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Abstract
The Sockets Direct Protocol (SDP) has been proposed recently

in order to enable sockets based applications to take advantage
of the enhanced features provided by InfiniBand Architecture. In
this paper, we study the benefits and limitations of an implemen-
tation of SDP. We first analyze the performance of SDP based on
a detailed suite of micro-benchmarks. Next, we evaluate it on two
real application domains: (1) A multi-tier Data-Center environ-
ment and (2) A Parallel Virtual File System (PVFS). Our micro-
benchmark results show that SDP is able to provide up to 2.7 times
better bandwidth as compared to the native sockets implementation
over InfiniBand (IPoIB) and significantly better latency for large
message sizes. Our experimental results also show that SDP is
able to achieve a considerably higher performance (improvement
of up to 2.4 times) as compared to IPoIB in the PVFS environment.
In the data-center environment, SDP outperforms IPoIB for large
file transfers in-spite of currently being limited by a high connec-
tion setup time. However, this limitation is entirely implementation
specific and as the InfiniBand software and hardware products are
rapidly maturing, we expect this limitation to be overcome soon.
Based on this, we have shown that the projected performance for
SDP, without the connection setup time, can outperform IPoIB for
small message transfers as well.

1 Introduction
Cluster systems are becoming increasingly popular in

various application domains mainly due to their high
performance-to-cost ratio. Out of the current Top 500 Su-
percomputers, 149 systems are clusters [10]. During the last
few years, the research and industry communities have been
proposing and implementing user-level communication sys-
tems to address some of the problems associated with the
traditional networking protocols. The Virtual Interface Ar-
chitecture (VIA) [7] was proposed earlier to standardize
these efforts. InfiniBand Architecture (IBA) [2] has been
recently standardized by the industry to design next genera-
tion high-end clusters.
Earlier generation protocols such as TCP/IP relied upon

the kernel for processing the messages. This caused multi-
ple copies and kernel context switches in the critical mes-
sage passing path. Thus, the communication latency was
high. Researchers have been looking at alternatives to in-
crease the communication performance delivered by clus-
ters in the form of low-latency and high-bandwidth user-
level protocols. These developments are reducing the gap
between the performance capabilities of the physical net-
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work and that obtained by the end users. While this ap-
proach is good for developing new applications, it might not
be so beneficial for the already existing sockets applications.
To support such applications on high performance user-level
protocols without any changes to the application itself, re-
searchers have come up with a number of techniques. These
techniques include user-level sockets layers over high per-
formance protocols [4, 11, 13, 5].

Sockets Direct Protocol (SDP) [1] is an InfiniBand Archi-
tecture specific protocol defined by the InfiniBand Trade As-
sociation. SDP was proposed along the same lines as the
user-level sockets layers; to allow a smooth transition to de-
ploy existing sockets based applications on to clusters con-
nected with InfiniBand while sustaining most of the perfor-
mance provided by the base network.

In this paper, we study the benefits and limitations of an
implementation of SDP. We first analyze the performance
of SDP based on a detailed suite of micro-benchmarks.
Next, we evaluate it on two real application domains: (a) a
Multi-tier Data-Center and (b) a Parallel Virtual File System
(PVFS). Our micro-benchmark results show that SDP is able
to provide up to 2.7 times better bandwidth as compared to
the native sockets implementation over InfiniBand (IPoIB)
and significantly better latency for large message sizes. Our
experimental results also show that SDP is able to achieve
a considerably high performance (improvement of up to a
factor of 2.4) compared to the native sockets implementa-
tion in the PVFS environment. In the data-center environ-
ment, SDP outperforms IPoIB for large file transfers in-spite
of currently being limited by a high connection setup time.
However, this limitation is entirely implementation specific
and as the InfiniBand software and hardware products are
rapidly maturing, we expect this limitation to be overcome
soon. Based on this, we have shown that the projected per-
formance for SDP, without the connection setup time, can
outperform IPoIB for small message transfers as well.

