

Current and Future Challenges of the Tofu Interconnect for Emerging Applications

Yuichiro Ajima Senior Architect Next Generation Technical Computing Unit Fujitsu Limited

Index

Fujitsu's strategy for emerging applications

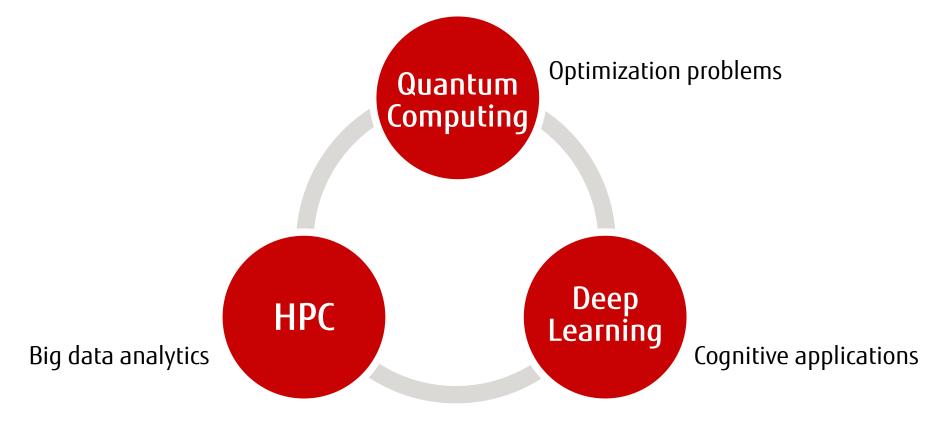
Recent projects conducted by JST-CREST teams

Graph500 benchmark (Prof. Fujisawa's team)

- Inchworm (Prof. Nanri's team)
- Fujitsu's Deep Learning Unit
- Emerging technologies and future challenges

Emerging Applications

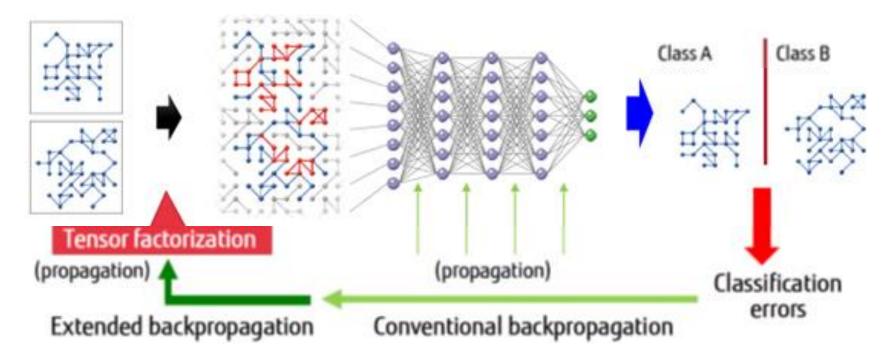
- Three core technologies in Fujitsu's vision
 - HPC, deep learning and quantum computing
- Three domains of emerging applications
 - Big data analytics, cognitive applications and optimization problems



Multi-Domain Application

FUjitsu

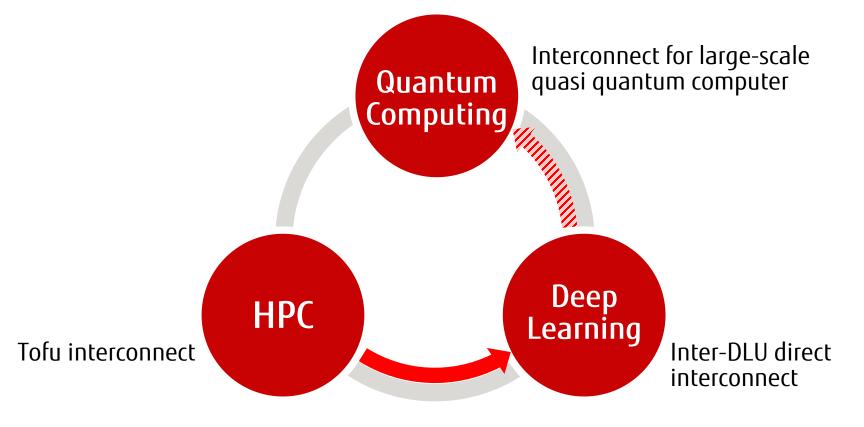
- Example: Fujitsu's 'Deep Tensor'
- A loose combination of graph analytics and neural network
 - Graph analytics: sparse matrix processing
 - Convolutional neural network: dense matrix processing



