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ABSTRACT

Many high-performance parallel computing applications require efficient reduction
collectives. In response, researchers have implemented algorithms considering a range
of design factors including data size, system size, and communication characteristics.
In all of this research, designers were forced to perform reduction processing on the
host CPU, the only processor available. Today, however, network interface cards
(NICs) for modern cluster interconnects, such as Quadrics, provide programmable
processors with substantial memory, and thus introduce a fresh variable into the
equation.

In this thesis, the benefits of NIC-based reduction implementations are investi-
gated, especially in the context of large-scale clusters. Design issues are presented,
along with the chosen solutions and alternatives. Performance benefits and penalties
are assessed both analytically, through a proposed model, and numerically, through
experimental results.

It is shown that large-scale clusters may benefit from NIC-based reductions in
the common case. NIC-based reductions avoid inefficiencies between the processors
and the network, as well as, between the processors and the operating system that
are inherent to host-based reductions. This enables NIC-based reductions to execute
with reduced latency on a more consistent basis than their host-based counterparts.
Experimental results support this. In particular, in the largest configuration tested
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—1812 processors— NIC-based reduction implementations summed single-element
vectors of 32-bit integers and 64-bit floating-point numbers in 73 ps and 118 s,
respectively. These results represent respective improvements of 121% and 39% over

the host-based implementations.
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CHAPTER 1

INTRODUCTION

As market pressures in the personal computer industry continually act to provide
improved processor performance at decreased cost, more and more of those in de-
mand of high-performance computing systems find that cluster computing provides
an economical solution. There are three basic components required to construct a
high-performance computing system (a.k.a., a supercomputer): processors, an operat-
ing system, and a communication network. By connecting a collection of commodity
processors running a commodity operating system over a commodity network, clus-
ters enable powerful parallel-processing machines to be built very affordably. Because
of this, cluster supercomputers continue to gain widespread use in industrial and gov-
ernmental computing labs.

As popularity for cluster computing systems grows, the research community works
to make them more efficient. For a supercomputer to operate efficiently, each of its
constituent components must operate efficiently as an individual unit, and the inte-
gration of those components must operate efficiently as a collective system. In the
past, single companies, such as Cray Inc., commonly constructed complete supercom-
puter systems for its customers. In this business model, the company had intricate
knowledge and control over the design of the components, so it could develop them
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within the context of one another for efficient integration. Today, under the paradigm
of cluster computing, industry still ensures the efficiency of each of the commodity
components used to build clusters. However now, those components are developed
independently of one another, and the non-trivial task of integration has been largely
left as an open problem for the research community.

This thesis contributes to the evolving solution for efficient component integration.
In particular, this work shows that novel use of modern cluster interconnect technol-
ogy during reduction collective communication operations improves overall system
performance by avoiding inefficiencies residing between the processors and the net-
work, as well as, between the processors and the operating system. The remainder of
the chapter briefly presents the major architectural modifications leading from early
cluster systems to the current state of the art, as well as, the issues this work addresses

and the approach it takes to do so.

1.1 More Speed — Fast Networks, User-Level Protocols, and
RDMASs

The earliest clusters were constructed by connecting workstation PCs through
basic networking technologies like Ethernet. While a large amount of processing
power could be aggregated through such collections of workstations, the existing
slow, bus-based interconnects limited its utilization. In addition to raw processing
power, parallel systems often demand low latency and high bandwidth communication
between distributed processors. However, slow interconnects naturally lead to high
latency and low bandwidth. Additionally, bus-based interconnects, which serialize

communication, amplify latency and bandwidth problems whenever multiple nodes



wish to send data simultaneously. This early cluster networking hardware failed to
meet the communication requirements of high-performance processing applications.

Thus, the first optimizations came in the form of faster interconnects. While some
improvement was acheived by using faster versions of old bus-based networks, the
most progress was acheived by employing fast, switch-based interconnects like Asyn-
chronous Transfer Mode. Faster interconnects reduce latency and increase bandwidth,
while switch-based interconnects allow multiple nodes to send data simultaneously.
Today, cluster interconnects support very low latency and very high, full-bisection
bandwidth communication between nodes.

With the newly developed interconnects, communication bottlenecks shifted from
networking hardware to networking software. Workstations are designed to provide
protected access to system resources, such as the communication system, which must
be shared among multiple user processes that may be multitasked on the machine.
In early workstations, the operating system was used to enforce this protection; only
the kernel was able to access hardware directly. A user application wishing to access
the communication system had to call upon the operating system to do so on its
behalf. This required context switches between the user and the kernel processes,
as well as, memory copies to move message data to and from buffers located in user
memory and throughout the kernel’s communication protocol stack. Compared to the
raw performance available through the new networking hardware, the old networking
software used in early clusters added substantial communication overhead.

Thus, the next optimization came in the form of improved communication soft-

ware. User-level protocols, such as EMP[29], Elan[25], FM[22], and VIA[13], were



developed to provide user processes with protected access to the communication sys-
tem without invoking the kernel. Protection is implemented outside of kernel space
in shared libraries directly accessible to user processes. Additionally, these protocols
reduce the number of data copies required during communication through the use of
data descriptors. Data descriptors are small data structures associated with message
data that list its location, its size, and other relevant attributes. The communi-
cation software copies these structures for internal processing rather than the data
itself, which is less costly since the descriptors are often smaller than their associated
data. Today, clusters support user-level protocols that employ reduced data copying
strategies.

Further enhancement came with the addition of Remote Direct Memory Access
(RDMA) protocols. RDMAs allow for one-sided data transfer between remote pro-
cessors, i.e. the remote processor need not explicitly participate in the exchange.
Transfer operations include PuT, which transfers data to a remote process address
space, and GET, which acquires data from a remote process address space.

RDMAs further improved the latency and bandwidth of a cluster computing sys-
tem. Without RDMA capability, a local processor expecting to receive data from a
remote processor must post a receive descriptor listing, among other information, the
size and location of the destination buffer. The receive descriptor informs the com-
munication system about what to do with the data when it arrives. Since distributed
processors execute asynchronously in a cluster, incoming data may arrive before the
receiving processor posts the corresponding receive descriptor. It this case, the com-
munication system may select one of two options: 1) store the data in a temporary

location and copy it to its destination buffer once the descriptor is posted, or 2) toss



the data out and instruct the sender to resend it at a later time, hopefully sometime
after the descriptor has been posted. The extra data copy in the first option increases
latency, while the extra data transfer in the second option decreases bandwidth.
With RDMA, however, the received data is written directly to its destination buffer
regardless of the state of the receiving processor. Whenever the receiving processor
is lagging, better latency and bandwidth is acheived using RDMA.

A consequence of such architectural modifications and optimizations, the most
popular cluster interconnect technologies available today, such as Quadrics[23], Myrinet[7],
and the InfiniBand Architecture[18], offer communication latencies on the order of
microseconds and data transfer rates on the order of gigabits per second. These
performance numbers represent 1000-fold improvements over the original Ethernet
networks used in the earliest clusters. This has largely removed the bottleneck previ-
ously imposed by the communication network, and future interconnects promise even
lower latencies and higher bandwidths to keep pace with increasing processor speeds.

1.2 More Functionality — Programmable NICs and Hardware
Support for Collective Communications

Distributed nodes executing parallel applications communicate with one another
to exchange data and synchronize processing steps. Typically, the more one divides a
given problem among a set of distributed processing nodes, the more those nodes must
communicate with one another to find a solution. In early cluster systems, the same
processors executing the application were also responsible for handling the network
traffic. This placed a limit on the processing scalability of the cluster. The larger
the set of processors used to solve a problem, the more time those processors spent
handling network messages and less time processing the application. These early
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cluster systems failed to scale well since application processors became overwhelmed
with network processing when many nodes were involved.

Modern cluster interconnects now provide processors on the network interface card
(NIC), which may be programmed by the user to handle basic network processing
tasks. Tasks delegated to NIC processors are refered to as NIC-based, while those left
to the host processors are called host-based. NIC-level processors are typically much
slower, offer much less functionality, and have much less memory than their host-level
counterparts. However, NIC processors have direct access to the network link and
support instructions to perform specialized network operations. The motivation is
to free host processors for application processing by offloading simple but common
network processing tasks to limited but specialized NIC processors. Today, cluster
interconnects provide such NIC processors to improve system scalability.

In addition to point-to-point communication operations, parallel applications com-
monly employ collective communication operations (collectives, for short). Collectives
are parallel programming primitives in which a group of distributed processors co-
operate to achieve a particular task. Collectives provide basic synchronization, data
exchange, and distributed processing capabilities over a group of processors. Being
primitives, many parallel applications are built on top of collectives, so it is essential
that they execute efficiently. Early clusters implemented collectives in software using
the point-to-point mechanisms supported by the hardware. While efficient communi-
cation algorithms were applied, these implementations failed to scale as desired.

Thus now, like basic point-to-point communications, modern cluster intercon-
nects provide hardware support for collective communications. Recent interconnect

switches are capable of replicating incoming messages to multiple outgoing links,



which assists implementations of collectives that distribute information, such as multi-
casts, broadcasts, and barriers. Quadrics, a very sophisticated network, also provides
acknowledgement aggregation at network switches, which aids development of many
collectives that collect information. Such hardware-based and hardware-assisted col-
lectives are much more efficient and scalable than their software-based equivalents.
The recent functionality incorporated into cluster interconnects allows for awe-
some scalability. Scalability, combined with the affordability of commodity compo-
nents, has enabled organizations to construct massive cluster supercomputing systems
that contain thousands of nodes and tens of thousands of processors that collectively
compute tens of trillions of operations per second. Future interconnects promise to
deliver even more functionality, while researchers actively explore mechanisms to take

further advantage of what currently exists.

1.3 Reduction — A Collective Communication Operation

Reductions are a particular type of distributed processing collective in which par-
ticipating processors work together to summarize some property of a set of data
partitioned among them. As an example, the goal may be to find the maximum value
in a distributed set of integers. Other commonly used operations include finding
the minimum and computing the sum. There are two common flavors of reductions,
allreduce and reduce, being distinguished by which processors require the summarized
result. In an allreduce, all processors are notified of the result, while a reduce provides
the result to a single processor called the root.

