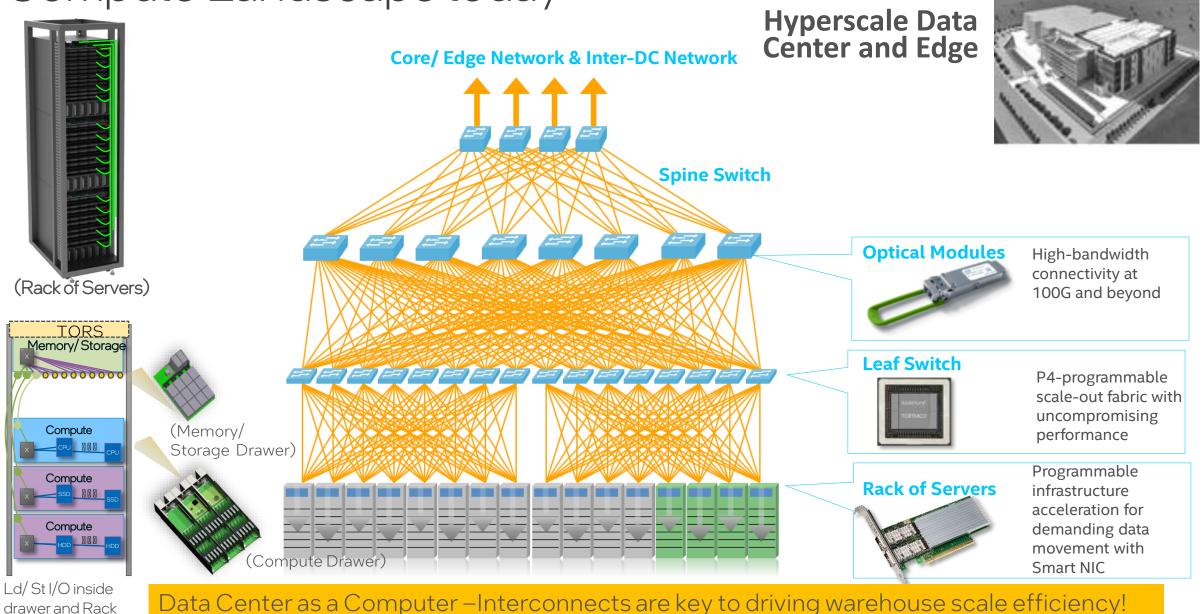
Exacomm 2024 Workshop

Compute Express Link (CXL)*: An open interconnect for HPC and Al applications


Dr. Debendra Das Sharma Intel Senior Fellow and Chief I/O Architect, Data Center and Al Group, Intel Corporation

Agenda

- Load-Store I/O in Compute Landscape
- Compute Express Link and its evolution
- Conclusions and Call to Action