2 Background
In this section we provide a brief background about the

Sockets Direct Protocol (SDP) implementation. Back-
ground information about InfiniBand and other existing high
performance user-level sockets implementations has been
skipped due to space constraints and can be found at [3].

Sockets Direct Protocol (SDP) is an IBA specific proto-
col defined by the Software Working Group (SWG) of the
InfiniBand Trade Association [2]. The design of SDP is
mainly based on two architectural goals: (a) Maintain tradi-
tional sockets SOCK STREAM semantics as commonly im-
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plemented over TCP/IP and (b) Support for byte-streaming
over a message passing protocol, including kernel bypass
data transfers and zero-copy data transfers.
SDP’s Upper Layer Protocol (ULP) interface is a byte-

stream that is layered on top of InfiniBand’s Reliable Con-
nection (RC) message-oriented transfer model. The map-
ping of the byte stream protocol to InfiniBand message-
oriented semantics was designed to enable ULP data to be
transfered by one of two methods: through intermediate pri-
vate buffers (using a buffer copy) or directly between ULP
buffers (zero copy). A mix of InfiniBand Send and RDMA
mechanisms are used to transfer ULP data.
SDP specifications also specify two additional control mes-

sages known as “Buffer Availability Notification” messages.
Sink Avail Message: If the data sink has already posted a

receive buffer and the data source has not sent the data mes-
sage yet, the data sink does the following steps: (1) Regis-
ters the receive user-buffer (for large message reads) and (2)
Sends a “Sink Avail” message containing the receive buffer
handle to the source. The Data Source on a data transmit
call, uses this receive buffer handle to directly RDMA write
the data into the receive buffer.
Source Avail Message: If the data source has already

posted a send buffer and the available SDP window is not
large enough to contain the buffer, it does the following two
steps: (1) Registers the transmit user-buffer (for large mes-
sage sends) and (2) Sends a “Source Avail” message con-
taining the transmit buffer handle to the data sink. The Data
Sink on a data receive call, uses this transmit buffer handle
to directly RDMA read the data into the receive buffer.
The current implementation of SDP follows most of the

specifications provided above. There are two major devia-
tions from the specifications in this implementation. First,
it does not support “Source Avail” and “Sink Avail” mes-
sages. Second, it does not support a zero-copy data transfer
between user buffers. All data transfer is done through the
buffer copy mechanism. This limitation can also be consid-
ered as part of the previous (“Source Avail”/”Sink Avail”)
limitation, since they are always used together.

3 Software Infrastructure
We have carried out the evaluation of SDP on two differ-

ent software infrastructures: Multi-Tier Data Center envi-
ronment and the Parallel Virtual File System (PVFS). In this
section, we discuss each of these in more detail.

3.1 Multi-Tier Data Center environment
A typical Multi-tier Data-center has as its first tier, a clus-

ter of nodes known as the edge nodes. These nodes can be
thought of as switches (up to the 7th layer) providing load
balancing, security, caching etc. The main purpose of this
tier is to help increase the performance of the inner tiers.
The next tier usually contains the web-servers and applica-
tion servers. These nodes apart from serving static content,
can fetch dynamic data from other sources and serve that
data in presentable form. The last tier of the Data-Center is
the database tier. It is used to store persistent data. This tier
is usually I/O intensive.
A request from a client is received by the edge servers. If

this request can be serviced from the cache, it is. Other-
wise, it is forwarded to the Web/Application servers. Static
requests are serviced by the web servers by just returning
the requested file to the client via the edge server. This con-
tent may be cached at the edge server so that subsequent
requests to the same static content may be served from the
cache. The Application tier nodes handle the Dynamic con-
tent. The type of applications this tier includes range from
mail servers to directory services to ERP software. Any re-
quest that needs a value to be computed, searched, analyzed
or stored uses this tier. The back end database servers are
responsible for storing data persistently and responding to
queries. These nodes are connected to persistent storage
systems. Queries to the database systems can be anything
ranging from a simple seek of required data to performing
joins, aggregation and select operations on the data. A more
detailed explanation of the typical data-center environment
can be obtained in [3].