In practice, it is common to need the same summary information about multiple

sets of distributed data of the same type, i.e. find the various maximums of several



distributed sets of integers. Reductions handle this by operating on the data sets
in a vector fashion. That is, data elements from the various sets are merged into
a contiguous group called the reduction wvector. The vector is transfered as a single
unit and operations are performed in a element-wise, vector fashion to maintain in-
tegrity across the various data sets. Such bulk transfer and batch processing of the
reduction vector is more efficient than performing separate reductions for each data

set individually.

1.4 Problem Statement

Many high-performance cluster computing applications depend critically on effi-
cient reduction algorithms. Recent performance evaluation studies show that large-
scale scientific simulations spend up to 60% of their time executing reductions [24].
Similar results have been provided by an in-depth analysis of the scientific workload at
Lawrence Livermore National Laboratory [12]. Reduction algorithms which minimize
latency will thus substantially reduce the execution time of such programs.

The problem of developing efficient reduction algorithms has proven to be a rather
rich area of research. Over the years, many researchers have committed significant
time in order to derive optimal and scalable algorithms [1, 2, 3, 4, 5, 8]. These algo-
rithms differ primarily in their assumptions about the characteristics of the underlying
interconnect system.

While the collection of previous research was thorough during its time, today, the
standard cluster environment is quite different. The additional speed and function-

ality provided by modern cluster interconnects significantly changes the underlying



network characteristics. This thesis investigates reductions from this new perspec-
tive. It takes aim at answering two questions posed from two observations of modern
cluster systems.

Observation 1: Inter-node latencies within early cluster interconnects were so high
that intra-node latencies, such as those incurred when transfering data between the
processors and the network across the PCI-bus, were negligible. However, with today’s
very low latency interconnects, these same internal latencies contribute a significant
cost to end-to-end message latencies.

Question 1:  Since NIC-based reductions send and receive messages directly at
the link, can they tmprove overall cluster system performance by avoiding PCI-bus
transaction latencies between the processors and the network?

Observation 2: While cluster scalability has improved using the new interconnect
technologies, researchers have discovered that process interference limits further scal-
ability of reduction on large-scale clusters[24]. Application processes executing the
reduction contend with operating system processes for control of the host processor.
Because operating system processes run infrequently, such interference is unlikely to
occur on a given processor at a given moment. However, when considering a large
collection of processors at a time, the chances are greatly increased that at least one
of them will suffer from such interference. This interference has a severe impact on
reductions on large-scale systems, since the entire reduction is affected if any one of
the many involved processors is affected.

Question 2:  Since NIC-based reductions run on the NIC processor, can they
improve overall cluster system performance by avoiding process interference with the

operating system running on the host processors.



1.5 Solution Approach

This thesis addresses the design issues encountered and the solutions used to de-
velop NIC-based reductions on the Quadrics network. The major issues include pro-
cessing on the slower and less functional NIC processor and handling overhead costs
when initiating and finalizing NIC-based reductions. Various NIC-based reduction
algorithms are implemented, which operate in-part or in-full on the NIC processors.
These implementations execute with little or no assistance from the host processors.
A model is developed for algorithm analysis, and using the Quadrics network, exper-

imental results are recorded to verify expectations and validate design choices.

1.6 Thesis Overview

The rest of this thesis is organized as follows. Chapter 2 outlines relevant char-
acteristics and terminology of the Quadrics network and presents the motivation for
NIC-based collectives. Chapter 3 describes design issues faced when implementing
NIC-based reductions and solutions to work around them. Chapter 4 presents the
model and analysis, while Chapter 5 provides experimental results. Finally, conclud-

ing remarks, related research, and ideas for future work is discussed in Chapter 6.
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CHAPTER 2

BACKGROUND & MOTIVATION

This chapter presents a brief overview of the interconnect used to implement NIC-
based reductions, the motivation behind their development, a background of related

research, and the contributions of this work.

2.1 The Network — The Quadrics Interconnect

The NIC-based reduction algorithms were designed and implemented in the con-
text of the Quadrics network, a modern cluster interconnect technology [23]. Quadrics
is based on two building blocks: a programmable network interface card called the
Elan [25, 26] and a low-latency, high-bandwidth communication switch called the

Elite [27]. This section briefly describes these components.
2.1.1 The Network Interface Card — The Elan

The Elan resides on the PCI-bus and interfaces a processing node, containing one
or more host processors, to the network. The Elan itself has respectable processing
capabilities. It provides a user-programmable, multi-threaded, 32-bit, 100 MHz RISC-
based processor; supported with a 64 MB bank of local SDRAM memory, along with

an MMU and other sophisticated processing features. All of this hardware is available
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to the NIC to aid the implementation of higher-level message processing protocols
without requiring assistance from the host processor. In order to better support
this usage model, the processor’s instruction set includes specialized instructions to
construct network packets, manipulate events, and schedule threads.

The Elan divides messages into a sequence of fixed-length transactions for efficient
transfer through the network. The primary communication primitive supported by
the network is RDMA. In Quadrics, RDMA operations can access either host- or

NIC-level memory.
2.1.2 The Network Switch — The Elite

The underlying network is circuit-switched and uses source-based, wormhole rout-
ing. It consists of Elite switches interconnected in a fat-tree topology [21]. Each Elite
provides the following features: 8 bidirectional links each with a raw bandwidth of
400 MB/s (325 MB/s at the MPI-level), a full crossbar switch with a low 35 ns
cut-through latency, and hardware support for collective communication including

barriers and broadcasts.
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2.2 Motivation for NIC-based Collectives

NIC-based reduction implementations avoid significant inefficiencies of current
cluster systems. By eliminating inefficiencies between the processors and the network,
as well as, between the processors and the operating system, NIC-based reductions
can complete with reduced latency on a more consistent basis than host-based imple-
mentations. In fact, these benefits are not limited to reduction operations, and this

section describes how NIC-based collectives, in general, attain such gains.

2.2.1 Elimination of PCI-bus Trasactions

NIC-based collectives can be completed significantly faster than host-based ver-
sions on fast networks by avoiding inefficiencies between the processors and the net-
work. Modern cluster interconnects, like Quadrics, support very low message laten-
cies; so low in fact, that PCI-bus transaction time is significant compared to the
latency between nodes. By implementing collective communications in the NIC, as
opposed to the host, many extraneous PCI-bus transactions can be eliminated. This
can substantially reduce the total operational latency.

Collective communications, by their very nature, require a series of related mes-
sages to be exchanged between nodes involved in the operation. In host-based im-
plementations, the host processor explicitly handles each of these messages. In order
to do so, each message must be relayed back and forth between the host processor
and the network via PCI-bus transactions. NIC-based implementations, on the other
hand, handle messages immediately at the NIC, avoiding most of these transactions

through the PCl-bus. In fact, NIC-based implementations suffer from such costs only
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while initiating and terminating the operation. Collectives involving many nodes en-
tail many messages, which implies that NIC-based collectives can scale substantially
better than host-based versions as the size of the cluster increases.

Many researchers have recently utilized this advantage to implement NIC-based
collectives [6, 9, 10, 11, 15, 17, 20, 31, 33] on other networks. This thesis further

investigates how this advantage extends to the realm of reductions on Quadrics.
2.2.2 Avoidance of Host-level Process Interference

NIC-based collectives can be completed dramatically faster and in a more consis-
tent fashion than host-based versions on large-scale clusters by avoiding inefficiencies
between the processors and the operating system. Process interference on the host
processor can be a major problem on large clusters. To demonstrate this, observe
Figure 2.1. This figure shows the host-based latencies measured for a barrier and a
reduction when using both one and two processes per node. As the number of nodes is
increased, note how, for each collective, the latency for the two-process case deviates
drastically from the one-process case.

This result is surprising since the underlying implementation efficiently reduces
the two process problem to the one process problem by first performing a local shared
memory step. Since shared memory operations take place quite quickly compared to
typical network latencies, and because all nodes perform this brief step in parallel,
the added overhead should be both small and constant with the number of nodes.
Hence, knowledge of just the underlying implementation details fails to account for

the observed trend; more factors must be involved.
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Figure 2.1: MPI Barrier and Reduce Latencies

In this cluster, there are two physical processors per node. When the application
involves only one process per node, there is a spare processor on which the node may
run various operating system threads. However, when both processors are used by the
application, at least one of the application processes is forced to share its processor
with the system threads. The ensuing process interference between the application
processes and operating system turns out to be responsible for the drastic drop in
performance [24].

Process interference leads to increased average latency on large-scale clusters.
Many algorithms for collectives use communication structures that require messages
to be passed through a chain of nodes during each invocation. Each intermediate

node in the chain receives the message, processes it, and sends it on. The collective
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does not complete until the message traverses the length of the chain. Due to inter-
ference with the operating system, application processes at intermediate nodes may
be descheduled from the processor just before handling an incoming message. In this
case, the collective will stall until the application process is rescheduled to handle the
message. As the cluster size increases, existing communication chains grow longer
and additional chains are introduced, so that the number of intermediate nodes in-
creases. This improves the chances for process interference, which in turn, increases
the average latency of the collective.

In addition to increased average latency, process interference is a rather non-
deterministic phenomenon, which leads to a large variance in latency from one col-
lective invocation to another. Thus, the same process interference problem simulta-
neously increases average latency and decreases consistency. As process interference
on the host processor is inherently a host-based problem, NIC-based implementations
may avoid it altogether. As a result, NIC-based collectives can complete with dras-
tically better latency and in a more consistent fashion than host-based versions on
large-scale clusters.