Compute Landscape today

Exacomm 2023 Workshop

drawer and Rack

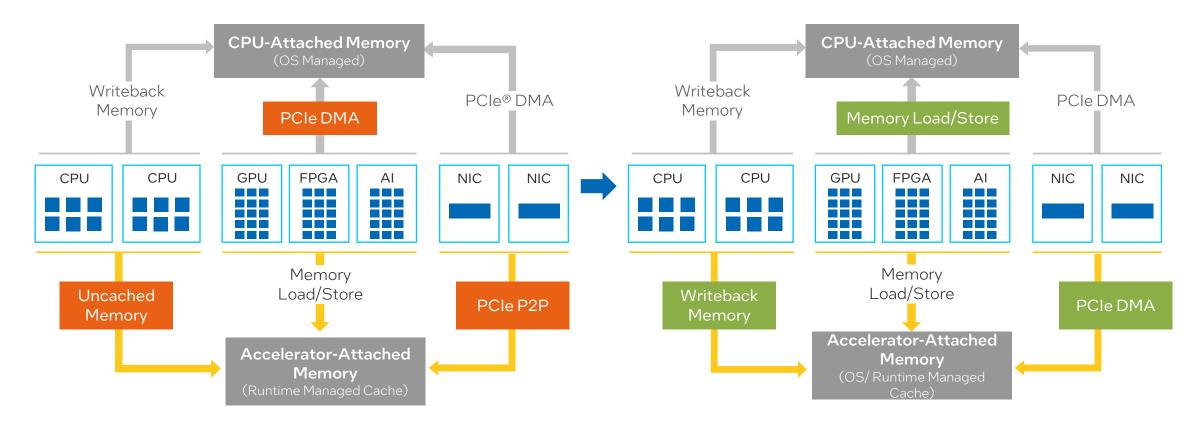
3

Evolution of PCI-Express: Speeds and Feeds

- Double data rate every gen in ~3 years since 2003
- Full backward compatibility
- Ubiquitous I/O: PC, Hand-held, Workstation, Server, Cloud, Enterprise, HPC, Embedded, IoT, Automotive
- One stack / silicon, multiple form-factors
- Different widths (x1/x2/x4/x8/x16) and data rates fully inter-operable
 - A x16 Gen 5 interoperates with a x1 Gen 1!
- Drivers: Networking, XPUs, Memory, Alternate Protocol – need to keep w/ compute cadence

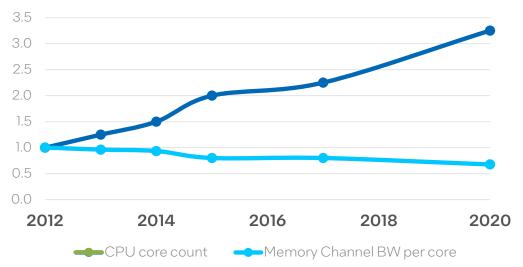
PCIe Specification	Data Rate(Gb/s) (Encoding)	x16 B/W per dirn**	Year
1.0	2.5 (8b/10b)	32 Gb/s	2003
2.0	5.0 (8b/10b)	64 Gb/s	2007
3.0	8.0 (128b/130b)	126 Gb/s	2010
4.0	16.0 (128b/130b)	252 Gb/s	2017
5.0	32.0 (128b/130b)	504 Gb/s	2019
6.0	64.0 (PAM-4, Flit)	1024 Gb/s	2022
<u>7.0 (WIP)</u>	128.0 (PAM-4, Flit)	2048 Gb/s	2025*

PCIe supporting the Load-store interconnects seamlessly! With cable and retimers, we can extend the reach from drawer to Rack


Agenda

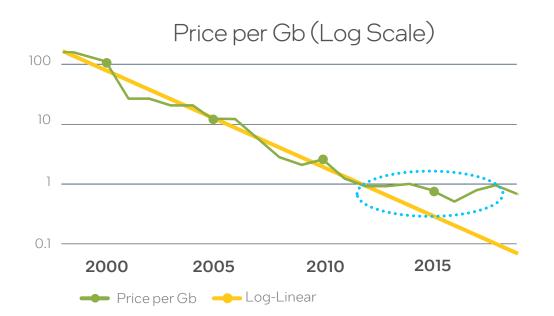
- Load-Store I/O in Compute Landscape
- Compute Express Link and its evolution
- Conclusions and Call to Action

