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Abstract

The challenging issues in supporting data intensive ap-
plications on clusters include efficient movement of large
volumes of data between processor memories and efficient
coordination of data movement and processing by a runtime
support to achieve high performance. Such applications
have several requirements such as guarantees in perfor-
mance, scalability with these guarantees and adaptability to
heterogeneous environments. With the advent of user-level
protocols like the Virtual Interface Architecture (VIA) and
the modern InfiniBand Architecture, the latency and band-
width experienced by applications has approached to that
of the physical network on clusters. In order to enable ap-
plications written on top of TCP/IP to take advantage of the
high performance of these user-level protocols, researchers
have come up with a number of techniques including User-
Level Sockets Layers over high performance protocols. In
this paper, we study the performance and limitations of such
a substrate, referred to here as SocketVIA, using a com-
ponent framework designed to provide runtime support for
data intensive applications. The experimental results show
that by reorganizing certain components of an application
(in our case, the partitioning of a dataset into smaller data
chunks), we can make significant improvements in applica-
tion performance. This leads to a higher scalability of ap-
plications with performance guarantees. It also allows fine
grained load balancing, hence making applications more
adaptable to heterogeneity in resource availability. The ex-
perimental results also show that the different performance
characteristics of SocketVIA allow a more efficient parti-
tioning of data at the source nodes, thus improving the per-
formance of the application up to an order of magnitude in
some cases.
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1 Introduction

Quite a number of research projects in high-end com-
puting focus on development of methods for solving chal-
lenging compute intensive applications in science, engi-
neering and medicine. These applications are generally run
in batch mode and can generate very large datasets. Ad-
vanced sensor technologies also enable acquisition of high
resolution multi-dimensional datasets. As a result, there
is an increasing interest in developing applications that in-
teractively explore, synthesize and analyze large scientific
datasets [15]. In this paper, we refer to these applications as
data intensive applications.

Being built from commaodity hardware, PC clusters are
becoming cost-effective and viable alternatives to main-
stream supercomputers for a broad range of applications,
including data intensive applications. A challenging issue
in supporting data intensive applications on these platforms
is that large volumes of data should be efficiently moved be-
tween processor memories. Data movement and processing
operations should also be efficiently coordinated by a run-
time support to achieve high performance. Together with
a requirement in terms of good performance, such appli-
cations also require guarantees in performance, scalability
with these guarantees, and adaptability to heterogeneous en-
vironments and varying resource availability.

Component-based frameworks [6, 10, 17, 20] have
been able to provide a flexible and efficient environment
for data intensive applications on distributed platforms. In
these frameworks, an application is developed from a set
of interacting software components. Placement of com-
ponents onto computational resources represents an impor-
tant degree of flexibility in optimizing application perfor-
mance. Data-parallelism can be achieved by executing mul-
tiple copies of a component across a cluster of storage and
processing nodes [6]. Pipelining is another possible mecha-
nism for performance improvement. In many data intensive
applications, a dataset can be partitioned into user-defined
data chunks. Processing of the chunks can be pipelined.
While computation and communication can be overlapped
in this manner, the performance gain also depends on the
granularity of computation and the size of data messages
(data chunks). Small chunks would likely result in better



load balance and pipelining, but a lot of messages are gener-
ated with small chunk sizes. Although large chunks would
reduce the number of messages and achieve higher com-
munication bandwidth, they would likely suffer from load
imbalance and less pipelining.

With the advent of modern high speed interconnects
such as GigaNet [11], Myrinet [7], Gigabit Ethernet [14],
InfiniBand Architecture [2] and the Quadrics Network [19],
the bottleneck in communication has shifted to the mes-
saging software. This bottleneck has been attacked by re-
searchers, leading to the development of low-latency and
high-bandwidth user-level protocols [12, 13, 18]. Along
with these research efforts, several industries have taken
up the initiative to standardize high-performance user-
level protocols such as the Virtual Interface Architecture
(VIA) [8, 12].