This represents a newly discovered advantage for NIC-based collectives. This

thesis investigates its value in the context of NIC-based reductions.
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2.3 Related Work

Huang and McKinley were perhaps the first to realize the potential of NIC-based
collectives [17]. They examined the benefits gained by implementing broadcast and
barrier operations on Asynchronous Transfer Mode (ATM) network adapters to avoid
the excessive processing overhead incurred throughout the protocol stack. In order
to develop implementations portable across a variety of ATM hardware, they placed
rigid restrictions on the processing and memory requirements of their algorithms so
that even the most limited ATM devices could adequately support them. Namely,
they designed algorithms which were table-driven and performed only a small number
of arithmetic and logical operations while using just a few scalar variables. In addi-
tion, they considered only static communication tree structures. Yet even with such
limitations, they showed that certain NIC-based collectives scaled substantially better
than host-based versions due to significantly reduced message processing (software)
overhead.

While the advent of zero-copy, user-level protocols lessened the dramatic improve-
ment shown in the above work, modern cluster interconnects, such as Quadrics and
Myrinet, have reduced wire and switch latencies to the point where the cost of a PCI-
bus transaction is significant. Simultaneously, the processing capability and memory
available on the network interface cards have increased. Thus, the concept of NIC-
based collectives remains a hot topic and researchers continue to investigate more
complicated collectives and algorithms.

Many researchers have considered NIC-based multicast algorithms [6, 11, 15, 17,

20, 31, 33]. Multicast can be used as a building block to implement other collectives,
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such as broadcasts or barriers, and thus an efficient multicast implementation is de-
sirable. In addition, the problem is rather rich since the message size and destination
set can be different with each invocation, and often one must design flow control and
acknowledgment collection schemes for reliability. Each of the numerous publications
put forth demonstrates a different approach, all of which have found success.

The work most closely aligned with this thesis is that by Buntinas and Panda
[10]. They investigated the potential of NIC-based reduction on clusters intercon-
nected with Myrinet. In particular, they modified the network drivers to implement
binary AND and OR operations, as well as, integer and floating-point addition on a
single 64-bit value via binomial trees. For these cases, they found that NIC-based
reduction has better scalability than host-based reduction and shows performance
gains in clusters as small as 8 nodes. Although they only used binomial trees, with
each reduction invocation, the host processor passes an operation descriptor, includ-
ing the list of communication partners, to the NIC so their implementation could be
easily generalized to use other tree structures. However, they leave the investigation

of other communication trees, as well as, larger reduction vectors for future work.

2.4 Thesis Contributions

This work serves two purposes. In part, this thesis picks up where the previous
work left off. The effect of using different tree structures and various vector sizes for
an expanded set of reduction operations is investigated, as well as, an optimization
for multi-element vectors. This work also proposes a parameterized model which can
be accurately used to select the best available tree for a given instance of a reduction.

In remainder, this work is the first to show the dramatically reduced latency and
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increased consistency which NIC-based reductions may achieve through avoidance of

host-level process interference on large-scale clusters.

2.5 Summary

First, this chapter introduced the components of the Quadrics network, a modern
cluster interconnect which provides very low RDMA latencies, a programmable pro-
cessor on the Elan NIC, and hardware support for collective communications through
the Elite switch.

Then, motivating factors for implementing NIC-based collectives on networks like
Quadrics were explained. Namely, NIC-based reductions improve large-scale cluster
system performance by eliminating PCI-bus transactions between the processors and
the network and avoiding interference with operating system processes on the host
Processor.

Related research about NIC-based collectives was discussed, and the contributions

of the current work were listed.
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CHAPTER 3

DESIGN ISSUES & SOLUTIONS

Previous research with NIC-based barriers, broadcasts, and multicasts has deliv-
ered good results [6, 9, 11, 15, 17, 20, 31, 33]. The success obtained by this previous
work with simpler NIC-based collectives provides inspiration for investigating more
complicated cases like reductions. The design goals of this work are to support NIC-
based implementations of the standard MPI reduce and allreduce collectives for 32-
and 64-bit integer and floating-point data types, each having minimum, maximum,
and summation operations. The design and implemention of NIC-based reduction
is non-trivial, and this chapter presents the design issues faced and the solutions

available to overcome them.

3.1 NIC Processor Capability

In meeting the above design goals, the first issue encountered is the lack of hard-
ware support for floating-point operations on the Quadrics Elan processor. The NIC
processor offers only integer instructions, so floating-point operations must be emu-

lated in software.
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To efficiently emulate floating-point operations that meet all of the various repre-
sentations, rounding methods, and exceptions standardized in the IEEE 754 floating-
point specification is a daunting task in its own right. Fortunately, some have already
undertaken this task and packaged their progress into sophisticated software libraries
as a service for others. In particular, this problem was tackled using SoftFloat [16],
a freely available, IEEE 754 compliant floating-point package written by John R.
Hauser, after Juan Fernandez ported it to run on the Quadrics Elan processor.

While the SoftFloat library suffices, it may provide more functionality than ac-
tually required. For instance, since the design goals do not include floating-point
multiplication, it is unnecessary to support this operation in the library. Similarly,
the library supports 80- and 128-bit floating-point operations, which are not used.
Additionally, given a particular host architecture, it is likely that some rounding meth-
ods can be discarded. Supporting such unnecessary functionality may add overhead
to the library, in which case, improvements could be made by using more specialized
alternatives. Having noted this, improving the floating-point emulation software is

out of the scope of this thesis and is left for future research.

3.2 NIC Processor Speed

The biggest obstacle faced in designing NIC-based reductions is the speed of the
NIC processor. Simple comparison of the clock speed of the Elan processor, at one-
hundred megahertz, to that of typical host processors, somewhere in the gigahertz
range, immediately declares an order of magnitude difference in processor speed. The

gap grows much wider when dealing with floating-point operations which must be
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emulated on the Elan. This section provides some quantitative idea of the difference

in processor speeds along with constraints and design choices to deal with it.
3.2.1 Serial Reduction

A simplistic reduce algorithm, refered to as serial reduction, was implemented for
investigation of the communication and computation characteristics of the Elan and
the host processors. In this algorithm, once the root of the reduce is designated, the
non-root nodes simultaneously send their data to a corresponding RDMA buffer at
the root. The root waits until it has received all of the messages and then reduces the
data in serial order. Finally, the root uses the hardware-based broadcast mechanism
to synchronize the group and signal the completion of the operation.

Serial reduction tests involving 2-13 nodes for various reduction operations and
data sizes produced Figure 3.1. Figure 3.1(a) shows the host-based serial reduc-
tion latencies, while Figure 3.1(b) shows the NIC-based times. Each figure provides
the latencies of 32-bit integer addition, 64-bit floating-point maximum, and 64-bit
floating-point addition operations for both one- and two-element vectors. Also shown
is a NOP operation which consumes no computation time. Since the latency for a
NOP serial reduction consists purely of communication costs, it represents the lower
bound for the algorithm with respect to computation.

In comparing these two figures, it is immediately obvious that NIC-based reduc-
tions depend significantly on both the reduction operation and the reduction vector
size, while host-based reductions are largely independent of both. Each curve in the
host-based graph lies on or just above the NOP curve, implying that computation

costs are insignificant when compared to the communicaiton costs. The NIC-based
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latencies, on the other hand, tell a different story. Complicated operations scale
considerably worse than simpler ones: compare floating-point addition to integer ad-
dition. Also, even fast operations are rather sensitive to small changes in data size:
observe integer addition for one- and two-element vectors.

These observations put the difference in processor speeds in clear perspective.
That the NIC processor is one or two orders of magnitude slower than the host
processor was a known fact, but now it is also clear that this difference in computation
costs is substantial compared to communication costs. Thus, while efficient host-based
reductions may be designed considering only communication costs, desiging NIC-
based reductions is more complicated since computation costs must also be considered.
In fact, since computation costs are so expensive for NIC-based reductions, they will
execute with reasonably low latency only for simple operations and small data sizes.
For these reasons, the slow NIC processor is the toughest issue to be dealt with when

designing NIC-based reductions.
3.2.2 Simple Operations and Small Data Sizes

From the previous section, it is apparent that NIC-based reductions will perform
well only for simple operations and small data sizes. The slow NIC processor becomes
overwhelmed if given anything more complicated. This is a stringent restriction on
the class of problems where NIC-based implementations may be valuable, however, a
large majority of the problems posed by practical programs falls within this class.

Reductions involving simple operations on small data sizes are the common case
in many scientific applications. Researchers have verified this claim across a collection

of large-scale scientific programs that represent a range of application domains and
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programming languages [32]. That collection includes linear systems solvers and
simulators for gas dynamics, particle and photon transport, and shockwave analysis.
The applications are written in a variety of languages including Fortran, C, and
C++. In further support of this, the MPI allreduce operations performed during
the execution of SAGE [19] are profiled in Figure 3.2. SAGE is a sophisticated
hydrodynamics simulation program used within Los Alamos National Laboratory
to model, among other things, energy coupling and shockwaves travelling through
ground, water, and air. It is representative of typical scientific applications running
on large-scale parallel machines.

Figure 3.2(a) shows the distribution of reduction operator types. Note that only
two simple data types are used by SAGE: 32-bit integers and 64-bit floating-point
numbers. Additionally, only a few simple types of operations are used: minimum,
maximum, and summation. Typical reduction operations thus require limited pro-
cessing.

Equally important is Figure 3.2(b), which shows the cumulative distribution of the
data sizes for both integer and floating-point data types. Direct observation makes a
striking point: 95% of all reductions invoked by SAGE use 3 or fewer elements and
100% use 8 or fewer.

Observations from these two figures are key. Together, they imply that typical
reductions involve simple operations on small vectors, which so happens to be the
same class of reductions for which one may benefit from NIC-based implementations.
In other words, NIC-based reduction implementations benefit the common case the

most.
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3.2.3 f-nomial Trees — Generalized Binomial Trees

Communication structures in efficient reduction algorithms tend to balance mes-
sage processing time with message latency. The results from the serial reduction tests
demonstrate that message processing time in host-based reductions is completely de-
termined by the communication characteristics, while it is dependent on the commu-
nication characteristics, the reduction operation, and the vector size in NIC-based
reductions. Thus, while a single communication structure will suffice for efficient
host-based reductions, the slow NIC processor demands a range of communication
structures to support efficient NIC-based reductions.