CXL[™]: A New Class of Open-Standard Interconnects


With PCIe Only

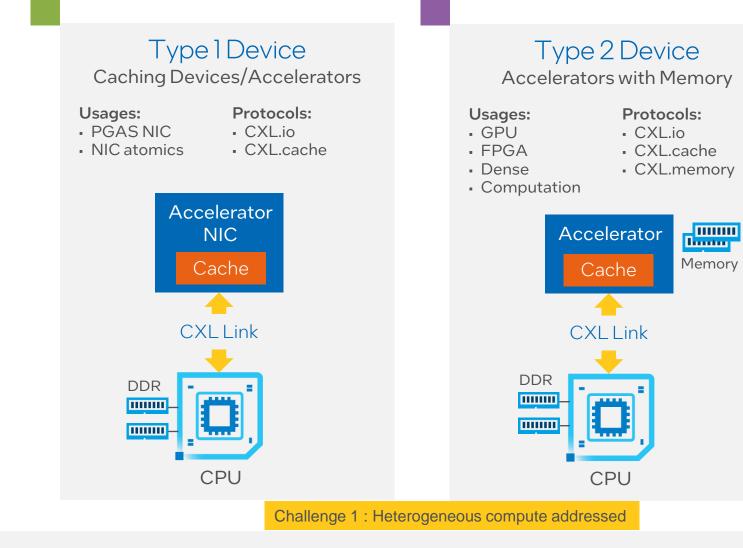
CXL-Enabled Environment

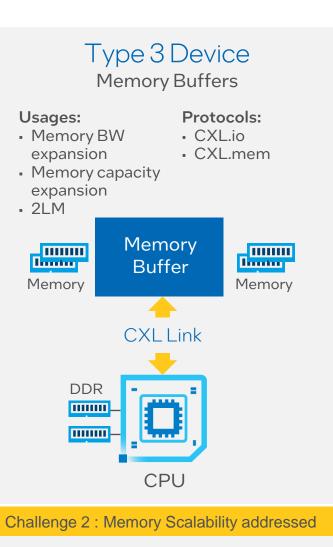
Challenge 1 addressed by CXL: Heterogeneous compute with coherent access to system and device memory


The System Memory Challenge

Normalized Growth Rate

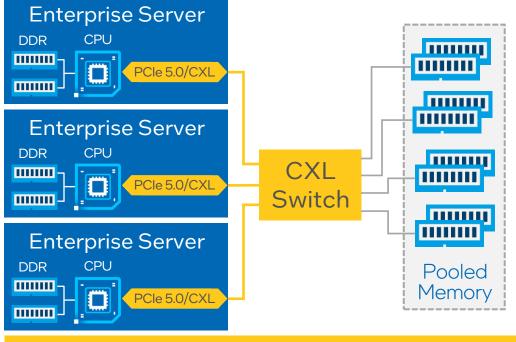
- Increasing core counts drives memory demand
- Increasing bandwidth and capacity
- Memory is not able to keep up -> more DDR channels (cost, power and feasibility challenges)


Challenge 2 addressed by CXL: Memory Scalability



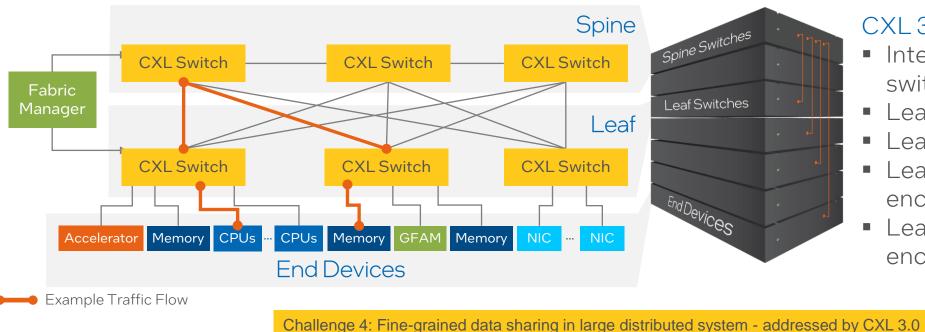
- Memory is an increasing % of system power and cost
- Memory price (cost/bit) is flat due to scaling challenges
- Memory power scaling with speed

Source: De Dios & Associates


CXL[™] 1.0/CXL 1.1 Usage Models

CXL[™] 2.0: Resource Pooling at Rack Level, Persistent Memory Support and Enhanced Security