3.2 Parallel Virtual File System (PVFS)
Parallel Virtual File System (PVFS) [8] is one of the lead-

ing parallel file systems for Linux cluster systems today. It
was designed to meet the increasing I/O demands of paral-
lel applications in cluster systems. Typically, a number of
nodes in the cluster system are configured as I/O servers and
one of them (either an I/O server or an different node) as a
metadata manager. It is possible for a node to host compu-
tations while serving as an I/O node.

PVFS achieves high performance by striping files across a
set of I/O server nodes allowing parallel accesses to the data.
It uses the native file system on the I/O servers to store in-
dividual file stripes. An I/O daemon runs on each I/O node
and services requests from the compute nodes, in particular
the read and write requests. Thus, data is transferred di-
rectly between the I/O servers and the compute nodes. A
manager daemon runs on a metadata manager node. It han-
dles metadata operations involving file permissions, trun-
cation, file stripe characteristics, and so on. Metadata is
also stored on the local file system. The metadata manager
provides a cluster-wide consistent name space to applica-
tions. In PVFS, the metadata manager does not participate
in read/write operations. PVFS supports a set of feature-rich
interfaces, including support for both contiguous and non-
contiguous accesses to both memory and files [9]. PVFS can
be used with multiple APIs: a native API, the UNIX/POSIX
API, MPI-IO [14], and an array I/O interface called Multi-
Dimensional Block Interface (MDBI). The presence of mul-
tiple popular interfaces contributes to the wide success of
PVFS in the industry.

4 SDP Micro-Benchmark Results
In this section, we compare the micro-benchmark level per-

formance achievable by SDP and the native sockets imple-
mentation over InfiniBand (IPoIB). For all our experiments
we used 2 clusters:

Cluster 1: An 8 node cluster built around SuperMicro SU-
PER P4DL6 motherboards and GC chipsets which include
64-bit 133 MHz PCI-X interfaces. Each node has two In-
tel Xeon 2.4 GHz processors with a 512 kB L2 cache and a
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Figure 1. Micro-Benchmarks: (a) Latency, (b) Bandwidth

400 MHz front side bus. The machines are connected with
Mellanox InfiniHost MT23108 DualPort 4x HCA adapter
through an InfiniScale MT43132 Eight 4x Port InfiniBand
Switch. The SDK version is thca-x86-0.2.0-build-001. The
adapter firmware version is fw-23108-rel-1 17 0000-rc12-
build-001. We used the Linux RedHat 7.2 operating system.
Cluster 2: A 16 Dell Precision 420 node cluster connected

by Fast Ethernet. Each node has two 1GHz Pentium III pro-
cessors, built around the Intel 840 chipset, which has four
32-bit 33-MHz PCI slots. These nodes are equipped with
512MB of SDRAM and 256K L2-level cache.
We used Cluster 1 for all experiments in this section.

4.1 Latency and Bandwidth
Figure 1a shows the one-way latency achieved by IPoIB,

SDP and Send-Receive and RDMA Write communication
models of native VAPI for various message sizes. SDP
achieves a latency of around 28 � s for 2 byte messages
compared to a 30 � s achieved by IPoIB and 7 � s and 5.5 � s
achieved by the Send-Receive and RDMA communication
models of VAPI. Further, with increasing message sizes, the
difference between the latency achieved by SDP and that
achieved by IPoIB tends to increase.
Figure 1b shows the uni-directional bandwidth achieved by

IPoIB, SDP, VAPI Send-Receive and VAPI RDMA com-
munication models. SDP achieves a throughput of up to
471Mbytes/s compared to a 169Mbytes/s achieved by IPoIB
and 825Mbytes/s and 820Mbytes/s achieved by the Send-
Receive and RDMA communication models of VAPI. We
see that SDP is able to transfer data at a much higher rate
as compared to IPoIB using a significantly lower portion of
the host CPU. This improvement in the throughput and CPU
is mainly attributed to the NIC offload of the transportation
and network layers in SDP unlike that of IPoIB.