A number of applications have been developed on
kernel-based protocols such as TCP/UDP using the sock-
ets interface. To support such applications on high perfor-
mance user-level protocols without any changes to the ap-
plication itself, researchers have come up with a number
of techniques. These techniques include user-level sockets
layers over high performance protocols [3, 16, 21]. Ap-
plications written using kernel-based sockets layers are of-
ten developed keeping the communication performance of
TCP/IP in mind. High performance substrates, on the other
hand, have different performance characteristics compared
to kernel-based sockets layers. This becomes a fundamental
bottleneck in the performance such high performance sub-
strates are able to deliver. However, changing some compo-
nents of an application, such as the size of the data chunks
that make up the dataset, allows the applications to take ad-
vantage of the performance characteristics of high perfor-
mance substrates making them more scalable and adaptable.

In this paper, we study the efficiency and limitations of
such a substrate, referred to here as SocketVIA, in terms of
performance and the flexibility it allows, in the context of
a component framework designed to provide runtime sup-
port for data intensive applications, called DataCutter [6].
In particular, we investigate answers to the following ques-
tions:

e Can ahigh performance substrate allow the implemen-
tation of a scalable interactive data-intensive applica-
tion with performance guarantees to the end user?

e Can a high performance substrate improve the adapt-
ability of data-intensive applications to heterogeneous
environments?

Our experimental results show that by reorganizing cer-
tain components of the applications, significant improve-
ments in performance can be obtained. This leads to higher
scalability of applications with performance guarantees. It
also enables fine grained load balancing, thus making appli-
cations more adaptable to heterogeneous environments and
varying resource availability.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of data intensive applications.
In Section 3, we talk about the performance issues in de-
signing runtime support for data intensive applications. The
software infrastructure used in the experiments is described
in Section 4. We present some experimental results in Sec-
tion 5, and conclude the paper in Section 6.

2 Overiew of Data Intensive Applications

As processing power and capacity of disks continue
to increase, the potential for applications to create and
store multi-gigabyte and multi-terabyte datasets is becom-
ing more feasible. Increased understanding is achieved
through running analysis and visualization codes on the
stored data. For example, interactive visualization relies
on our ability to gain insight from looking at a complex
system. Thus, both data analysis and visual exploration of
large datasets play an increasingly important role in many
domains of scientific research. We refer here to applications
that interactively query and analyze large scientific datasets
as data-intensive applications.

An example of data-intensive applications is digitized
microscopy. We use the salient characteristics of this ap-
plication as a motivating scenario and a case study in this
paper. The software support required to store, retrieve,
and process digitized slides to provide interactive response
times for the standard behavior of a physical microscope is
a challenging issue [1, 9]. The main difficulty stems from
handling of large volumes of image data, which can range
from a few hundreds of Megabytes to several Gigabytes per
image. At a basic level, the software system should emulate
the use of a physical microscope, including continuously
moving the stage and changing magnification. The process-
ing of client queries requires projecting high resolution data
onto a grid of suitable resolution and appropriately compos-
ing pixels mapping onto a single grid point.

Consider a visualization server for digitized mi-
croscopy. The client to this server can generate a number
of different types of requests. The most common ones are
complete update queries, by which a completely new image
is requested, and partial update query, by which the image
being viewed is moved slightly or zoomed into. The server
should be designed to handle both types of queries.

Processing of data in applications that query and ma-
nipulate scientific datasets can often be represented as an
acyclic, coarse grain data flow, from one or more data
sources (e.g., one or more datasets distributed across stor-
age systems) to processing nodes to the client. For a given
query, first the data of interest is retrieved from the cor-
responding datasets. The data is then processed via a se-
quence of operations on the processing nodes. For example,
in the digitized microscopy application, the data of interest
is processed through Clipping, Subsampling, Viewing oper-
ations [5, 6]. Finally, the processed data is sent to the client.

Data forming parts of the image are stored in the form



of blocks or data chunks for indexing reasons, requiring the
entire block to be fetched even when only a part of the block
is required. Figure 1 shows a complete image being made
up of a number of blocks. As seen in the figure, a partial up-
date query (the rectangle with dotted lines in the figure) may
require only part of a block. Therefore, the size and extent
of a block affect the amount of unnecessary data retrieved
and communicated for queries.

Figure 1. Partitioning of a complete image into
blocks. A partial query (rectangle with dotted
lines) requires only a part of a block.