For this work, f-nomial trees (a.k.a. k-nomial trees) were chosen since they pro-
vide such a range of structures by generalizing a well-known reduction algorithm,
binomial trees. Binomial trees are commonly used in reduction algorithms because
they offer two useful properties: 1) they have a regular structure, so they are easy to
implement, and 2) they keep many nodes involved throughout the collective, so they
are well-parallelized. In fact, binomial trees are known to be optimal communication
structures for reduction in synchronous communication networks [2], i.e. those in
which the sender and receiver incur the same cost for message transfer (latency plus
processing). f-nomial trees generalize binomial trees to add a third valuable property:
they provide a range of communication structures, so one may selectively balance mes-
sage processing time against message latency. This property is especially useful for
NIC-based reductions, where the computation costs incurred by the slow processor
may change message processing time substantially depending on the operation being

performed and the amount of data being processed.
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While the goal is not to dwell on presentation of a new algorithmic communication
structure, f-nomial trees are somewhat uncommon so some discussion is called for.
Here f-nomial trees are described starting from a quick review of the operation of
binomial trees, from which the generalization is trivial. Also, although reduction trees
collapse to the root node, it is easier to describe the structure of a tree as it expands.
For convenience then, say the goal is to broadcast a message from the root to all
nodes in the tree.

The operation of binomial trees can be described as follows. Starting from the
root, the broadcast message is distributed through a series of communication phases.
During each phase, each node that holds a copy of the broadcast message at the start
of the phase sends to another node which doesn’t. In this way, the number of nodes
that hold a copy of the message doubles at the end of each phase. Thus, in a binomial
tree, the number of nodes the message can reach grows as a power of 2 (hence the
prefix “bi”) with the number of phases.

An f-nomial tree generalizes this algorithm by having each node with a copy of
the message at the start of a phase send to (f —1) others who don’t, as opposed to just
one. For instance, during the first phase, the root sends to (f —1) children, so that by
the end of the first phase the message has spread from the root, 1 node, to the root and
its (f —1) children, a total of 14+ (f —1) = f nodes. In the second phase, each of these
f nodes becomes a parent to (f — 1) children who have yet to receive the message.
By the end of the second phase, the message spreads from the f parent nodes to each
of their (f — 1) children, reaching a total of f+ f(f—1) = f(1+(f—1)) = f? nodes.
Similarly, in the third phase, each of these f? nodes become a parent and each sends

to (f — 1) children who have yet to receive the message, so that by the end of the
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third phase, the message spreads to a total of f2 nodes, and so on. Thus now, the
number of nodes the message can reach grows as a power of f with the number of
phases. This is the structure of the algorithm used; only remember, the tree collapses
rather than expands since a reduction is to be implemented rather than a broadcast.
For reference, Appendix A provides psuedo/C code that drives a reduction algorithm
using f-nomial tree communication structures.

As a concrete description of an f-nomial reduction, consider Figure 3.3, which
shows a graph representing a 4-nomial tree overlaid atop a set of 16 nodes. In this
example, the goal is to reduce data distributed among the 16 nodes and place the
result at the root node 0 using a 4-nomial tree communication structure. The arcs in
the graph connect communication partners and are labeled with the phase number
in which the corresponding communication takes place; all messages travel upward
from children to parents. During the first phase, parent node 0 receives and reduces
(4 — 1) = 3 messages from nodes 1, 2, and 3; while likewise, nodes 4, 8, and 12
simultaneously receive and reduce data from their own three children. At the end of
the first phase, the distributed data has been partially reduced and localized to the
four parent nodes 0, 4, 8, and 12. To be precise, the number of nodes containing data
relevant to the reduction has been cut by a factor of four, from 16 to 4. The algorithm
completes after the second phase again cuts the number of nodes by a factor of four,
from 4 to 1, when node 0 receives and reduces the partial results from the three, now
child, nodes 4, 8, and 12. Thus, in two communication rounds, the 4-nomial tree is
able to perform a reduction over 4> = 16 nodes.

f-nomial trees offer a range of communication structures to select from through

choice of the degree of the tree f. For example, Figure 3.4 shows f-nomial trees
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Figure 3.3: 4-nomial Reduction over 16 Nodes
of various degrees, all which cover 16 nodes. This flexibility allows one to trade off
between communication and computation costs, choosing an appropriate mix for a
given problem. Each level of the tree corresponds to a communication phase, while
the width is related to the amount of computation any one processor is required to do.
Efficient algorithms will tend to balance the costs of communication and computation.
Communication bound reductions will favor wide trees to minimize the number of
tree levels, and hence, the number of communication phases. Computation bound
reductions, on the other hand, will fair better with tall trees which better parallelize
the processing. Thus, the best choice for the degree of the tree depends on the relative
costs established by a particular problem. Chapter 4 illustrates how to choose the

optimal degree analytically.
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3.2.4 Vector Split Optimization

Since NIC processors are very slow, it helps to keep as many of them working as
possible to maximize utilization of their limited processing power. Often times, it is
worth suffering a little extra communication cost in return for a substantial reduction
in computation cost. In other words, computationally intensive NIC-based reductions
should be highly parallelized.

For multi-element vectors, parallelism can be increased through an optimization
proposed by Van de Geijn [30]. Basically, the idea is to split the vector and assign the
different pieces to distinct groups of nodes. The groups then reduce the vector pieces
in parallel and recombine the reduced pieces in the last step to form the reduced vec-
tor. In other words, presented with this optimization, there are two options available

to reduce multi-element vectors: 1) reduce one large vector serially through a single
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tall tree, or 2) distribute and reduce smaller pieces of the vector in parallel through
shorter trees, incurring the added overhead of splitting and recombining. The second
approach suffers from extra communication while distributing and recombining the
vector pieces, however, if computation is expensive, significantly savings are gained
by processing smaller amounts of data during each phase of the tree. For tall trees,
which require many phases, this savings can amount to a lot.

As an example, which is diagrammed in Figure 3.5, this optimization is used to
reduce a two-element vector over 8 nodes. Here, the vector elements are shown as
small rectangles located adjacent to circles representing the nodes on which they
reside. As shown in the left section of the figure, the group of 8 nodes is first split
into two groups of 4, as represented with the dotted line bisecting the circles. The
top element of the vector is then assigned to the top group of 4 nodes and the bottom
element to the bottom group. This is accomplished once nodes in the two groups
send the appropriate element to a partner in the opposite group, as represented by
the arrows, and reduce the received data with their copy of the corresponding element.
At this point, the two-element vector has been split among the two groups. The top
group contains all information about the top element, and the bottom group contains
all information about the bottom element. Omnce this distribution is complete, the
two groups simultaneously perform group-wise reductions on the element assigned to
them, represented with the dotted boxes in the middle section of the figure. Finally, as
shown in the right section of the figure, the two fully-reduced elements are recombined
to produce the fully-reduced, two-element vector. This completes the reduction using

the vector split optimization.
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This optimization was added to the basic f-nomial algorithm to create a new
algorithm named f-nomial split. During the beginning, the vector is recursively split
in half a specified number of times, with the pieces being distributed among the
appropriate number of groups. The f-nomial tree algorithm is then used within each
of the groups to reduce the smaller pieces. As discussed, these partial reductions occur
in parallel across the multiple trees. The root of the f-nomial tree in each group will
receive a fully-reduced piece of the vector, which is then sent to the primary root of
the overall reduction during the last step. The improvement due to this optimization
proved to be dramatic and is discussed in Section 5.2.1. Basically, it allows NIC-
based reductions to scale substantially better than they otherwise would have for

larger vector sizes.
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3.3 Host-NIC Synchronization Overhead

In order for the host processor to delegate a collective operation, such as a re-
duction, to the NIC, several administrative tasks must be performed. These tasks
include writing the application data to and reading the final result from NIC mem-
ory; informing the NIC processor of what operation to do, what data type to use,
and the number of vector elements to process; and providing the NIC with a list of
communication partners and internal communication and processing buffers to use.
Additionally, the host must instruct the NIC when to start the operation, and the
NIC must notify the host of the operation’s completion. Since these tasks act to
synchronize the host and NIC processors, they are refered to collectively as host-NIC
synchronization.

Host-NIC synchronization introduces a certain amount of overhead. In some cases
the overhead may be tolerable, however more often, one would like to avoid it. To do
this, there are two options available: minimize the overhead directly and/or hide it

behind other latencies.
3.3.1 Minimizing the Overhead

To minimize host-NIC synchronization overhead, one can improve the manner
in which information is transferred between the host and NIC. For instance, the
data structures which describe the operation to the NIC should be well-designed.
In practice, only a small amount of information needs to be transferred between
the host and the NIC, however if not done carefully, this transfer can be costly.
There are several distinct data items which must be transferred to the NIC, some of

which include lists of items themselves. If each of these items is written to the NIC
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individually, the expensive PCI-bus transaction start-up costs will mount up. Thus,
one should design the data structures in a way so that they can be copied to the NIC
in block-copy fashion or through DMA transfers.

It is also possible to reduce the amount of data that must be written to the NIC. In
some cases, it may be possible to refer to a collection of data items through a single
index parameter. For example, the internal communication and processing buffers
can be grouped into “channels”. This enables the host processor to refer to an entire
set of buffers through a single channel number. One could likely do something similar
with the communication data structures. Many applications will likely use a limited
set of distinct communication structures, and since the NIC provides a large amount
of memory, it seems as though a caching system may be useful. This would allow the
host processor to recycle data structures previously copied to the NIC by referring to
them with a simple cache-line number.

In other cases, different data items can be nicely consolidated. Many of the data
items may have small bounds on their value. For example, 8 or 16 different channels
and 16 or 32 cache slots may be more than enough. In this case, one could pack data
items such as the channel number and cache-line number with other fields like those
listing the collective, e.g. reduce or allreduce, the reduction operation, e.g. 32-bit
integer addition, 64-bit floating-point maximum, etc., and the data size into a single
32-bit value using bit masks.

