High-Performance Deep Learning with Large Pathology WSI Images

Talk at First Midwestern Consortium Workshop for Computational Pathology (Jan ’21)

by

Hari Subramoni
The Ohio State University

E-mail: subramon@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~subramon

Follow us on
https://twitter.com/mvapich
Digital Pathology

• Whole Slide Images (WSI)
 – Replacing the glass slide for diagnostic purposes
 – Typically, **100,000 X 100,000 pixels** in size

A whole slide image (WSI)

A Hematoxylin and Eosin stained whole slide image labeled as Tall Cell Variant (TCV) of the papillary thyroid cancer (PTC).

A tile at 10x magnification level

A 1024x1024 image tile at 10 magnification level shows histologic feature of elongated follicles arranged in parallel cords or tram tracks.

A tile at 20x magnification level

A 1024x1024 image tile at 20 magnification level shows cellular features of tall cells.
Modern Computational Pathology Workflow

- Begins with digitization of glass slides to form large multi resolution, whole-slide images
 - Each slide can contain more than 10^6 cells and 10^4 tissue regions.
- Cells and tissue regions in these images can be automatically annotated using neural networks like Faster R-CNN that are trained offline using textual, audio, and visual annotations generated by human experts
- Developing models for diagnosis or predicting clinical outcomes for a single disease may involve 10^4 or more patients
- Typical studies will encompass hundreds of thousands of slides, generating billions of annotated cells and tissue regions
- Variability (audio, textual, and visual) and volume of data creates unique learning and computing challenges
Drivers of Modern HPC Cluster Architectures

- Multi-core/many-core technologies
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
- Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
- Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)
- Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.
AI, Machine Learning & Deep Learning

- Machine Learning (ML) with many traditional applications
 - K-means
 - Random Forest
 - Linear Regression
 - Nearest Neighbor
- Deep Learning (DL)
 - A subset of Machine Learning that uses Deep Neural Networks (DNNs)
- Based on learning data representation
- Examples Convolutional Neural Networks, Recurrent Neural Networks, Hybrid Networks

Key Phases of Deep Learning

• Deep Learning has two major tasks
 1. Training of the Deep Neural Network
 2. Inference (or deployment) that uses a trained DNN

• DNN Training
 – Training is a compute/communication intensive process – can take days to weeks
 – Faster training is necessary!

• Faster training can be achieved by
 – Using Newer and Faster Hardware – But there is a limit!
 – Can we use more GPUs or nodes?
 • The need for Parallel and Distributed Training
Broad Challenge

• Training high-level TCV classifier using data parallelism on 1024 X 1024 image tiles takes 7.25 hours on a state-of-the-art multi-GPU compute node
 – An example of training DL models based on visual annotation

• Can we accelerate training of the TCV classifier?
How to make training faster?

• Data parallelism
 – Horovod: TensorFlow, PyTorch, and MXNet
 – PyTorch: torch.nn.parallel.DistributedDataParallel

• Model-parallelism and Hybrid-parallelism
 – LBANN: Only framework designed for distributed training
 – Higher-level frameworks: Gpipe, Mesh-TensorFlow, DeepSpeed, etc.
 – Model-level Support: Megatron-LM, OpenAI, etc.
Why Model Parallelism?

- **Data-Parallelism**—only for models that fit the memory
- **Out-of-core models**
 - Deeper model → Better accuracy but more memory required!
- **Model parallelism** can work for out-of-core models!
- **Performance** is questionable!
Scale-up and Scale-out

- **Scale-up**: Intra-node Communication
 - Many improvements like:
 - NVIDIA cuDNN, cuBLAS, NCCL, etc.
 - CUDA Co-operative Groups

- **Scale-out**: Inter-node Communication
 - DL and ML Frameworks – most are optimized for single-node only
 - Distributed (Parallel) Execution is an emerging trend
Parallel Programming Models Overview

- Programming models provide abstract machine models
- Models can be mapped on different types of systems
 - e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
- PGAS models and Hybrid MPI+PGAS models are gradually receiving importance
Overview of the MVAPICH2 Project