3 Performance Issues in Runtime Support
for Data Intensive Applications

3.1 Basic Performance Considerations

For data-intensive applications, performance can be im-
proved in several ways. First, datasets can be declustered
across the system to achieve parallelism in I/O when re-
trieving the data of interest for a query. With good declus-
tering, a query will hit as many disks as possible. Second,
the computational power of the system can be efficiently
used if the application can be designed to exploit data par-
allelism for processing the data. Another factor that can im-
prove the performance, especially in interactive exploration
of datasets, is pipelined execution. By dividing the data into
chunks and pipelining the processing of these chunks, the
overall execution time of the application can be decreased.
In many applications, pipelining also provides a mechanism
to gradually create the output data product. In other words,
the user does not have to wait for the processing of the query
to be completed; partial results can be gradually generated.
Although this may not actually reduce the overall response
time, such a feature is very effective in an interactive setting,
especially if the region of interest moves continuously.

3.2 Message Granularity vs. Performance Guar-
antee

The granularity of the work and the size of data chunks
affects the performance of pipelined execution. The chunk
size should be carefully selected by taking into account the
network bandwidth and latency (the time taken for the trans-
fer of a message including the protocol processing over-
heads at the sender and the receiver ends). As the chunk size

increases, the number of messages required to transfer the
data of interest decreases. In this case, bandwidth becomes
more important than latency. However, with a bigger chunk
size, processing time per chunk also increases. As a result,
the system becomes less responsive, i.e., the frequency of
partial/gradual updates decreases. On the other hand, if the
chunk size is small, the number of messages increases. As a
result, latency may become a dominant factor in the overall
efficiency of the application. Also, smaller chunks can re-
sult in better load balance among the copies of application
components, but communication overheads may offset the
performance gain.

Having large blocks allows a better response time for a
complete update query due to improved bandwidth. How-
ever, during a partial update query, this would result in more
data being fetched and eventually being wasted. On the
other hand, with small block size, a partial update query
would not retrieve a lot of unnecessary data, but a complete
update query would suffer due to reduced bandwidth.

In addition to providing a higher bandwidth and lower
latency, high performance substrates have other interesting
features as demonstrated in Figures 2(a) and 2(b). Fig-
ure 2(a) shows that high performance substrates achieve
a required bandwidth at a much lower message size com-
pared to kernel-based sockets layers such as TCP/IP. For
instance, for attaining bandwidth ‘B’, kernel-based sockets
need a message size of U1 bytes, whereas high performance
substrates require a lower message size of U2 bytes. Using
this information in Figure 2(b), we observe that high perfor-
mance substrates result in lower message latency (from L1
to L2) at a message size of U1 bytes. We also observe that
high performance substrates can use a message size of U2
bytes (from Figure 2(a)), hence further reducing the latency
(from L2 to L3) and resulting in better performance.

3.3 Heterogeneity and Load Balancing

Heterogeneity arises in several situations. First, the
hardware environment may consist of machines with dif-
ferent processing power and memory capacity. Second, the
resources can be shared by other applications. As a result,
the availability of resources such as CPU and memory can
vary dynamically. In such cases, the application should be
structured to accommaodate the heterogeneous nature of the
environment. The application should be optimized in its
use of shared resources and be adaptive to the changes in
the availability of the resources. This requires the applica-
tion to employ adaptive mechanisms to balance the work-
load among processing nodes depending on the computa-
tion capabilities of each of them. A possible approach is
to adaptively schedule data and application computations
among processing nodes. The data can be broken up into
chunks so as to allow pipelining of computation and com-
munication. In addition, assignment of data chunks to pro-
cessing units can be done using a demand-driven scheme
(see Section 4.1) so that faster nodes can get more data to
process. If a fast node becomes slower (e.g., due to pro-



High Performance Substrate

Kernel-Based Sockets

Bandwidth 7 f Reqd. BW

u2 U1l
Message Size

(a)

Kernel-Based Sockets

Latency High Performance Substrate

u2 U1

Message Size
(b)

Figure 2. (a) High Performance Substrates achieve a given bandwidth for a lower message size com-
pared to Kernel-Based Sockets, (b) High Performance Substrates can achieve a direct and indirect
improvement in the performance based on the application characteristics

cesses of other applications), the underlying load balancing
mechanism should be able to detect the change in resource
availability quickly.