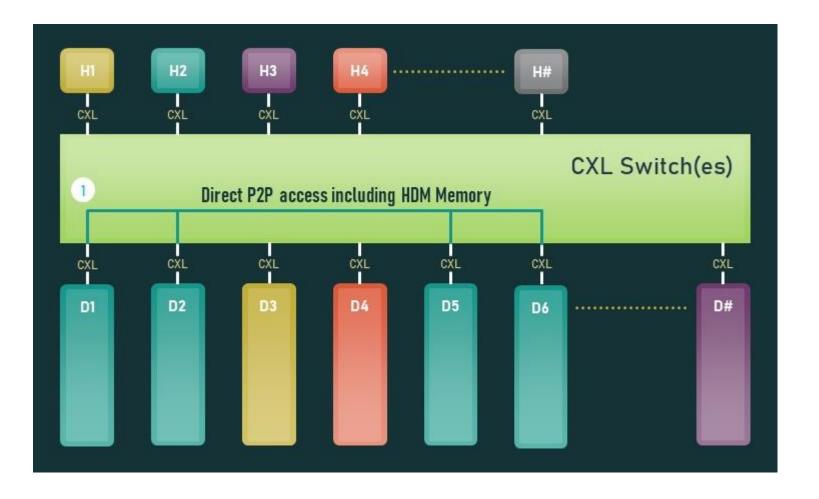
- Resource pooling/disaggregation
 - Managed hot-plug flows to move resources
 - Type-1/Type-2 device assigned to one host
 - Type-3 device (memory) pooling at rack level
 - Direct load-store, low-latency access similar to memory attached in a neighboring CPU socket (vs. RDMA over network)
- Persistence flows for persistent memory
- Fabric Manager/API for managing resources
- Security: authentication, encryption
- Beyond node to rack-level connectivity!



Challenge 3: Stranded resources in Data Center addressed by CXL 2.0

Disaggregated system with CXL optimizes resource utilization delivering lower TCO and power efficiency

CXL[™] 3.0 Enhancements


- Bandwidth doubling with 64 GT/s at 0-latency add
- Protocol enhancements with direct peer-to-peer to HDM memory Shared Memory
- Composable systems with spine/leaf architecture at rack/pod

CXL 3.0 Fabric Architecture

- Interconnected spine switch system
- Leaf switch NIC enclosure
- Leaf switch CPU enclosure
- Leaf switch accelerator enclosure
- Leaf switch memory enclosure

CXL 3.0 Protocol Enhancements (UIO and BI) for Device to Device Connectivity

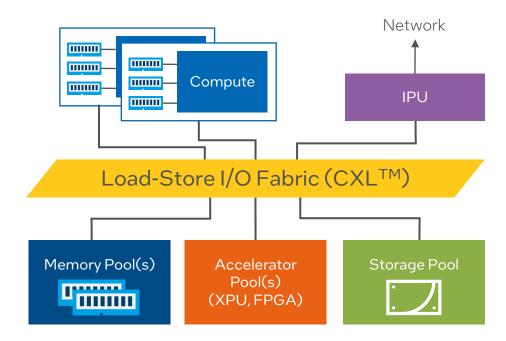
CXL 3.0 enables **non-tree topologies and peer-to-peer communication (P2P)** within a virtual hierarchy of devices

- Virtual hierarchies are associations of devices that maintains a coherency domain
- P2P to HDM-DB memory is I/O Coherent: a new <u>Unordered I/O</u> (<u>UIO) Flow</u> in CXL.io – the Type-2/3 device that hosts the memory will generate a new <u>Back-Invalidation flow</u> (CXL.Mem) to the host to ensure coherency if there is a coherency conflict