This work used a single channel and assumed cached communication structures.
The message size was transfered as a separate item, however, the collective and reduc-

tion operation fields were consolidated into a single value. The time required to pack

35



and unpack the data is less than the time required to transfer each item individually

across the PCI-bus.
3.3.2 Hiding the Overhead

Additionally, the host-NIC synchronization overhead can be hidden behind other
latencies. This can be accomplished by using the NIC-based implementation only at
the intermediate nodes, where the host-NIC synchronization can be largely hidden
behind latencies in the initial and final phases of the algorithm. This approach is
illustrated in Figure 3.6.

Figure 3.6 is composed of two subfigures. Each subfigure shows the critical path
of some reduction tree as a dashed arrow winding its way through three nodes, each
of which is depicted with separate host and NIC levels. A leaf node is shown on
the left; its parent, an intermediate node is in the middle; and the reduction root is
located on the right. The two subfigures show how the critical path changes under
two implementations.

Figure 3.6(a) shows the straight-forward NIC-based implementation in which all
nodes use the NIC. To begin, all nodes simultaneously initiate the NIC. In doing so,
as represented by the downward pointing arrows, the application data and reduction
information are first transfered to NIC memory, and then, the NIC is signaled to start
the reduction operation. Following this initial part of the host-NIC synchronization,
the NIC on the leaf node immediately relays its data to the intermediate node for
reduction processing. The NIC at the intermediate node receives the leaf data, per-
forms the reduction operation, and sends the result to the root node. The NIC at

the root similarly receives and reduces the data from the intermediate node to obtain
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the final result. The latter part of the host-NIC synchronization is then performed as
the result is copied up to its destination buffer and the NIC notifies the host proces-
sor that the result is ready. Note that in this straight-forward implementation, the
host-NIC synchronization overhead is included in the critical path of the reduction
latency.

Figure 3.6(b) shows a modified implementation in which just the intermediate
node uses the NIC. In this case, the leaf node sends its data to the intermediate node
directly from host memory, bypassing the NIC. As the message traverses through
the network, the intermediate node uses this time to initiate the NIC. As before,
the NIC at the intermediate node then receives and reduces the leaf data. However
this time, when the result is sent to the root, it is delivered to the host rather than
the NIC. The host at the root then receives and reduces the data, placing the final
result in the destination buffer. Note that this modified implementation overlaps the
host-NIC synchronization with the message latencies incurred in the initial and final
communication phases, thus hiding it from the critical path.

This work implements both methods, and the two are compared in the experi-

mental section.

3.4 Summary

This chapter discussed the design issues and available solutions to be considered
when implementing NIC-based reductions. The major issues include performing re-
duction processing on the less functional, slower NIC processor and dealing with the

overhead associated with initializing and finalizing a NIC-based reduction.
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NIC processors typically provide limited functionality in hardware, however soft-
ware may be used as a substitute. For instance, the Quadrics Elan processor does not
provide hardware support for floating-point operations, however, software libraries
which emulate floating-point operations using integer instructions are available.

NIC processors run much slower than those at the host, often by an order of
magnitude or more. Fortunately, reductions used in typical programs often require
minimal processing, so even while the NIC processor is very slow, it is powerful
enough for the common case. Given a slow NIC processor connected to a very fast
network, computation costs are typically comparable to communication costs. NIC-
based reductions thus require a range of communication structures which may be
used to balance message processing time against message latency depending on the
data size and operation to be performed. Also, mechanisms, like the vector split
optimization, which increase the degree of parallel-processing and better utilize the
limited power of NIC processors are valuable.

Host-NIC synchronization costs may be expensive, but it can also be minimized
and/or hidden. Techniques that minimize the amount of reduction information that
the host must write to the NIC, like using channels of communication buffers, caching
communication structures, and consolidating data items into packed values, act to
reduce host-NIC synchronization overhead. Additionally, employing NIC-based re-
duction at only the intermediate nodes of a communication structure allows one to
hide host-NIC snchronization cost behind other latencies.

The value of many of these design choices will be validated in the following chap-

ters.
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CHAPTER 4

ANALYTICAL MODELS

In this chapter, details in the design of efficient NIC-based reductions are ad-
dressed using analytical models. Simple model parameters are first introduced and
are then used to provide quantitative differences between host-based and NIC-based
reductions. Then the model parameters are applied to f-nomial reductions in order

to find the best degree f to use for a given reduction problem.

4.1 The Model Parameters

Observations of the serial reduction data, as shown previously in Figure 3.1, sug-
gest a simple parametric model. Namely, it is difficult to overlook the sharp linear
trend that relates the reduction latency to the number of nodes involved. Using
just the slope and intercept, such a tight trend provides a very simple but accurate
analytical model to estimate the serial reduction latency. Furthermore, the serial re-
duction algorithm will form the basic building block of more sophisticated tree-based
algorithms. Given an accurate model for the building blocks, one can piece together
a model for more sophisticated algorithms. In other words, the slope and intercept
of the serial reduction latency curves are sufficient to quite accurately predict the

performance of any other proposed algorithm.
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| Parameter | Meaning |

L message latency

r(M) reception cost of a message of
size M

c(M, OP) reduction cost of a message of
size M, dependent on the oper-
ation OP

P number of nodes

C(OP) constant due to initial over-
head, in general dependent on
the operation OP

Table 4.1: Model Parameters

Moving along this direction, it is instructive to define the slope and intercept in
terms of more meaningful parameters. To account for the linear trend, recall the
implementation of the serial reduction algorithm: all nodes simultaneously send their
data to the root, which receives all, and then reduces all messages in order. Since
the nodes send to the root simultaneously, all messages worm their way to the root
in parallel. Hence, regardless of the number of nodes, the cost of message latency is
suffered only once. On the other hand, the root receives and reduces each message
serially, which introduces reception and reduction cost on a per node basis.

With these observations, the model parameters are defined in Table 4.1. Through-
out the rest of this thesis, the functional parameters M (message size) and OP (reduce
operation) will typicailly be suppressed from the various terms.

Essentially, this model modifies LogP [14] to better serve the needs of this work.
The parameter r is used in place of o, the cost to receive a message; and the parameter
g is represented as (r + c¢), the time required to fully process a message. While

parameter o simultaneously represents both send and receive overhead in LogP, it

41



is renamed r for clarity since it is only used to account for receive overhead in this
work. Also, the parameter ¢ is split to separate that part of ¢ which is dependent
solely on message size, (M), from that part which is also dependent on the reduction
operation, ¢(M, OP). These modifications were made since conceivably, the message
latency, the reception costs, and the reduction costs may all differ between host-
based and NIC-based implementations, and these redefinitions allow one to explicitly
account for those differences with dedicated parameters. Additionally, since r and ¢
may be general functions of the message size, one may better model nonlinearities,
such as data packetization and caching, which are relevant for small data sizes.
Note with this model it is simple to describe the linear form of the serial reduction

latency curves as:
Tserial(P) %C+L+(P_ 1) : (T+C)

This expression is shown pictorially in Figure 4.1, which presents a timeline de-
picting the time required for the root node of the serial reduction to receive and
reduce (P — 1) vectors.

To assign numerical values to the parameters, the values of r and ¢ were extracted
from the serial reduction data for various values of M and OP. The terms L and
C were fit to the data, and P is given for a particular problem. Note that while
r is dependent on the message size in general, it turns out to be constant for cases
this work is interested in. This is because the focus is on reductions involving vector
sizes of only a few elements, say up to eight, which typically fit into a single 64-byte
fixed-length packet on the Quadrics network. Thus, whether the problem involves
one-element, vectors or eight-element vectors, the receive time is the same, i.e. the
cost to receive one 64-byte packet.
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(P-1) incoming messages to root

Figure 4.1: Model of Serial Reduction Latency

To provide some context of typical model parameter values, communication and
initialization values are given in Table 4.2 and computation values are listed in Ta-
ble 4.3.

These numbers demonstrate many of the design issues previously mentioned.
First, the message latency L for NIC-based reductions is less than that for host-
based reductions. This highlights the savings in PCI-bus transaction costs. Second,
the constant C' is much more for NIC-based reductions. This difference represents
the host-NIC synchronization costs. Finally, the computation costs are much, much
higher for the NIC-based reductions. The NIC processor is substantially slower than
the host. In fact, in some cases the NIC processor falls behind by nearly two orders
of magnitude.

The parameter values also suggest the general form of efficient algorithms. One
may note that for small messages, the latency, L, is often significantly more than

the receive time, r. This is relevant considering the circuit-switched nature of the
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| Parameter | Value | | Parameter | Value |

L 2.90 L 2.10
r 0.42 r 0.42
C 2.70 C 9.20

Table 4.2: Communication and Initialization Parameter Values (us)

(a) Host-based

(b) NIC-based

| Operation | 1-elem | 2-elem | 4-elem | 8-elem |
Int32 Max 0.03 0.03 0.07 0.13
Int32 Add 0.02 0.03 0.06 0.13
Float64 Max 0.04 0.07 0.14 0.28
Float64 Add 0.02 0.06 0.12 0.16

(a) Host-based

| Operation | 1-elem | 2-elem | 4-elem | 8-elem

Int32 Max 0.27 0.46 0.84 1.60
Int32 Add 0.25 0.44 0.76 1.44
Float64 Max 0.67 1.27 2.44 4.80
Float64 Add 1.50 2.95 2.80 11.56

(b) NIC-based
Table 4.3: Computation Parameter Values (us)

Quadrics network as the sender may only send a message every L units of time, while
the receiver can receive one in every r < L units. As a result of this asymmetry,
nodes in efficient algorithms will tend to receive more often than they send, which
leads to tree-shaped communication structures. Foresight of this fact explains why a
tree-based algorithm, like f-nomial trees, was chosen instead of a more symmetrical

type of algorithm, like pair-wise exchange.