4 Software Infrastructure used for Evalua-

tion

In terms of application development and runtime sup-
port, component-based frameworks [6, 10, 17, 20] can pro-
vide an effective environment to address performance is-
sues in data intensive applications. Components can be
placed onto different computational resources, and task and
data-parallelism can be achieved by pipelined execution of
multiple copies of these components. Therefore, we use
a component-based infrastructure, called DataCutter [6],
which is designed to support data intensive applications in
distributed environments. We also employ a high perfor-
mance sockets interface, referred to here as SocketVIA, de-
signed for applications written using TCP/IP to take advan-
tage of the performance capabilities of VIA.

4.1 DataCutter

In this section we briefly describe the DataCutter
framework [6]. DataCutter implements a filter-stream pro-
gramming model for developing data-intensive applica-
tions. In this model, the application processing structure
is implemented as a set of components, referred to as filters,
that exchange data through a stream abstraction. The inter-
face for a filter, consists of three functions: (1) an initializa-
tion function (init), in which any required resources such as
memory for data structures are allocated and initialized, (2)
a processing function (process), in which user-defined op-
erations are applied on data elements, and (3) a finalization
function (finalize), in which the resources allocated in init
are released.

Filters are connected via logical streams. A stream de-
notes a uni-directional data flow from one filter (i.e., the
producer) to another (i.e., the consumer). A filter is required
to read data from its input streams and write data to its out-
put streams only. We define a data buffer as an array of data
elements transferred from one filter to another. The orig-

inal implementation of the logical stream delivers data in
fixed size buffers, and uses TCP for point-to-point stream
communication.

The overall processing structure of an application is re-
alized by a filter group, which is a set of filters connected
through logical streams. When a filter group is instantiated
to process an application query, the runtime system estab-
lishes socket connections between filters placed on different
hosts before starting the execution of the application query.
Filters placed on the same host execute as separate threads.
An application query is handled as a unit of work (UOW) by
the filter group. An example is a visualization of a dataset
from a viewing angle. The processing of a UOW can be
done in a pipelined fashion; different filters can work on dif-
ferent data elements simultaneously. Processing of a UOW
starts when the filtering service calls the filter init function,
which is where any required resources such as memory can
be pre-allocated. Next the process function is called to read
from any input streams, work on the data buffers received,
and write to any output streams. A special marker is sent
by the runtime system after the last buffer to mark the end
for the current UOW (see Figure 3(a)). The finalize func-
tion is called after all processing is completed for the cur-
rent UOW, to allow release of allocated resources such as
scratch space. The interface functions may be called again
to process another UOW.

The programming model provides several abstractions
to facilitate performance optimizations. A transparent filter
copy is a copy of a filter in a filter group (see Figure 3(b)).
The filter copy is transparent in the sense that it shares the
same logical input and output streams of the original filter.
A transparent copy of a filter can be made if the semantics
of the filter group are not affected. That is, the output of a
unit of work should be the same, regardless of the number
of transparent copies. The transparent copies enable data-
parallelism for execution of a single query, while multiple
filter groups allow concurrency among multiple queries.

The filter runtime system maintains the illusion of a
single logical point-to-point stream for communication be-
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Figure 3. DataCutter stream abstraction and support for copies. (a) Data buffers and end-of-work
markers on a stream. (b) P,F,C filter group instantiated using transparent copies.

tween a logical producer filter and a logical consumer filter.
It is responsible for scheduling elements (or buffers) in a
data stream among the transparent copies of a filter. For
example, in Figure 3(b), if copy P; issues a buffer write op-
eration to the logical stream that connects filter P to filter F',
the buffer can be sent to the copies on hosts or hosty. For
distribution between transparent copies, the runtime system
supports a Round-Robin (RR) mechanism and a Demand
Driven (DD) mechanism based on the buffer consumption
rate. DD aims at sending buffers to the filter that would
process them fastest. When a consumer filter starts pro-
cessing of a buffer received from a producer filter, it sends
an acknowledgment message to the producer filter to in-
dicate that the buffer is being processed. A producer fil-
ter chooses the consumer filter with the minimum number
of unacknowledged buffers to send a data buffer to, thus
achieving a better balancing of the load.

4.2 SocketVIA

Inspite of the development of low-latency and high-
bandwidth user-level protocols, a large number of applica-
tions have been developed previously on kernel-based pro-
tocols such as TCP and UDP. Some of these applications
took years to develop. Trying to rewrite these applications
on user-level protocols is highly time-consuming and im-
practical. On the other hand, the sockets interface is widely
used by a variety of applications written on protocols such
as TCP and UDP.