4.2 Multi-Stream Bandwidth
In the Multi-Stream bandwidth test, we use two machines

and � threads on each machine. Each thread on one ma-
chine has a connection to exactly one thread on the other
machine and on each connection, the basic bandwidth test
is performed. The aggregate bandwidth achieved by all the
threads together within a period of time is calculated as the
multi-stream bandwidth. Performance results with different
numbers of streams are shown in Figure 2a. We can see
that SDP achieves a peak bandwidth of about 500Mbytes/s

as compared to a 200Mbytes/s achieved by IPoIB. The CPU
Utilization for a 16Kbyte message size is also presented.

4.3 Hot-Spot Test
In the Hot-Spot test, multiple clients communicate with the

same server. The communication pattern between any client
and the server is the same pattern as in the basic latency test,
i.e., the server needs to receive messages from all the clients
and send messages to all clients as well, creating a hot-spot
on the server. Figure 2b shows the one-way latency of IPoIB
and SDP when communicating with a hot-spot server, for
different numbers of clients. The server CPU utilization for
a 16Kbyte message size is also presented. We can see that
as SDP scales well with the number of clients; its latency
increasing by only a 138 � s compared to 456 � s increase with
IPoIB for a message size of 16Kbytes. Further, we find that
as the number of nodes increases we get an improvement of
more than a factor of 2, in terms of CPU utilization for SDP
over IPoIB.

4.4 Fan-in and Fan-out
In the Fan-in test, multiple clients from different nodes

stream data to the same server. Similarly, in the Fan-out
test, the same server streams data out to multiple clients.
Figures 3a and 3b show the aggregate bandwidth observed
by the server for different number of clients for the Fan-
in and Fan-out tests respectively. We can see that for the
Fan-in test, SDP reaches a peak aggregate throughput of
687Mbytes/s compared to a 237Mbytes/s of IPoIB. Simi-
larly, for the Fan-out test, SDP reaches a peak aggregate
throughput of 477Mbytes/s compared to a 175Mbytes/s of
IPoIB. The server CPU utilization for a 16Kbyte message
size is also presented. Both figures show similar trends in
CPU utilization for SDP and IPoIB as the previous tests,
i.e., SDP performs about 60-70% better than IPoIB in CPU
requirements.

5 Data-Center Performance Evaluation
In this section, we analyze the performance of a 3-tier data-

center environment over SDP while comparing it with the
performance of IPoIB. For all experiments in this section,
we used nodes in Cluster 1 (described in Section 4) for the
data-center tiers. For the client nodes, we used the nodes in
Cluster 2 for most experiments. We’ll notify the readers at
appropriate points in this paper when other nodes are used
as clients.
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Figure 2. (a) Multi-Stream Bandwidth, (b) Hot-Spot Latency

Fanin: SDP vs IPoIB
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Fanout: SDP vs IPoIB
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Figure 3. Micro-Benchmarks: (a) Fan-in, (b) Fan-out

5.1 Evaluation Methodology

As mentioned earlier, we used a 3-tier data-center model.
Tier 1 consists of the front-end proxies. For this we used
the proxy module of apache-1.3.12. Tier 2 consists of the
web server and PHP application server modules of Apache,
in order to service static and dynamic requests respectively.
Tier 3 consists of the Database servers running MySQL to
serve dynamic database queries. All the three tiers in the
data-center reside on an InfiniBand network; the clients are
connected to the data-center using Fast Ethernet. We eval-
uate the response time of the data-center using Openload,
an open source client workload generator. We use a 20000
request subset of the world-cup trace [15] for our experi-
ments. To generate requests amounting to different average
file sizes, we scale the file sizes in the given trace linearly,
while keeping the access pattern intact.
In our experiments, we evaluate two scenarios: requests