4.2 Modeling f-nomial Trees

One would like to be able to choose the best f-nomial tree for a given problem

through analytical methods, so in this section, the model is applied to the algorithm.
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The model is first applied to full f-nomial trees, in which each parent has a complete
set of children during each phase. This simplifies the process and provides a clear,
concise expression. This expression is then manipulated analytically to arrive at the
condition which gives the best degree. Finally, the model is applied to the more

general case of an f-nomial trees consisting of an arbitrary number of nodes.
4.2.1 Full f-nomial Trees

Since the root node of an f-nomial tree is involved in every phase of the algorithm,
the latency of the entire operation may be predicted by focusing on the work the root
node must do. Assuming a full tree, an f-nomial tree generates log; P phases, during
each of which the root has (f —1) children. Each phase will be of the linear, building-
block form of the serial reduction algorithm previously discussed. In other words, the
critical path consists of a series of log, P serial reductions, each involving f nodes.
Thus, inserting Tyeriqi(f) derived from the previous section and adjusting for initial
overhead, one arrives at the following expression as a quick analysis of the f-nomial

reduction latency:

Tfu” (P7 f) ~ C+ Tserial(f) : logf P

fnomial

~ C+[L+(f-1)-(r+c)]-log; P

An example application of the model to intermediate phases is shown pictorially
in Figure 4.2. In this figure, the two horizontal timelines represent two intermediate
parent nodes in the f-nomial tree, the bottom node being one of the children of the
top node. To start, the initial overhead, C', is encountered in parallel across all nodes
as a one time cost. Then, after waiting for a length of time L, the two parent nodes
each receive and reduce the data from their (f—1) children of the first phase. Starting
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(f-1) incoming messages (f-1) incoming messages

(f-1) incoming messages

Figure 4.2: Model of f-nomial Reduction Latency

the second phase, the bottom node, now a child to the top node, immediately sends
its partial result to its parent. Again, after a length of time L, the top node receives
and reduces the data from its (f — 1) children of the second phase. The reduction
continues off the diagram as the top node, now a child to some higher node, sends its

partial result to its parent to begin the third phase, which is not shown.

4.2.2 Finding the Optimal Degree

pfull

fnomial

Given the model for (P, f), it is straight-forward to compute the optimal
degree f to use for a particular problem. One seeks to find that value of f which mini-
mizes the reduction latency. To do so, one simply takes the derivative of T]{;‘Olimal(P, f)

with respect to f and finds the condition which sets the result equal to zero. This

section details this process.

46



Basically, the goal is to find that value of f which minimizes the following expres-

sion:

Tfu” (P7 f) ~ C+ Tserial(f) ) logf P

fnomial

~ C+I[L+(f—-1)-(r+c)]-log; P

To do so, first the derivative of T (P, f) is taken with respect to f:

fnomial

0

full
ngnomial (P’ f)

0
~ @{C + Tseriul(f) ) logf P}

8TZ(;er'ia. 0l P
= afl(f) 'long+Tserial(f) : (;éff
+[L+(f—1)-(7“+c)]-w
f
In P
=1+ [37]
In P
FLA (=1 (r+0) - =y
In P In P
:(r+c)-;‘l—f—[L+(f—1)-(T+c)]-f.“T2f
Then, this expression is set equal to zero and f is isolated:
In P In P
In P In P

f-Inf-(r+¢) = L+(f—-1)-(r+c¢
f-Inf = L/(r+c)+(f-1)
fInf—f = L/(r+c¢)—1

f-(nf—-1) = L/(r+¢)—1
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Figure 4.3: Plot of f- (Inf —1) and L/(r +¢) — 1 for L = 2.10 us, r = 0.42 us, and
various ¢

The above expression gives the best value of f to use with L, r, and c. It is a tran-
scendental equation, so one must solve for f numerically by finding the intersection
of f-(Inf — 1) with the function L/(r + ¢) — 1, which is constant once c is decided
by the operation and data size of a particular problem. The intersection of these two
functions is plotted for various values of ¢ in Figure 4.3, after setting L = 2.10 us and
r = 0.42 us, the values corresponding to NIC-based reduction in Section 4.1.

Only integers f > 2 produce valid f-nomial trees. For intersection points which
are between two integers, one must choose the best of the two. For the values used for
L and r note that the best degree may fall anywhere in the range [2, 6] depending on
the value of ¢. The upper bound is reached somewhere between 5 and 6 when ¢ = 0.

Note when f = 6, a parent node receives 5 messages so that the reception costs
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accumulate to exactly balance the message latency. As computation cost increases,
the best degree decreases.

It is interesting to consider the range [1,2]. Values of f smaller than 2 do not
produce meaningful f-nomial trees, however, if some arbitrary number in this range,

say f = 1.5, is selected and pluged back into T/“% (P, f) one gets:

fnomial

Thria(Pi15) ~ C+[L+((1.5) = 1) (r+c)]-logys P

fnomial

= C+[L+05(r+c)]-log, 5P

When compared to binomial trees, these values of f tend to construct trees which
have more communication phases, since log, s P > log, P. They do so in return
for a reduced amount of reception and computation costs, 0.5 - (r + ¢) instead of
(r +c¢). Thus, trees in this range wish to suffer extra communication in order to save
on computation, so this is the range in which optimizations like the vector split are
valuable.

Even though the above analysis applies only to full f-nomial trees, it helps to build

intuition and establishes reasonable expectations by using actual parameter values.
4.2.3 Refining the Model

Unfortunately, the simplistic expression for /"4 . (P, f) in the previous sections

fnomial
does not accurately account for trees with an arbitrary number of nodes. The previous
expression was derived assuming a full tree, i.e. assuming log, P is an integer. When
the number of nodes is not an integer power of the degree f, the root may not have
a full set of children during the final phase. In this case, the root still incurs the

message latency cost L while waiting for the data of the last phase to arrive, however,
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f=3 P =16 log ,(16) = 2.52
Full Phases = FLOOR[2.52] = 2 Total Phases = CEILING[2.52] = 3
(3-1) = 2 children in each full phase CEILING[ 16/ 3?- 1] =1 child in last phase

Figure 4.4: Application of Reduction Latency Model to 16-Node 3-nomial Tree

there will be fewer than the full set of (f — 1) messages to receive and reduce. A more

detailed analysis will show that:

Tfnomial(Paf) ~ C+L- []ngP—l +
(r+c¢)-(f—1)-log; P| +

(r+c)- [P/ fleer Pl 1]

Here, log P represents roughly the number of phases in the f-nomial tree. In
particular [log; P]| is the total number of phases, while |[log; P| is the number of
full phases, i.e. those involving a full set of (f — 1) children for the root. The L
term accounts for the message latency cost incurred from each phase of the tree. The
last two (r + ¢) terms together sum the reception and reduction costs incurred for
processing each child. Of these two terms, the first counts the number of children
processed due to full phases, while the second counts the number of children in the
final phase, if less than a full set. An example given in Figure 4.4 demonstrates how
the various terms refer to a 16-node, 3-nomial tree.
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When using this expression for Ttnomia (P, f), it is non-trivial to express the best
degree f in terms of the other model parameters, as done before. However, in practice
the best degree tends to be a small value, so one can simply cycle through a limited set
of values and evaluate the expression numerically to find the best one. This approach

is illustrated graphically in Section 5.2.3 when the model is validated.

4.3 Summary

This chapter presented a simple but accurate model which may be used to predict
reduction latencies. Typical parameter values were provided for host-based and NIC-
based reductions, which were used to compare and contrast the two. The model is
then applied to f-nomial reductions and is used to find the best degree f for a given
problem analytically. The model expressions involve transcendental equations and
must be solved numerically, but the possible solution space is very small so that one

may be found trivially through brute force.
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CHAPTER 5

EXPERIMENTS

Various versions of the f-nomial algorithm were implemented for experimental
purposes. Results from these tests are presented in this chapter to validate design
choices and to illustrate the benefits of NIC-based reduction. The algorithms were
developed and initial performance evalutaions were taken on the “crescendo” cluster
at Los Alamos National Laboratory, which consists of 32 dual-processor nodes with
1.0 GHz Pentium IIIs and the Quadrics network. Scalability analysis was performed
on the ASCI Linux Cluster (ALC) [28] located at Lawrence Livermore National Labo-
ratory. The ALC uses 960 dual-processor nodes with 2.4 GHz Xeons and the Quadrics

network.

5.1 Procedural Detalils

This section provides certain details about the implementation and the testing
methods that are relevant for proper interpretation of the results given in the following
sections.

First, regardless of the number of host processes per node, each node implements

the NIC-based reduction using a single thread running on a single NIC. Whenever
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there are multiple host processes involved on a node, the host processor first re-
duces the local data vectors through shared memory before it initiates the NIC-based
portion of the algorithm. In NIC-based reduction, one accepts the increased com-
putational cost associated with performing reduction processing on the slower NIC
processor in return for elimination of extraneous data transfers to and from the host.
However, if a collection of data (e.g. vectors for multiple local processes) is already
located at the host, one may as well use the faster host processor to reduce it. In
addition to the obvious computational savings, less data needs to be sent through the
PCI-bus, just the locally reduced result rather than each of the local vectors.

Second, while the design goals of this work are to investigate both reduce and
allreduce operations, only the results for reduce are presented. The approach taken
was to focus on reduce, which is simpler to implement, model, and analyze. Admit-
tedly, since allreduce is often used more frequently than reduce in parallel programs,
its inspection is more relevant. However, the hardware-based broadcast provided by
Quadrics simplifies things. A hardware-based broadcast, which scales very well (small
and almost constant) as the number of nodes is increased, can be tacked on to the end
of an efficient reduce operation to implement an efficient allreduce operation. Thus,
since the observed reduce latencies can be extrapolated to estimate allreduce latencies
with the addition of a small constant, the measurements for reduce are representative
of what could be expected for allreduce.