The cLAN network is a hardware implementation of
the Virtual Interface Architecture (VIA). There are two typi-
cal socket implementations on the cLAN network. One is to
keep the legacy socket, TCP/UDP and IP layers unchanged,
while one additional layer is introduced to bridge the IP
layer and the kernel level V1 layer. The LANE (LAN Emu-
lator) implementation of the socket layer is such an imple-
mentation using an IP-to-VI layer [12]. Due to the system
call overhead (including the kernel-context switch, flushing
of the cache, flushing of the TLB, bottom-half handlers, etc)
and multiple copies involved in this implementation, appli-
cations using LANE have not been able to take complete
advantage of the high performance provided by the under-
lying network. Another type of socket implementation on
the cLAN network is to provide socket interface using a

user-level library based on the user-level VIA primitives.
Our implementation falls into this category. We refer to our
sockets layer as SocketVIA in the rest of this paper. Since
the implementation of SocketVIA is not the main focus of
the paper, we just present the micro-benchmark results for
our sockets layer in the next section. For other details re-
lated to the design and implementation of SocketVIA, we
refer the reader to [4].

5 Performance Evaluation

In this paper, we present two groups of results. First,
we look at the peak performance delivered by SocketVIA in
the form of latency and bandwidth micro-benchmarks. Sec-
ond, we examine the direct and indirect impacts on the per-
formance delivered by the substrate on applications imple-
mented using DataCutter in order to evaluate both latency
and bandwidth aspects in a controlled way. The experi-
ments were carried out on a PC cluster which consists of
16 Dell Precision 420 nodes connected by GigaNet cLAN
and Fast Ethernet. We use cLAN 1000 Host Adapters and
cLANS5300 Cluster switches. Each node has two 1GHz
Pentium 111 processors, built around the Intel 840 chipset,
which has four 32-bit 33-MHz PCI slots. These nodes
are equipped with 512MB of SDRAM and 256K L2-level
cache. The Linux kernel version is 2.2.17.

5.1 Micro-Benchmarks

Figure 4(a) shows the latency achieved by our substrate
compared to that achieved by the traditional implementation
of sockets on top of TCP and a direct VIA implementation
(base VIA). Our sockets layer gives a latency of as low as
9.5us, which is very close to that given by VIA. Also, it is
nearly a factor of five improvement over the latency given
by the traditional sockets layer over TCP/IP.

Figure 4(b) shows the bandwidth achieved by our sub-
strate compared to that of the traditional sockets imple-
mentation and base cLAN VIA implementation. Sock-
etVIA achieves a peak bandwidth of 763Mbps compared
to 795Mbps given by VIA and 510Mbps given by the tradi-
tional TCP implementation; an improvement of nearly 50%.
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5.2 Application Performance and Behavior
5.2.1 Experimental Setup

In these experiments, we used two kinds of applications.
The first application emulates a visualization server. This
application uses a 4-stage pipeline with a visualization filter
at the last stage. Also, we executed three copies of each fil-
ter in the pipeline to improve the end bandwidth (Figure 5).
The user visualizes an image at the visualization node, on
which the visualization filter is placed. The required data is
fetched from a data repository and passed onto other filters,
each of which is placed on a different node in the system, in
the pipeline.

Each image viewed by the user requires 16MB of data
to be retrieved and processed. This data is stored in the
form of chunks with pre-defined size, referred to here as
the distribution block size. For a typical distribution block
size, a complete image is made up of several blocks (Fig-
ure 1). When the user asks for an update to an image (partial
or complete), the corresponding chunks have to be fetched.
Each chunk is retrieved as a whole, potentially resulting in
some additional unnecessary data to be transferred over the
network.

Filterl Filter2

Data

Filterl Filter2

Multiple Daa

Instances | Rrepository Visualization

Server

Filterl Filter2

Data
| Repository

Figure 5. Guarantee Based Performance Eval-
uation: Experimental Setup

Two kinds of queries were emulated. The first queryisa
complete update or a request for a new image. This requires
all the blocks corresponding to the query to be fetched. This
kind of update is bandwidth sensitive and having a large
block size would be helpful. Therefore, as discussed in the
earlier sections, for allowing a certain update rate for the
complete update queries, a certain block size (or larger) has
to be used.