"Fujitsu Technology to Elicit New Insights from Graph Data that Expresses Ties between People and Things", http://www.fujitsu.com/global/about/resources/news/press-releases/2016/1020-01.html

Interconnect Development Strategy

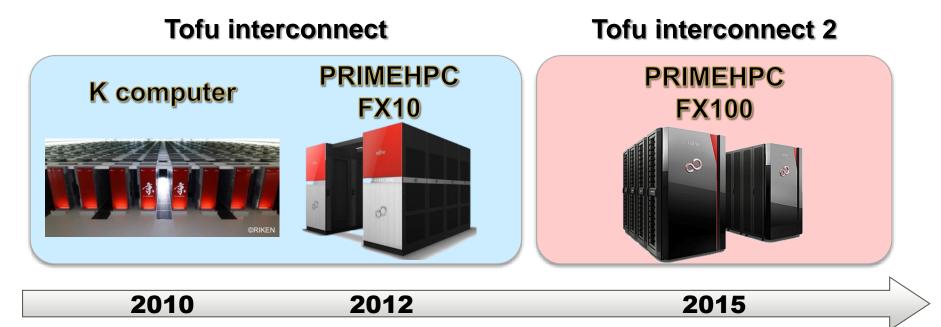
- Develop highly scalable domain-specific machines
 - For higher performance beyond the end of Moore's Law
- Fujitsu has developed Tofu interconnect as HPC interconnect
- High scalability technology will propagate to other machines



Tofu Interconnect

Highly scalable HPC interconnect

- Tofu interconnect: developed for the K computer
- Tofu interconnect 2: developed for PRIMEHPC FX100



Physical 6D mesh/torus and virtual 1/2/3D torus network
 Fujitsu MPI provides topology-aware collective communication

Recent Work on Big Data Analytics

- Two Recent projects conducted by JST-CREST teams
- Optimization of Graph500 benchmark (Prof. Fujisawa's team)
 - Parallel breadth-first search of huge graph
 - Topology-aware optimization of communication
- Parallelization of Inchworm (Prof. Nanri's team)
 - The first phase of de novo transcriptome assembly
 - Construct and traverse a dictionary of k-mer (DNA substring of length k)
 - Uses distributed data structure APIs for productivity

Index

Fujitsu's strategy for emerging applications

Recent projects conducted by JST-CREST teams

■ Graph500 benchmark (Prof. Fujisawa's team)

■ Inchworm (Prof. Nanri's team)

- Fujitsu's Deep Learning Unit
- Emerging technologies and future challenges

Graph500 Benchmark

FUJITSU

Parallel breadth-first search of a huge graph

Calculate an array of parent vertices

Hyper-sparse adjacency matrix $A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,2^s} \\ \vdots & \ddots & \vdots \\ A_{2^s,1} & \cdots & A_{2^s,2^s} \end{pmatrix}$

 $\begin{pmatrix} A_{2^{s},1} & \cdots & A_{2^{s},2^{s}} \end{pmatrix}$

- Size of adjacency matrix = $2^S \times 2^S$ (*S* = problem scale)
- Number of edges = 16×2^{S}
- As problem scale increases, adjacency matrix becomes sparse

Two key points of optimization

- Compression of the adjacency matrix for computation
- Distribution of the adjacency matrix for communication

Direction-Optimizing Search [Beamer, SC12]

Target of Graph500 is a scale-free network

- It includes high-degree vertices
- If the currently visited vertices include high-degree vertices:
 - The number of edges to traverse in the next step will increase significantly
 - Reversing search direction may reduce the number of edges to traverse