• High Performance open-source MPI Library
• Support for multiple interconnects
 – InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA
• Support for multiple platforms
 – x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
• Started in 2001, first open-source version demonstrated at SC ‘02
• Supports the latest MPI-3.1 standard
• http://mvapich.cse.ohio-state.edu
• Additional optimized versions for different systems/environments:
 – MVAPICH2-X (Advanced MPI + PGAS), since 2011
 – MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014
 – MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 – MVAPICH2-Virt with virtualization support, since 2015
 – MVAPICH2-EA with support for Energy-Awareness, since 2015
 – MVAPICH2-Azure for Azure HPC IB instances, since 2019
 – MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
• Tools:
 – OSU MPI Micro-Benchmarks (OMB), since 2003
 – OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

Used by more than 3,125 organizations in 89 countries
• More than 1.2 Million downloads from the OSU site directly
• Empowering many TOP500 clusters (Nov ‘20 ranking)
 – 4th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
 – 9th, 448,448 cores (Frontera) at TACC
 – 14th, 391,680 cores (ABCI) in Japan
 – 21th, 570,020 cores (Nurion) in South Korea and many others
• Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
• Partner in the 9th ranked TACC Frontera system
• Empowering Top500 systems for more than 15 years
Challenges in Accelerating Digital Pathology with DL

• How can we design a model parallelism solution that is
 – Memory-efficient
 – Offers better training speed compared to state-of-the-art systems
 – Supports emerging real-world use cases like digital pathology
GEMS: GPU-Enabled Memory-Aware Model-Parallelism System for Distributed DNN Training

A Paper at SuperComputing ’20

Computer Scientists: Arpan Jain, Ammar A. Awan, Jahanzeb M. Hashmi, Quentin G. Anthony, Hari Subramoni, and Dhabaleswar K. Panda

Computational Pathologists: Asmaa M. Aljuhani, and Raghu Machiraju

Pathologist: Anil Parwani
Problem with Model Parallelism

Why do we need Memory aware designs?

– Data and Model Parallel training has limitation!

– Maximum Batch Size depends on the memory.

– Basic Model Parallelism suffers from underutilization of memory and compute →

Model Parallelism-Basic (MP-Basic)

Memory requirement increases with the increase in image size!
Research Challenges

Challenge-1: GPU-based Communication in TensorFlow

Challenge-2: Memory management in TensorFlow

Challenge-3: Scaling Memory-Aware solutions

Meet GEMS!
Key Contributions

• Propose, Design, and Evaluate GEMS: an integrated system that provides memory-efficient model parallel training and scalable hybrid parallel training.

• Propose several design schemes
 – Basic Model Parallelism (GEMS-Basic)
 – Memory Aware Synchronized Training (GEMS-MAST)
 – Memory Aware Synchronized Training with Enhanced Replications (GEMS-MASTER)
 – Combination of Model and Data Parallel Training (GEMS-Hybrid)

• Enabled training of High-level TCV classifier on 1024 X 1024 image tiles

• Reduced training time from 7.25 hours to 28 minutes for out-of-core training on 128 Volta V100 GPUs.
GEMS-MAST: Memory Aware Synchronized Training

- **GEMS-MAST**
 - Uses free memory and compute available between training steps
 - Leverages performance of MPI pt-to-pt. and collectives for communication
Evaluation Setup

• System
 – Lassen at Lawrence Livermore National Laboratory (LLNL)
 - POWER9 processor
 - 4 NVIDIA Volta V100 GPUs per node

• Interconnect
 – X Bus to connect two NUMA Nodes
 – NVLink is used to connect GPU-GPU and GPU-Processor
 – InfiniBand EDR

• TensorFlow v1.14, MVAPICH2-GDR 2.3.3
• We use and modify model definitions for ResNet(s) from *keras.applications*
Exploiting GEMS in AI-Driven Digital Pathology

- Pathology whole slide image (WSI)
 - Each WSI = 100,000 x 100,000 pixels
 - Can not fit in a single GPU memory
 - Tiles are extracted to make training possible

- Two main problems with tiles
 - Restricted tile size because of GPU memory limitation
 - Smaller tiles loose structural information

- Reduced training time significantly
 - GEMS-Basic: 7.25 hours (1 node, 4 GPUs)
 - GEMS-MAST: 6.28 hours (1 node, 4 GPUs)
 - GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)
 - GEMS-Hybrid: 0.46 hours (32 nodes, 128 GPUs)
 - Overall 15x reduction in training time!!!!