The second query is a partial update. This type of
query is executed when the user moves the visualization

window by a small amount, or tries to zoom into the cur-
rently viewed image. A partial update query requires only
the excess blocks to be fetched, which is typically a small
number compared to the number of blocks forming the com-
plete image. This kind of update is latency sensitive. Also,
the chunks are retrieved as a whole. Thus, having small
blocks would be helpful.

In summary, if the block size is too large, the partial
update will likely take long time, since the entire block is
fetched even if a small portion of one block is required.
However, if the block size is too small, the complete up-
date will likely take long time, since many small blocks
will need to be retrieved. Thus, for an application which
allows both kinds of queries, there would be a performance
tradeoff between the two types of queries. In the follow-
ing experiments, we show the improved scalability of the
application with socketVIA compared to that of TCP with
performance guarantees for each kind of update. The results
are presented in section 5.2.2.

The second application we look at is a software load-
balancing mechanism such as the one used by DataCut-
ter. When data is processed by a number of nodes, per-
fect pipelining is achieved when the time taken by the load-
balancer to send one block of the message to the computing
node is equal to the time taken by the computing node to
process it. In this application, typically the block size is
chosen so that perfect pipelining is achieved in computa-
tion and communication. However, the assumption is that
the computation power of the nodes does not change during
the course of the application run. In a heterogeneous, dy-
namic environment, this assumption does not hold. In our
experiments, in a homogeneous setting, perfect pipelining
is achieved at 16KB and 2KB for TCP/IP and VIA, respec-
tively. This means that the block size required in TCP/IP is
significantly larger than that in VIA. However, on hetero-
geneous networks, when a block size is too large, a mis-
take by a load balancer (sending the data block to a slow
node) may become too costly (Figure 6). Performance im-
pact with such heterogeneity is presented in section 5.2.3.
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5.2.2 Guarantee based Performance Evaluation

Effect on Average Latency with guarantees on Updates
per Second: In the first set of experiments, the user wants
to achieve a certain frame rate (i.e., the number of new im-
ages generated or full updates done per second). With this
constraint, we look at the average latency observed when
a partial update query is submitted. Figures 7(a) and 7(b)
show the performance achieved by the application. For
a given frame rate for new images, TCP requires a cer-
tain message size to attain the required bandwidth. With
data chunking done to suit this requirement, the latency for
a partial update using TCP would be the latency for this
message chunk (depicted as legend ‘TCP”). With the same
chunk size, SocketVIA inherently achieves a higher per-
formance (legend ‘SocketVIA’). However, SocketVIA re-
quires a much smaller message size to attain the bandwidth
for full updates. Thus, by repartitioning the data by taking
SocketVIA’s latency and bandwidth into consideration, the
latency can be further reduced (legend ‘SocketVIA (with
DR)’). Figure 7(a) shows the performance with no compu-
tation. This experiment emphasizes the actual benefit ob-
tained by using SocketVIA, without being affected by the
presence of computation costs at each node. We observe,
here, that TCP cannot meet an update constraint greater than
3.25 full updates per second. However, SocketVIA (with
DR) can still achieve this frame rate without much degrada-
tion in the performance. The results obtained in this experi-
ment show an improvement of more than 3.5 times without
any repartitioning and more than 10 times with repartition-

ing of data. In addition to socketVIA’s inherently improv-
ing the performance of the application, reorganizing some
components of the application (the block size in this case)
allows the application to gain significant benefits not only in
performance, but also in scalability with performance guar-
antees.

Figure 7(b) depicts the performance with a computa-
tion cost that is linear with message size in the experiments.
We timed the computation required in the visualization part
of a digitized microscopy application, called Virtual Micro-
scope [9], on DataCutter and found it to be 18ns per byte of
the message. Applications such as these involving browsing
of digitized microscopy slides have such low computation
costs per pixel. These are the applications that will benefit
most from low latency and high bandwidth substrates. So
we have focused on such applications in this paper.

In this experiment, even SocketVIA (with DR) is not
able to achieve an update rate greater than 3.25, unlike the
previous experiment. The reason for this is that the band-
width given by SocketVIA is bounded by the computation
costs at each node. For this experiment, we observe an im-
provement of more than 4 and 12 times without and with
repartitioning of data, respectively.