Third, for testing purposes, a barrier was inserted between each of the reductions
in order to serialize consecutive invocations. As Quadrics also provides a hardware-
based barrier mechanism, such barriers keep the distributed nodes very tightly syn-

chronized in real time. Although this synchronization is not required for reductions
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and thus adds unncessary overhead to the latency, the measurement procedure is
simplified since there is no need to worry about pipelining effects associated with
nodes which escape ahead to start the next operation before the previous one has
completed.

Fourth, unfortunately, f-nomial host-based reductions were not available at the
time when an opportunity to run on the ALC presented itself. Host-based results
for clusters up to 32 nodes used f-nomial reductions, however anything larger used
the reduce collective in the provided production-level MPI library. The MPI imple-
mentation internally delegates the work to a reduction function, called elan_reduce(),
supported in the lower-level Quadrics Elan library [25]. The Elan algorithm, in turn,
performs a reduction via a 4-ary tree communication structure followed by a hardware-
based broadcast of the result. This trailing broadcast simultaneously serves as a
global synchronization step and acts to extend the reduce into an allreduce. Thus,
the elan_reduce() function really implements an allreduce operation, rather than the
simpler reduce operation used in the NIC-based reduction. Even so, the tests remain
fair since the cost of the barrier inserted between each of the NIC-based reductions
offsets the cost of the broadcast that completes each of the host-based reductions.

Finally, there was a large variance in the measured reduction latency from one
invocation to another, especially for host-based reductions. Unless otherwise stated,
this variance was compenstated by reporting the average reduction latency: computed

as the total time required to complete 100,000 iterations, divived by 100,000.
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5.2 Validation

The experiments presented in this section were designed to illustrate the impact

of design choices and to check the accuracy of the analytical model.
5.2.1 Validating the Vector Split Optimization

By increasing parallelism in NIC-based reductions, the vector split optimization
can save significant computation costs at the expense of some extra communication.
This section validates this claim.

The performance of the NIC-based f-nomial split algorithm for 64-bit floating-
point addition on 512 nodes was measured for various vector sizes. The results are
shown in Figure 5.1, where the horizontal axis represents the number of recursive
splits the vector undergoes before its pieces are reduced through f-nomial reduction.
One split implies the vector is broken into two pieces, two splits imply four pieces,
three imply eight, and so on. Data points are not shown if the corresponding reduction
vector contains fewer elements than pieces implied by a given number of splits.

The value of the vector split optimization for multi-element vectors is clear. After
3 recursive splits, the 8-element latency is improved by nearly a factor of three,
while for 4 recursive splits, the 16-element case is over three times faster. The trend
obviously suggests the larger the vector, the better the benefit.

Although the vector split optimization enables NIC-based reductions to scale bet-
ter than they otherwise would have, there is still a limit on the performance it can
achieve. Note that a latency of 140 us for a 16-element reduction may still be much
more than what a host-based implementation can provide. And interestingly, one

may carefully note that the latency for a 2-element vector actually increases slightly
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Figure 5.1: f-nomial Split on Various Vector Sizes for 64-bit Floating-Point Addition
over 512 Nodes

after one split. This of course will happen if the total savings in computation over
the height of the tree is less than the added communication cost of the recombine
step. However, the cross-over point can be computed so as to always pick the better

of the two options. Van de Geijn discusses the details in [30].
5.2.2 Validating the Host-NIC Synchronization Overhead

This section shows the impact of host-NIC synchronization overhead and the im-
provement, available through implementation of the optimizations discussed in Sec-
tion 3.3.

Figure 5.2 shows latencies for three different implementations of single-element
32-bit integer addition over binomial trees of various sizes. A host-based implementa-

tion is shown, along with a NIC-based implementation, and an optimized NIC-based
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Figure 5.2: NIC-based and Host-based Latencies for Single-Element 32-bit Integer
Addtion using Binomial Trees

implementation, which only employs the NIC for reduction processing at intermediate
nodes.

The standard NIC-based implementation gains on the host-based version as the
number of nodes is increased, however, there is a significant initial penalty to overcome
before the NIC will actually outperform the host. In particular, when only two nodes
are involved in the reduction, the host is about twice as fast at the NIC, which lags
behind by about 5 us. This extra cost comes from the host-NIC synchronization
overhead.

By using the NICs at just the intermediate nodes, the optimized NIC-based reduc-
tion is able to reduce a significant portion of the overhead. For two and threes nodes,

the optimized NIC-based reduction is actually equivalent to the host-based version
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and incurs no penalty from host-NIC synchronization, since there are no intermediate
nodes in binomial trees of these sizes. For larger trees, which involve some interme-
diate nodes, the optimized NIC-based reduction still manages to cut the host-NIC

synchronization overhead roughly in half.
5.2.3 Validating the Model

Since opportunities to run tests on large-scale systems are difficult to come by,
it is important to have an accurate model to provide extrapolations of algorithm
scalability. This allows one to consider tradeoffs between different design choices
analytically, and thus avoid the need to run extensive tests on rare machines that are
in high demand. This section illustrates the accuracy of the proposed model.

Figure 5.3, shows the predicted and measured NIC-based f-nomial reduction la-
tencies as a function of the degree f for 64-bit floating-point addition on a 31-node
system using vectors sizes of 1, 2, 4, and 8 elements. Here, the refined f-nomial tree
model from Section 4.2.3 uses the NIC-based parameter values given in Section 4.1,
which were derived from serial reduction tests on crescendo.

Direct observation of the figure suggests that the model predicts NIC-based re-
duction latencies with high accuracy. For instance, when chosing among NIC-based
f-nomial trees, the model correctly claims that a degree of 4 is best for 64-bit floating-
point addition of 1-element vectors, and a degree of 2 is best for 2, 4, and 8-element
vectors on this particular 31-node system. Although not shown here, the model also
accurately predicts host-based reduction performance. Thus, as hoped, the model

enables one to choose the best algorithm for a given reduction problem analytically.
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Addition over a 31-Node f-nomial Tree

5.3 Elimination of PCI-bus Transactions

The experiments presented in this section were designed to illustrate the claim
that NIC-based reductions are able to improve the cluster system performance by

avoiding inefficiencies between the processors and the network.
5.3.1 Reduced Latency

Since the PCI-bus transaction cost is significant compared to the network latencies
between nodes in Quadrics, NIC-based reductions can complete with reduced latency
when compared to equivalent host-based implemenations. To show this, NIC-based
and host-based binomial tree reduction latencies for several operations are given in

Figure 5.4.
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Figure 5.4: NIC-based and Host-based Latencies for Various Operations using Bino-
mial Trees

NIC-based reductions will scale better than host-based equivalents when the sav-
ings in PCI-bus transactions outweigh the expense of additional computation cost.
From Section 4.1, the savings in PCI-bus transactions is known to be 0.80 us. Thus,
NIC-based reductions involving computation less than 0.80 us will scale better than
host-based reductions. While the computational cost for single-element 64-bit floating-
point addition is too steep at 1.50 us and the cost for single-element 64-bit floating-
point maximum is close to the limit at 0.67 us, the requirements for simple operations
like NOP and single-element 32-bit integer addition fall well within the limit at 0.00
us and 0.25 us, respectively. As a result, NIC-based implementations for simple op-
erations scale better than the host-based versions. This is what is observed in the

curves plotted in Figure 5.4.
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It is this advantage that other researchers have used to develop efficient NIC-based
implementations of simpler collectives. Figure 5.4 illustrated how this advantage can

be extended to reduction operations, albeit for only limited cases.

5.4 Avoidance of Host-level Process Interference

The experiments presented in this section were designed to illustrate the claim
that NIC-based reductions are able to improve the cluster system performance by

avoiding inefficiencies between the processors and the operating system.
5.4.1 Increased Consistency

NIC-based reductions avoid much of the process interference which host-based
implementations are subject to. As a result, NIC-based reductions complete with
more consistent latencies than host-based implementations. In fact, the host-based
latencies varied substantially from one invocation to another. The best time recorded
for an individual invocation was about three times better than the average. The
NIC-based results, on the other hand, were quite steady.

To clarify this point further, Figure 5.5 shows a distribution graph of the la-
tencies recorded for NIC-based and host-based 64-bit floating-point addition of a
single-element vector over 900 nodes. Unlike measurements for the average reduction
latency, to obtain these data points, 100,000 reduction invocations were timed indi-
vidually, and the resulting set of 100,000 times were grouped into bins of a histogram
to produce a distribution.

The NIC-based latencies are largely contained within a sharp spike, while the host-
based latencies are spread smoothly across a wide range of values. To be precise, 97%

of the NIC-based reductions fall with a spread of only 4 us, while for host-based
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89.30

65.26
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73.67

0.29

Table 5.1: Reduction Latency Statistics for Single-Element 64-bit Floating-Point Ad-

dition over 900 Nodes

reductions, only 57% fall within a spread of 20 us. After pitching out the highest 1%

of the samples, the statistics in Table 5.1 were calculated.

Note the drastic, two order-of-magnitude difference in the standard deviations.
This large contrast in consistency is indicative of the non-deterministic effect that

process interference imposes on host-based reduction implementations. By avoiding
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this process interference, NIC-based reductions are more consistent than host-based

versions on large-scale systems.
5.4.2 Reduced Latency

Because NIC-based reductions avoid much of the host-level process interference,
they complete with reduced latency on average. Although a first glance, Figure 5.5
may suggest that NIC-based reduction takes more time than host-based reduction, a
substantial number of host-based latencies extend far past the right-hand limit of the
distribution graph. Actually, as listed in Table 5.1, the average host-based latency is
89 us, while the NIC-based latency is 74 us.

To further illustrate this point, the latencies for host-based and NIC-based reduc-
tion for a variety of operations and data sizes were recorded, using both one and two
processes per node. In all measurements the NIC-based reductions use 4-nomial trees,
which provide good performance for the configurations used in the experiments. Fig-
ure 5.6 presents single-element vector results obtained for host-based and NIC-based
reductions. Figure 5.6(a) presents the results for 32-bit integer addition while Fig-
ure 5.6(b) displays the results for 64-bit floating-point addition.