from the client consisting of 100% static content (involving
only the proxy and the web server) and requests from the
client consisting of 100% dynamic content (involving all the
three tiers in the data-center). “Openload” allows firing a
mix of static and dynamic requests. However, the main aim
of this paper is the analysis of the performance achievable
by IPoIB and SDP. Hence, we only focused on these two
scenarios (100% static and 100% dynamic content) to avoid
dilution of this analysis with other aspects of the data-center
environment such as workload characteristics, etc.
For evaluating the scenario with 100% static requests, we

used a test-bed with one proxy at the first tier and one web-

server at the second tier. The client would fire requests one
at a time, so as to evaluate the ideal case response time for
the request. For evaluating the scenario with 100% dynamic
page requests, we set up the data center with the follow-
ing configuration: Tier 1 consists of 3 Proxies, Tier 2 con-
tains 2 servers which act as both web servers as well as ap-
plication servers (running PHP) and Tier 3 with 3 MySQL
Database Servers (1 Master and 2 Slave Servers). We used
the TPC-W transactional web benchmark [6] for generating
our dynamic request access pattern (further details about the
database used can be obtained in [3]).

5.2 Experimental Results
We used a 20,000 request subset of the world-cup trace to

come up with our base trace file. As discussed earlier, to
generate multiple traces with different average file sizes, we
scale each file size with the ratio of the requested average file
size and the weighted average (weighted by the frequency of
requests made to the given file) of the base trace file.

Figure 4a shows the response times seen by the client for
various average file sizes requested over IPoIB and SDP. As
seen in the figure, the benefit obtained by SDP over IPoIB
is quite minimal. In order to analyze the reason for this, we
found the break-up of this response time in the proxy and
web servers. Figure 4b shows the break-up of the response
time for average file size requests of 64K and 128K. The
“Web-Server Time” shown in the graph is the time duration
for the back-end web-server to respond to the file request
from the proxy. The “Proxy-Time” is the difference between
the times spent by the proxy (from the moment it gets the
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Figure 5. Client over IPoIB: (a) Response Time and (b) Response Time Split-up

request to the moment it sends back the response) and the
time spent by the web-server. This value denotes the actual
overhead of the proxy tier in the entire response time seen
by the client. Similarly, the “Client-Time” is the difference
between the times seen by the client and by the proxy.
From the break-up graph (Figure 4b), we can easily ob-

serve that the web server over SDP is consistently better than
IPoIB, implying that the web server over SDP can deliver
better throughput. Further, this also implies that SDP can
handle a given server load with lesser number of back-end
web-servers as compared to an IPoIB based implementation
due to the reduced “per-request-time” spent at the server. In
spite of this improvement in the performance in the web-
server time, there’s no apparent improvement in the overall
response time.
A possible reason for this lack of improvement is the slow

interconnect used by the clients to contact the proxy server.
Since the client connects to the data-center over fast eth-
ernet, it is possible that the client is unable to accept the re-
sponse at the rate at which the server is able to send the data.
To validate this hypothesis, we conducted experiments us-
ing our data-center test-bed with faster clients. Such clients
may themselves be on high speed interconnects such as In-
finiBand or may become available due to Internet proxies,
ISPs etc.
Figure 5a shows the client response times that is achievable

using SDP and IPoIB in this new scenario which we emu-
lated by having the clients request files over IPoIB (using
InfiniBand; we used nodes from cluster 1 to act as clients
in this case). This figure clearly shows a better performance

for SDP, as compared to IPoIB for large file transfers above
128K. However, for small file sizes, there’s no significant
improvement. In fact, IPoIB outperforms SDP in this case.
To understand the lack of performance benefits for small file
sizes, we took a similar split up of the response time per-
ceived by the client.

Figure 5b shows the splitup of the response time seen by
the faster clients. We observe the same trend as seen with
clients over Fast Ethernet. The “web-server time” reduces
even in this scenario. However, it’s quickly apparent from
the figure that the time taken at the proxy is higher for SDP
as compared to IPoIB. For a clearer understanding of this
observation, we further evaluated the response time within
the data-center by breaking down the time taken by the
proxy in servicing the request.