Effect on Updates per Second with Latency Guaran-
tees: In the second set of experiments, we try to maximize
the number of full updates per second when a particular la-
tency is targeted for a partial update query. Figures 8(a)
and 8(b) depict the performance achieved by the applica-
tion. For a given latency constraint, TCP cannot have a
block size greater than a certain value. With data chunking
done to suit this requirement, the bandwidth it can achieve
is quite limited as seen in the figure under legend ‘TCP’.
With the same block size, SocketVIA achieves a much bet-
ter performance, shown by legend ‘SocketVIA’. However, a
re-chunking of data that takes the latency and bandwidth of
SocketVIA into consideration results in a much higher per-
formance, as shown by the performance numbers for *Sock-
etVIA (with DR)’. Figure 8(a) gives the performance with
no computation, while computation cost, which varies lin-
early with the size of the chunk, is introduced in the ex-
periments for Figure 8(b). With no computation cost, as the
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Figure 8. Effect of High Performance Sockets on Updates per Second with Latency Guarantees for
(a) No Computation Cost and (b) Linear Computation Cost

latency constraint becomes as low as 100us, TCP drops out.
However, SocketVIA continues to give a performance close
to the peak value. The results of this experiment show an
improvement of more than 6 times without any repartition-
ing of data, and more than 8 times with repartitioning of
data. With a computation cost, we see that for a large la-
tency guarantee, TCP and SocketVIA perform very closely.
The reason for this is the computation cost in the message
path. With a computation cost of 18ns per byte, process-
ing of data becomes a bottleneck with VIA. However, with
TCP, the communication is still the bottleneck. Because of
the same reason, unlike TCP, the frame rate achieved by
SocketVIA does not change very much as the requested la-
tency is decreased. The results for this experiment show a
performance improvement of up to 4 times.

Effect of Multiple queries on Average Response
Time: In the third set of experiments, we consider a model
where there is a mixture of two kinds of queries. The first
query type is a zoom or a magnification query, while the
second one is a complete update query. The first query cov-
ers a small region of the image, requiring only 4 data chunks
to be retrieved. However, the second query covers the en-
tire image, hence all the data chunks should be retrieved
and processed. Figures 9(a) and 9(b) display the average
response time to queries. The x-axis shows the fraction of
queries that correspond to the second type. The remaining
fraction of queries correspond to the first type. The volume
of data chunks accessed for each query depends on the par-
titioning of the dataset into data chunks. Since the fraction
of queries of each kind may not be known a priori, we an-
alyze the performance given by TCP and SocketVIA with
different partition sizes. If the dataset is not partitioned into
chunks, a query has to access the entire data, so the timings
do not vary with varying fractions of the queries. The bene-
fit we see for SocketVIA compared to TCP is just the inher-
ent benefit of SocketVIA and has nothing to do with the par-
tition sizes. However, with a partitioning of the dataset into
smaller chunks, the rate of increase in the response time is
very high for TCP compared to SocketVIA. Therefore, for
any given average response time, SocketVIA can tolerate
a higher variation in the fraction of different query types

than TCP. For example, for an average response time of
150ms and 64 partitions per block, TCP can support a vari-
ation from 0% to 60% (percentage of the complete update
queries), but fails after that. However, for the same con-
straint, SocketVIA can support a variation from 0% to 90%
before failing. This shows that in cases where the block size
cannot be pre-defined, or just an estimate of the block size
is available, SocketVIA can do much better.

5.2.3 Effect of SocketVIA on Heterogeneous Clusters

In the next few experiments, we analyze the effect of Sock-
etVIA on a cluster with a collection of heterogeneous com-
pute nodes. We emulate slower nodes in the network by
making some of the nodes do the processing on the data
more than once. For host-based protocols like TCP, a de-
crease in the processing speed would result in a degradation
in the communication time, together with a degradation in
the computation time. However, in these experiments, we
assume that communication time remains constant and only
the computation time varies.

Effect of the Round-Robin scheduling scheme on
Heterogeneous Clusters: For this experiment, we examine
the impact on performance of the round-robin (RR) buffer
scheduling in DataCutter when TCP and SocketVIA are
employed. In order to achieve perfect pipelining, the time
taken to transfer the data to a node should be equal to the
processing time of the data on each of the nodes. For this
experiment, we have considered load balancing between the
filters of the Visualization Application (the first nodes in the
pipeline, Figure 6). The processing time of the data in each
filter is linear with message size (18ns per byte of message).
With TCP, a perfect pipeline was observed to be achieved by
16KB message. But, with SocketVIA, this was achieved by
2KB messages. Thus, load balancing can be done at a much
finer granularity.