Scaling ResNet110 v2 on 1024x1024 image tiles using histopathology data
• Training a high-level Sequence Classification model using data parallelism on pathology reports (Text/Audio) can take weeks on a state-of-the-art multi-GPU compute node
 – An example of training DL models based on audio/textual annotation

• Can we accelerate the training using sub-graph parallelism?
Transformers for Audio and Textual Pathology Reports

- Transformers have continually pushed the state-of-the-art in natural language processing and have achieved impressive results in audio processing.
 - Examples: BERT, GPT, GPT-2, GPT-3, T5
 - Multi-head attention module is used by all Transformer models
- Propose SUPER: SUb-Graph Parallelism for TransformERs
 - Accelerates the training of Transformer models for audio and textual data
 - A generalized hybrid of data and sub-graph parallelism (D&SP)
 - Enhanced communication patterns to achieve scalability
Exploiting Sub-Graph Parallelism

- Benefits of Sub-Graph parallelism for T5-Large Transformer model
 - Proposed design (D&SP) is up to 2.22X faster than data parallelism
Conclusions

- Next-generation Computational Pathology requires support for HPC, Deep Learning, and Machine Learning
- Requires high-performance middleware designs while exploiting modern HPC technologies
- Provided a set of solutions to achieve
 - MPI (MVAPICH2)-driven solution with Deep Learning Frameworks (TensorFlow, PyTorch and MXNet)
 - Out-of-core training and Hybrid Parallelism for large pathology WSI images
- Looking forward to working with computational pathology community
Funding Acknowledgments

Funding Support by

Equipment Support by
Acknowledgments to all the Heroes (Past/Current Students and Staffs)

Current Students (Graduate)
- Q. Anthony (Ph.D.)
- M. Bayatpour (Ph.D.)
- C.-C. Chun (Ph.D.)
- A. Jain (Ph.D.)
- K. S. Khorassani (Ph.D.)
- P. Kousha (Ph.D.)
- S. Srivastava (M.S.)

Current Research Scientists
- A. Shafi
- A. H. Tu (Ph.D.)
- S. Xu (Ph.D.)
- Q. Zhou (Ph.D.)

Past Students
- A. Awan (Ph.D.)
- A. Augustine (M.S.)
- P. Balaji (Ph.D.)
- R. Biswas (M.S.)
- S. Bhagvat (M.S.)
- A. Bhat (M.S.)
- D. Buntinas (Ph.D.)
- L. Chai (Ph.D.)
- B. Chandrasekharan (M.S.)
- S. Chakraborty (Ph.D.)
- N. Dandapanthula (M.S.)
- V. Dhanraj (M.S.)
- C.-H. Chu (Ph.D.)
- T. Gangadharappa (M.S.)
- K. Gopalakrishnan (M.S.)
- J. Hashmi (Ph.D.)
- W. Huang (Ph.D.)
- W. Jiang (M.S.)
- J. Jose (Ph.D.)
- M. Kedia (M.S.)
- S. Kini (M.S.)
- M. Koop (Ph.D.)
- K. Kulkarni (M.S.)
- R. Kumar (M.S.)
- S. Krishnamoorthy (M.S.)
- K. Kandalla (Ph.D.)
- M. Li (Ph.D.)
- P. Lai (M.S.)
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mamidala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- S. Potluri (Ph.D.)
- K. Raj (M.S.)
- R. Rajachandrasekar (Ph.D.)
- D. Shankar (Ph.D.)
- G. Santhanaraman (Ph.D.)
- N. Sarkauskas (B.S.)
- A. Singh (Ph.D.)
- J. Srivastava (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)
- J. Zhang (Ph.D.)

Past Research Scientists
- K. Hamidouche
- S. Sur
- X. Lu

Past Post-Docs
- D. Banerjee
- X. Besseron
- M. S. Ghazimeeresaed
- H.-W. Jin
- J. Lin
- M. Luo
- E. Mancini
- K. Manian
- S. Marcarelli
- A. Ruhela
- J. Vienne
- H. Wang

Current Senior Research Associate
- J. Hashmi

Current Research Specialist
- J. Smith

Current Software Engineers
- A. Reifsteck
- N. Shineman

Past Programmers
- D. Bureddy
- J. Perkins

Past Research Specialist
- M. Arnold
Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/