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Evaluate Communication Overhead with Distributed LLM Training
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https://dl.acm.org/doi/abs/10.1145/3639034
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* Evaluate end-to-end transformer training on
— both high-bandwidth (DGX) and low-bandwidth systems upto 512 GPUs,
— six model sizes up to 18.4B,

— 3 data parallel sharding strategies (ZeRO stages) and 3 combinations of model
parallelism,

—2 model architectures (GPT and BERT) that involve 4 kinds of collective
communication calls

—three emulated limited network bandwidth cases in model parallel scaling.

* Our performance modeling is applicable to different model sizes and system
architectures.

* Project the speedup at large-scale training runs, achieving mean squared error of
less than 2.0%, compared to our evaluation results.
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Collective Communication ops in ZeRO
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N Compute === AllReduce
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(a) Converting a profile trace with overlapping compute and communication
kernels into the execution time distribution.
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Polaris TG40’ TG80’

System HPE Apollo NVIDIADGX NVIDIA DGX
Nodes 560 22 2
#Nodes (#GPU) scaled 128 (512) 8 (64) 2 (16)
CPU Model AMD 7543P AMD 7742 AMD 7742
CPU Socket(s) 1 2 2
GPU NVIDIA A100 NVIDIA A100 NVIDIA A100
per GPU Memory 40GB HBM2 40GB HBM2 80GB HBMz2e
#GPU per node 4 8 8
GPU Memory B/W 1555 GB/s 1555 GB/s 2039 GB/s
#NVLink per GPU 12 (4 per peer) 12 (NVSwitch) 12 (NVSwitch)
Compute NIC ConnectX-5 ConnectX-6 ConnectX-6
#Interconnect per node 2 8 8

200 Gbps 1.6 Tbps 1.6 Tbps
L N HEI SN, e Rl (25 GB/I:;) (200 GB/I:) (200 GB/I:)
pinned memory copy B/W 24.6 GB/s 26.1 GB/s 26.2 GB/s
pageable memory copy B/W 19.2 GB/s 12.2 GB/s 12.4 GB/s
P2P B/W 80.5 GB/s 277.6 GB/s 278.8 GB/s

Table 4. The GPU supercomputing systems evaluated in this study.
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Fig. 14. End-to-end per-iteration training time distribution and speedup for different number of GPUs, model
parameters using ZeRO-3 stage.
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* Our evaluation results for data parallelism training indicate that a lower
bandwidth system may result in

— 7.35x increase in communication time
— 59.25% reduction in training throughput

* This impact becomes much more significant in ZeRO-2, where lower network
efficiency leads to even worse scaling on the lower bandwidth system with
more GPUs.
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Key Takeaways

e For future scaling analyses on large-scale systems, it is recommended to first
obtain a breakdown of single-node communication and compute times, along
with network efficiency through benchmarking.

e With this information, we can estimate end-to-end training times after system
scaling

* In a bandwidth-limited environment, network efficiency remains a critical
indicator for multi-node scaling, and low-precision compression can help
reduce the volume of communication.
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Key Takeaways

* |In large transformer model training, data parallelism (DP) can achieve better
scaling compared to tensor parallelism.

— DP parallelism reduces the gradient of weights, while TP reduces the gradient of
activations, which are typically much larger than the weight

* For model parallelism, we conclude that
—the degree of pipeline parallelism should be larger than the number of nodes
—degree of tensor parallelism should not exceed the number of GPUs per node.

* To further improve GPU utilization, we can choose the maximum micro-batch
size that can fit into a single GPU memory, and the corresponding global batch
size can be determined.
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Focus Areas
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Memory stacked memory
Disaggregated memory

Algorithms to make best use of this hierarchy

Optimizations from model implementation, frameworks

Better collective communication libraries

N/W bandwidth is critical for emerging workloads at scale
Manage interference in multi-tenancy latency
Focus on overlap communication with computation

Optical interconnects is interesting!
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Thank You

* This research was funded in part and used resources of the Argonne Leadership Computing
Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-ACO02-
06CH11357.

Please reach out for further details
Murali Emani, memani@anl.gov
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