Figure 10 shows the amount of time the load balancer
takes to react to the heterogeneity of the nodes, with in-
creasing factor of heterogeneity in the network. The factor
of heterogeneity is the ratio of the processing speeds of the
fastest and the slowest processors. With TCP, the block size
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is large (16KB). So, when the load balancer makes a mis-
take (sends a block to a slower node), it results in the slow
node spending a huge amount of time on processing this
block. This increases the time the load balancer takes to re-
alize its mistake. On the other hand, with SocketVIA, the
block size is small. So, when the load balancer makes a mis-
take, the amount of time taken by the slow node to process
this block is lesser compared to that of TCP. Thus the reac-
tion time of the load balancer is lesser. The results for this
experiment show that with SocketVIA, the reaction time of
the load balancer decreases by a factor of 8 compared to
TCP.

Effect of the Demand-Driven scheduling scheme on
Heterogeneous Clusters: For this experiment, we exam-
ine the impact on performance of the demand-driven (DD)
buffer scheduling in DataCutter when TCP and SocketVIA
are employed. Due to the same reason as the Round-Robin
scheduling (mentioned in the last subsection), a block size
of 2KB was chosen for socketVIA and a block size of 16KB
for TCP.

Figure 11 shows the execution time of the application.
The node is assumed to get slow dynamically at times. The

Effect of Heterogeneity in the Cluster
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Figure 11. Effect of Heterogeneity in Pro-
cessing Speed on Load Balancing using the
Demand-Driven Scheduling Scheme

probability of the node becoming slower is varied on the
x-axis. So, a probability of 30% means that, 30% of the
computation is carried out at a slower pace, and the remain-
ing 70% is carried out at the original pace of the node. In
Figure 11, the legend socketVIA(n) stands for the applica-
tion running using socketVIA and a factor of heterogeneity
of ‘n’. The other legends are interpreted in a similar manner.

We observe that application performance using TCP is
close to that of socketVIA. This is mainly because of the
fact that demand-driven assignment of data chunks to con-
sumers allows more work to be routed to less loaded proces-
sors. In addition, pipelining of data results in good overlap
between communicationand computation. Thus, our results
show that if high-performance substrates are not available
on a hardware configuration, applications should be struc-
tured to take advantage of pipelining of computations and
dynamic scheduling of data. However, as our earlier results
show, high-performance substrates are desirable for perfor-
mance and latency guarantees.

6 Conclusionsand Future Work

Together with a pure performance requirements, data
intensive applications have other requirements such as guar-



antees in performance, scalability with these guarantees and
adaptability to heterogeneous networks. Typically such ap-
plications are written using the kernel-based sockets inter-
face over TCP/IP. To allow such applications take advan-
tage of the high performance protocols, researchers have
come up with a number of techniques including High Per-
formance Sockets layers over User-level protocols such as
Virtual Interface Architecture and the emerging InfiniBand
Architecture. However, these sockets layers are fundamen-
tally limited by the fact that the applications using them
had been written keeping the communication performance
of TCP/IP in mind.

In this paper, we study the capabilities and limitations
of such a substrate, termed SocketVIA, in performance,
with respect to a component framework designed to pro-
vide runtime support for data intensive applications, termed
as DataCutter. The experimental results show that by re-
organizing certain components of the applications, we can
make significant improvements in the performance, lead-
ing to a higher scalability of the applications with perfor-
mance guarantees and fine grained load balancing making
them more adaptable to heterogeneous networks. The ex-
perimental results also show that the different performance
characteristics of SocketVIA allow a more efficient parti-
tioning of data at the source nodes, thus improving the per-
formance up to an order of magnitude in some cases. This
shows that together with high performance, low-overhead
substrates provide the ability to applications to simultane-
ously meet quality requirements along multiple dimensions.
These results have strong implications on designing, devel-
oping, and implementing next generation data intensive ap-
plications on modern clusters.

As a future direction, we plan to investigate DataCutter
with the push/pull data transfer model using RDMA opera-
tions in the emerging networks.
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