Figures 7a and 7b show a comprehensive breakup of the
time spent at the proxy over IPoIB and SDP respectively. A
comparison of this splitup for SDP with IPoIB shows a sig-
nificant difference in the time for the the proxy to connect to
the back-end server. This high connection time of the cur-
rent SDP implementation, about 500 � s higher than IPoIB,
makes the data-transfer related benefits of SDP imperceiv-
able for low file size transfers.

The current implementation of SDP has inherent lower
level function calls during the process of connection estab-
lishment, which form a significant portion of the connection
latency. In order to hide this connection time overhead, re-
searchers are proposing a number of techniques including
persistent connections from the proxy to the back-end, al-
lowing free connected Queue Pair (QP) pools, etc. Further,
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since this issue of connection setup time is completely im-
plementation specific, we tried to estimate the (projected)
performance SDP can provide if the connection time bottle-
neck was resolved.
Figure 6 shows the projected response times of the fast

client, without the connection time overhead. Assuming a
future implementation of SDP with lower connection time,
we see that SDP is able to give significant response time
benefits as compared to IPoIB even for small file size trans-
fers. A similar analysis for dynamic requests can be found
in [3].

6 PVFS Performance Evaluation
In this section, we compare the performance of the Parallel

Virtual File System (PVFS) over IPoIB and SDP with the
original PVFS implementation [8]. We also compare the
performance of PVFS on the above two protocols with the
performance of our previous implementation of PVFS over
InfiniBand [16]. All experiments in this section have been
performed on Cluster 1 (mentioned in Section 4).

6.1 Evaluation Methodology
There is a large difference between the bandwidth realized

by the InfiniBand network (Figure 1b) and that which can be
obtained on a disk-based file system in most cluster systems.
However, applications can still benefit from fast networks
for many reasons in spite of this disparity. Data frequently
resides in server memory due to file caching and read-ahead
when a request arrives. Also, in large disk array systems,
the aggregate performance of many disks can approach net-
work speeds. Caches on disk arrays and on individual disks
also serve to speed up transfers. Therefore, we designed
two types of experiments. The first type of experiments are
based on a memory-resident file system, ramfs. These tests
are designed to stress the network data transfer independent
of any disk activity. Results of these tests are representa-
tive of workloads with sequential I/O on large disk arrays
or random-access loads on servers which are capable of de-
livering data at network speeds. The second type of experi-
ments are based on a regular disk file system, ext3fs. Results
of these tests are representative of disk-bounded workloads.
In these tests, we focus on how the difference in CPU utiliza-
tion for these protocols can affect the PVFS performance.

We used the test program, pvfs-test (included in the PVFS
release package), to measure the concurrent read and write
performance. We followed the same test method as de-
scribed in [8], i.e., each compute node simultaneously reads
or writes a single contiguous region of size � � Mbytes,
where � is the number of I/O nodes. Each compute node
accesses 2 Mbytes data from each I/O node.

6.2 PVFS Concurrent Read and Write on ramfs
Figure 8 shows the read performance with the original im-

plementation of PVFS over IPoIB and SDP and an imple-
mentation of PVFS over VAPI [16], previously done by
our group. The performance of PVFS over SDP depicts
the peak performance one can achieve without making any
changes to the PVFS implementation. On the other hand,
PVFS over VAPI depicts the peak performance achievable
by PVFS over InfiniBand. We name these three cases using
the legends IPoIB, SDP, and VAPI, respectively. When there
are sufficient compute nodes to carry the load, the band-
width increases at a rate of approximately 140 Mbytes/s,
310 Mbytes/s and 380 Mbytes/s with each additional I/O
node for IPoIB, SDP and VAPI respectively. Note that in
our 8-node InfiniBand cluster system (Cluster 1), we cannot
place the PVFS manager process and the I/O server process
on the same physical node since the current implementation
of SDP does not support socket-based communication be-
tween processes on the same physical node. So, we have
one compute node lesser in all experiments with SDP.