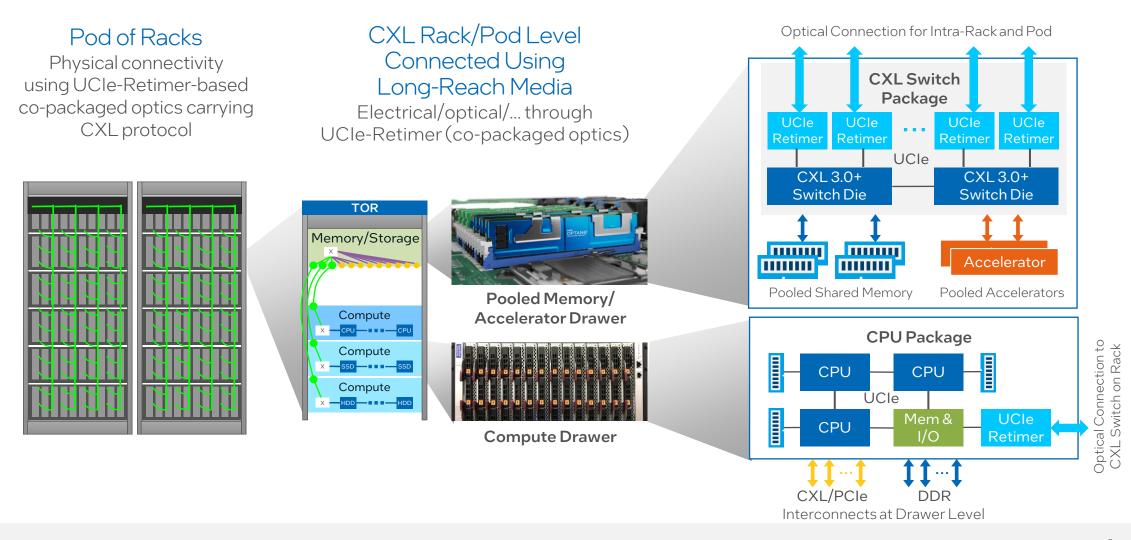
CXL: Health of the Ecosystem

Attribute	Status	Comments	
Membership	255+		
Products	3 Compliance events since April 2023	4 ^{th:} : May 4, 2024. 20 CXL1.1 devices in <u>integrators list</u> : 1 Type-1, 2 Type-2, 15 Type3, 2 Type1/2/3 Significant s/w dev. <u>Linux</u> Kernel 5.15 full support of T3 (Ubuntu 22.04.1 LTS/ Fedora Core 36 works) Multiple show-cases and demos in multiple conferences (SC, FMS, OCP, Memcon, etc.)	
Heterogeneous Compute (Type1/2)	Deployed	UberNIC : low-latency (1/2) and high throughput (>2.5x) VM Migration	
Memory (Type-3)	Deployed	Wide deployment. Both bandwidth and capacity expansion. <u>Reduces loaded latency</u> . Multiple media (DRAM and storage covered)	
Pooling (CXL 2.0)	PoCs look promising	VM Elastic Memory demand: Pond showed 9% DRAM savings initially (still substantial; paper in ASPLOS 23) –likely to go up - direct attach. Estimates showing ~40K CXL switching costs are inaccurate both from cost as well as ignoring MHD.	
		Data base elastic memory demand: SAP and Intel: works well for TPCC (negligible performance degradation even with switches). <u>See paper</u> .	
Speeds	128G coming soon (2025)	128G PCIe PHY (demo'ed by several companies) and 112G Enet PHY on same process have almost identical b/w density. B/W density does improve on doubling rate but not 2X (e.g., 112G -> 224G is a 1.3x improvement). Need to consider platform/ channel reach also	
Sharing/Fabric	WIP(CXL3+)	CXL 3 silicon development in progress. S/W: Work actively continues on CXL 3.x (e.g., a patchset is to layer a filesystem on top of shared memory)	

Agenda


- Load-Store I/O in Compute Landscape
- Compute Express Link and its evolution
- Conclusions and Call to Action

Future Directions and Conclusions


- CXL[™] enabling new usages beyond node
- Composable systems rack/pod level
 - Resource pooling/sharing
 - Multiple domains, shared memory, message passing, atomics, peer-to-peer
 - Fabric Manager
- High-bandwidth, low-latency CXL fabric
 - Low-latency switches
 - Cables with retimers/co-packaged optics
 - Iso power-performance as direct connect
- Challenges: blast radius, containment, QoS, memory reliability, fail-over, software

Multi-Domain Capable Load-Store I/O

Vision: Load-Store I/O (CXL) as the fabric across the pod providing low-latency and high-bandwidth resource pooling/sharing as well as message passing

Future Directions and Conclusions: Rack/Pod-Level Resource Pooling/Sharing with CXL[™] and UCle

Thank You!