The NIC-based curves scale better than the host-based results. Indeed, the plot
for 32-bit integer addition shows that the NIC-based implementation was able to
perform simple integer reductions in about half the time it takes the host to do so.
Further, even while incurring the expensive cost of emulating floating-point addition
on a slower processor, the NIC-based implementation was able to improve upon the

host-based reduction, In the largest configuration tested —1812 processors— the
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Figure 5.6: Host-based and NIC-based Reduction Latencies for Single-Element Vec-
tors
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NIC-based implementation summed single-element vectors of 32-bit integers and 64-
bit floating-point numbers in 73 ps and 118 us, respectively. These results represent
respective improvements of 121% and 39% over the host-based versions.

Note that even in the NIC-based implementations, the latencies recorded for two
processes per node deviate from the results for one process per node. To a lesser de-
gree, the NIC-based curves follow the same general trend as the host-based latencies.
The NIC-based implementation is subject to host-level process interference during the
time it takes the host processes to initiate the reduction operation. Once initiated,
however, the NIC-based algorithm is able to avoid process interference throughout
the execution of the reduction. As a result, when compared to the host-based results,
the NIC-based reduction implementation is only marginally affected by the process

interference.

5.5 Summary

This chapted presented experimental results to validate design choices and show
the benefits of NIC-based reductions. First, several details related to the measurement
procedure were explained.

Then, experiments were designed to validate the vector split optimization, host-
NIC synchronization overhead, and the accuracy of the proposed model. It was shown
that the vector split optimization can be quite valuable for larger vectors, decreasing
latency by more than a factor of three in one case. The host-NIC synchronization

overhead was shown to be substantial, nearly doubling the latency for reductions
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involving only a small number of nodes. Optimizations to minimize and hide the host-
NIC synchronization were shown to valuable, cutting the host-NIC synchronization
overhead in half. Also, the model was shown to be very accurate.

Next, experiments showed that NIC-based reductions do indeed improve large-
scale cluster system performance. For simple operations, NIC-based reductions were
shown to scale better than host-based versions by eliminating many unnecessary PCI-
bus transactions. Also, NIC-based reductions were shown to be more consistent and
finish with lower latency than host-based versions on large-scale systems by avoiding

interference with the operating system on the host processors.
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CHAPTER 6

CONCLUSIONS & FUTURE WORK

This section provides a wrap-up of this thesis. It provides concluding remarks
about this work and suggests some ideas for future work in NIC-based reductions on

modern large-scale clusters.

6.1 Conclusions

This thesis shows that NIC-based reductions are able to improve cluster system
performance by avoiding inefficiencies between the processors and the network, as well
as, between the processors and the operating system, which are inherent to host-based
implementations. Elminating PCI-bus transactions and avoiding process interfernce
at the host-level enables NIC-based reductions to complete with reduced latency on
a more consistent basis than host-based versions.

NIC-based implementations are thus potentially valuable, but they do not come for
free. One must perform processing on a slower and less functional processor and deal
with host-NIC synchronization overhead. However, design techniques are available to
work around these issues. NIC processors that only support integer instructions may
emulate floating-point operations using available software libraries. Even with their
slow processing speed, NIC processors are fast enough to handle the limited processing
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requirements of typical reductions in practical programs. Additionally, algorithms,
such as f-nomial trees, can be used to balance communication with computation by
providing a range of communication structures. Further enhancements like the vector
split optimization can be used to increase parallelism to better utilize the collective
power of many NIC processors. Finally, optimizations can be used to minimize and/or
hide host-NIC synchronization costs.

A simple model derived from LogP was developed to analyze algorithm design
choices and to extrapolate behavioral trends to predict reduction latencies on large-
scale systems. This model was applied to f-nomial trees, and the analysis for finding
the optimal degree for a given problem was presented.

Finally, experimental results are provided to validate various design choices and
demonstrate the benefits of NIC-based reduction. NIC-based reductions show lower
latency and better scalability than host-based implementations on large-scale sys-
tems. In the largest configuration tested —1812 processors— the NIC-based al-
gorithm summed single-element vectors of 32-bit integers and 64-bit floating-point
numbers in 73 us and 118 pus, respectively. These results represent respective im-

provements of 121% and 39% over the host-based versions.
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6.2 Future Work

The concept of NIC-based reductions is quite fresh and many interesting ideas
remain to be explored. Currently, there seems to be three especially promising ar-
eas: hybrid host-based /NIC-based reductions, asynchronous collectives, and improved
NIC processor architectures.

NIC-based reductions save during communication but lose during computation
because NIC processors provide limited processing capability and are very slow. Host-
based reductions perform fast computation but suffer from PCI-bus transactions and
process interference with the operating system. A hybrid approach could be developed
to take advantage of the benefits of both while minimizing the penalties. The most
natural application would be to use NIC-based gathers in between reduction phases
to collect data to be reduced using the host processor. In this way, one may em-
ploy the benefits of NIC-based reduction without incurring the penalty of expensive
computation costs.

Once initiated, NIC-based implementations execute collectives without requiring
assistance from the host processors. By offloading the collective to the NIC processors,
the host processors become free to do other work. On large-scale clusters, where
collectives take considerable time to complete, the host processor may be allocated
substantial time in which to do extra processing. This suggests that asynchronous
collectives may be valuable. Such collective implemenations would allow the host to
initiate a collective and then perform significant amounts of computation while the
NIC is busy carrying it out. By overlapping computation with communication, it

may be possible to significantly reduce application execution time.
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Even with the current limitations of NIC processors, NIC-based reductions are
able to outperform host-based implementations. However, NIC processors lag far be-
hind host processors in capability and speed, and the potential exists to attain much
greater benefits by improving NIC processor architecture. For instance in SAGE, the
large majority of reductions use floating-point operations. Currently, these opera-
tions must be emulated using integer instructions and are very slow. By addiing a
floating-point unit (FPU) to the NIC processor, one could expect to see performance
much closer to that observed for integer results, which scale considerably better. Even
further improvement could be achieved by increasing NIC processor speeds, which are
currently one to two orders of magnitude slower than host processors. In addition
to decreasing NIC-based reduction latencies, such architectural enhancements would
simplify their implementation by reducing the processor’s sensitivity to different re-

duction operations and data sizes.
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Appendix A

This appendix provides a psuedo/C code listing of how to initialize and use an
f-nomial tree communication structure for reduction operations.

It is assumed that the processes in the collective group are numbered with IDs
starting from 0. Without loss of generality, it is also assumed that process 1D 0 is
the root of the reduction. (The algorithm can be used to describe the communication
structure for a general root if one performs a logical remapping by shifting all process
IDs cyclically down by an amount equal to the ID of the root.)

Each process must first initialize the f-nomial tree communication data structure
by calling init_fnomial_tree() with the degree f, the number of processes involved,
and the local process ID, as well as, a pointer to an empty communication data
structure to be filled-in by the function. Having done this, a process may use the
communication structure to carry out an f-nomial reduction operation as shown in
reduce_fnomial_tree(). One must pass in a pointer to the local data, a pointer to
a memory segment to be used as receive buffers, the data size, and the filled-in

communication structure.

Reducing by an f-nomial Tree:
procedure reduce_fnomial_tree

// Inputs:

//  data_local: pointer to local data

// data_remote: pointer to memory segment for receive buffers
// data_size: size of reduction vector

// fnomial_tree: filled-in communication data structure

// Temporaries:
uint data_temp = 0;
// index into receive buffers
uint num_recvs;
// convience variable of the number of receives in a phase

// Process any children

for(phase = 0; fnomial_tree->array_receives[phase] != 0; phase++)

{

71



// number of messages we’ll receive from children of this phase
num_recvs = fnomial_tree—>array_receives[phase];

// wait for messages from children
wait for messages to fill buffers at
[data_temp, data_temp + num_recvs - 1] * data_size + data_remote;

// reduce the data from children with local data

reduce the data in buffers at

[data_temp, data_temp + num_recvs - 1] * data_size + data_remote
with data_local

store result in data_local;

// point to head of receive buffers for next phase
data_temp += num_recvs;

}

// Send reduction data to parent
send data_local

to fnomial_tree->id_parent

at buffer fnomial_tree->child_num * data_size + data_remote;
end procedure
Initializing an f-nomial Tree:

procedure init_fnomial_tree
// Maps process ID == 0 as root.

// Inputs:

// degree: degree, f, of the f-nomial tree
// id_count: number of processes involved

// id_local: local process ID, counts from O

// Outputs:

// fnomial_tree: communication data structure

// i.e.,

// fnomial_tree->array_receives[]:

// number of children during each phase

// fnomial_tree->id_parent:

// parent process ID (equals id_local for root)
//  fnomial_tree->child_num:

// which number child we are to our parent

// Temporaries:
uint phase = 0;
// which communication phase we are computing
uint stride = 1;
// how many process IDs are skipped between
// adjacent children within a phase

// Initialization
// assume we are the root
fnomial_tree->id_parent = id_local;

// While we haven’t covered the entire tree...
while(stride < id_count)
{
// assume we have no children in this phase
fnomial_tree->array_receives[phase] = 0;

// If we are a parent in this phase...
if (FLOOR(id_local / stride) MOD degree == 0)
{
// For each of our (possible degree-1) children...
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for(uint index = 0; index < (degree-1); index++)
{
// If the possible child really exists,
// increase number of receives for this phase
if(id_local + (index+l1) * stride < id_count)
fnomial_tree->array_receives[phase]++;

}

// Else, we must be a child in this phase...
} else {
// Note our parent’s id
fnomial_tree->id_parent =
FLOOR(id_local / (stride * degree)) * (stride * degree);

// and which number child we are to our parent
fnomial_tree->num_child =
phase * (degree-1) + (FLOOR(id_local / stride) MOD degree) - 1;

// After determining our parent, our part is dome
break; // out of the while
} // end if

// Move on to the next phase of the tree
stride *= degree;
phase++;

} // end while

end procedure
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