Figure 9 shows the write performance of PVFS over IPoIB,
SDP and VAPI. Again, when there are sufficient com-
pute nodes to carry the load, the bandwidth increases at
a rate of approximately 130 Mbytes/s, 210 Mbytes/s and
310 Mbytes/s with each additional I/O node for IPoIB, SDP
and VAPI respectively.

Overall, compared to PVFS on IPoIB, PVFS on SDP has a
factor of 2.4 improvement for concurrent reads and a factor
of 1.5 improvement for concurrent writes. The cost of writes
on ramfs is higher than that of reads, resulting in a lesser
improvement for SDP as compared to IPoIB. Compared to
PVFS over VAPI, PVFS over SDP has about 35% degrada-
tion. This degradation is mainly attributed to the copies on
the sender and the receiver sides in the current implemen-
tation of SDP. With a future zero-copy implementation of
SDP, this gap is expected to be further reduced.

6.3 PVFS Concurrent Write on ext3fs
We also performed the above mentioned test on a disk-

based file system, ext3fs on a Seagate ST340016A, ATA
100 40 GB disk. The write bandwidth for this disk is 25
Mbytes/s. In this test, the number of I/O nodes are fixed
at three, and the number of compute nodes four. We chose
PVFS write with sync. Figure 10 shows the performance of
PVFS write with sync with IPoIB, SDP and VAPI. It can be
seen that, although each I/O server is disk-bound, a signifi-
cant performance improvement of 9% is achieved by PVFS
over SDP as compared to PVFS over IPoIB. This is because
the lower overhead of SDP as shown in Figure 1b leaves
more CPU cycles free for I/O servers to process concurrent
requests. Due to the same reason, SDP achieves about 5%
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Figure 7. Proxy Split-up times: (a) IPoIB, (b) SDP
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Figure 8. PVFS Read Performance Compari-
son
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 Figure 10. Performance of PVFS Write with
Sync on ext3fs

lesser performance as compared to the native VAPI imple-
mentation.

7 Concluding Remarks and Future Work
The Sockets Direct Protocol had been proposed recently

in order to enable traditional sockets based applications to
take advantage of the enhanced features provided by the In-
finiBand Architecture. In this paper, we study the benefits
and limitations of an implementation of SDP. We first an-
alyze the performance of SDP based on a detailed suite of
micro-benchmarks. Next, we evaluate it on two real appli-
cation domains: (1) A multi-tier Data-Center environment
and (2) A Parallel Virtual File System (PVFS). Our micro-
benchmark results show that SDP is able to provide up to 2.7
times better bandwidth as compared to the native sockets im-
plementation over InfiniBand (IPoIB) and significantly bet-
ter latency for large message sizes. Our results also show
that SDP is able to achieve a considerably higher perfor-
mance (improvement of up to 2.4 times) as compared to
IPoIB in the PVFS environment. In the data-center environ-
ment, SDP outperforms IPoIB for large file transfers in spite
of currently being limited by a high connection setup time.
However, this limitation is entirely implementation specific
and as the InfiniBand software and hardware products are
rapidly maturing, we expect this limitation to be overcome
rapidly. Based on this, we have shown that the projected
performance for SDP can perform significantly better than
IPoIB in all cases. These results provide profound insights
into the efficiencies and bottlenecks associated with High
Performance socket layers for 10-Gigabit networks. These
insights have strong implications on the design and imple-
mentation of the next generation high performance applica-
tions.
We are currently working in two broad aspects with respect

to SDP. First, the connection time is a huge requirement
for environments such as the Data-Center, where connec-
tions are established and tore down dynamically. We are
currently looking at using dynamic registered buffer pools
and connected Queue Pair (QP) pools to optimize SDP for
such applications. The second direction we are working on
is evaluating the performance of SDP in more specific areas

of the data-center environment such as active caches, etc.
Some initial results in this area can be found in [12].

Due to space constraints, several interesting results in
the paper had to be dropped. We recommend interested
readers to have a look at the technical report available at
ftp://ftp.cis.ohio-state.edu/pub/tech-report/2003/TR54.pdf
for these results.
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