockets Direct Protocol

Though current high-speed networks provide a high-bandwidth, with the upcom-

ing SMP and multi-core architectures where multiple processes running on a single

node must share the network, bandwidth can still become the performance bottleneck

for some of today’s most demanding applications. Multirail networks, where nodes in

a cluster are connected by multiple rails of the same network or different networks,
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are becoming increasingly common today. Such networks provide the potential for a

high bandwidth as well as fault-tolerance if a network fails. However, current SDP

implementations do not utilize any such capabilities offered by current clusters. In-

corporating such capabilities into SDP could be beneficial for these clusters.

13.2.2 Hardware Supported Flow-control

Networks such as InfiniBand provide hardware support for end-to-end flow-control.

However, currently most programming models perform flow control in software. With

packetized flow control, we utilized the RDMA capability of networks to improve the

flow control mechanism. However, we still rely on the application to make regular

sockets calls in order to ensure communication progress. Using hardware supported

flow-control, such restrictions can be relaxed or potentially completely removed.

13.2.3 Connection Caching in SDP

While SDP over InfiniBand has a good data transfer performance, its performance

for non data-touching operations such as connection establishment is not the best.

For certain applications, such as Ganglia and data-center applications, connection

establishment falls in the critical path. Specifically, for every request a connection

is established between the client and the server and is torn down at the end of the

request. For such applications, caching the connection can improve the performance

significantly.

13.2.4 NIC-based TCP Termination

Schemes such as SDP only provide a high performance in a cluster environment.

In a SAN/WAN environment where some nodes are connected over the WAN and
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some over the SAN, some kind of approach is required where nodes within the cluster

can communicate with SDP while the nodes outside the cluster can communicate

with TCP/IP. TCP termination allows us to achieve this by converting data flowing

over TCP/IP to SDP and vice versa. In the NIC-based TCP Termination approach,

we propose a solution for some of the programmable network interfaces available

today to perform efficient TCP termination. In this approach, each network adapter

itself emulates the capabilities of a hardware offloaded TCP/IP stack (e.g., TCP

offload engine, or TOE, for short). For example, the network adapter adds pre-

calculated pseudo TCP/IP like headers and directly sends them out to the remote

cluster. The network adapter on the receiver node matches this TCP/IP header

to a pre-established native transport layer connection and places the data in the

appropriate user buffer. The advantage of this approach is that it directly utilizes the

core network interfaces used by the various clusters. The disadvantage, however, is

that this approach is only valid for programmable network interfaces such as Myrinet

and Quadrics and is not directly implementable on other network interfaces such as

InfiniBand and 10GigE.

13.2.5 Extending SDP Designs to Other Programming Mod-

els

Several of the schemes that we proposed in this dissertation are applicable to

several other programming models and upper layers such as MPI, file-systems, etc.

For example, the packetized flow-control could provide several improvements for MPI

applications. Similarly, the asynchronous zero-copy communication can provide im-

provements to other upper-layers relying on the POSIX I/O semantics such as file-

systems.

253



13.2.6 Build Upper-layers based on Extended Sockets

Several middleware and programming models that are traditionally implemented

on sockets are being ported to use the native interface exposed by networks in order

to achieve a high performance. However, most of these upper-layers typically use

only basic zero-copy communication and RDMA features of these networks; rewriting

them completely to utilize such features is highly impractical and time consuming.

Porting such upper-layers to use extended sockets makes this task much simpler and

a good starting point to incorporate network-specific enhancements.

13.2.7 High Performance MPI for iWARP/Ethernet

The Message Passing Interface (MPI) is the de facto standard programming model

for many scientific applications. However, currently there is no MPI implementation

over the upcoming iWARP standard for Ethernet networks. Many of the designs

proposed in this dissertation are applicable for designing MPI over iWARP.
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