Top-down direction

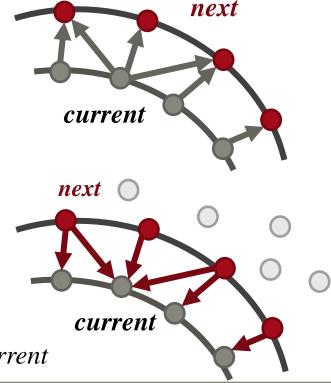
- Search next vertices directly
- From the currently visited vertices

 $next = (A \times current) \& \neg visited$

Bottom-up direction

- Search all unvisited vertices
- For the adjacent vertices of the currently visited vertices

$$next = (A \& [\neg visited | \neg visited | \dots])^{T} \times current$$



2D Partitioning [Yoo, SC05]

- Partitioning of the adjacency matrix in two-dimensions
 - Distribution of edges according to both source and destination vertices
- Each searching step requires:
 - All-gather communication for search calculation in one dimension
 - All-to-all communication for update in the other dimension

Good scalability

- Each node uses only a part of the vectors, such as *current* or *next*
- If the problem scale is large, the vectors will be too large for memory

High performance

- Collective communication groups are small
- Update communication can be overlapped by computation when the search direction does not change in the next step

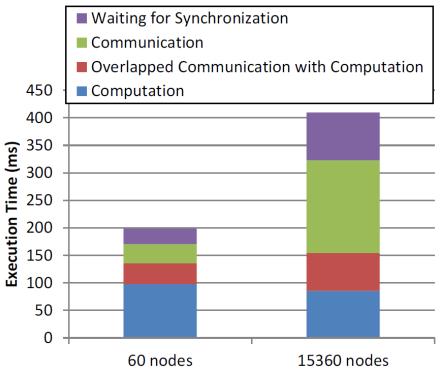
2D Partitioning on the K computer

- The adjacency matrix was divided into 288 × 288
 - K computer: 82,944 nodes = 24 × 18 × 16 × 2 × 3 × 2
 - 18 × 16 = 288 and 24 × 2 × 3 × 2= 288
- 288 row and 288 column communicators
 - Each node participated in one row and one column communicator
 - Each communicator consisted of all nodes in a 6D rectangular submesh, so that Fujitsu MPI used topology-aware algorithm
 - All-gather: three-phase quad rings algorithm
 - All-to-all: uniformly overlaid symmetrical pattern algorithm
- Communication was overlapped with computation if the number of vertices to be updated was small
 - Otherwise, an MPI collective operation was called
 - Different implementation was required for each dimension and direction

Repository: github.com/suzumura/graph500

Graph500 Performance on the K computer

- History and breakdown [Ueno, IEEE Big Data 2016]
 - 17,977 GTEPS using 2D partitioning (June 2014)
 - 19,585 GTEPS using hybrid top-down/bottom-up (Nov. 2014)
 - 38,621 GTEPS by improved sparse matrix computation (July 2015)
 - Compute-efficient compression, vertex reordering for access locality and improved inter-thread load balance
 - The ratio of computation time was relatively small
 - Communication time became a major bottleneck in large scale
- High-throughput interconnect is important for graph BFS



Index

Fujitsu's strategy for emerging applications

Recent projects conducted by JST-CREST teams

- Graph500 benchmark (Prof. Fujisawa's team)
- Inchworm (Prof. Nanri's team)
- Fujitsu's Deep Learning Unit
- Emerging technologies and future challenges

Trinity

- A major Extraction de novo transcript assembly software
 - of RNA sequences without reference DNA
 - Consist of Inchworm, Chrysalis and Butterfly
- Usually run on a large memory machine
 Inchworm is the most memory-consuming process

- Input: short reads of Next-Generation Sequencing (NGS)
 - NGS is a high-throughput DNA/RNA sequencing platform
 - Large number of short reads that are around 100 base pairs
 - Short reads overlap each other
 - Reads contains errors or unusable data at a certain ratio

Inchworm

- Overview of Trinity's processing
 - Extracts 'contigs' (overlapped series of k-mers) from short reads
 - Constructs partial de Bruijn graphs from contigs
 - Finds Eulerian path for each disconnected subgraph

Inchworm

- Pre-process for de Bruijn graph construction
 - Counts the number of occurrences of each k-mer
 - Constructs 'contigs' with high-frequency k-mers
- Parallelization of Inchworm
 Distributed data structure APIs
 ACP communication library

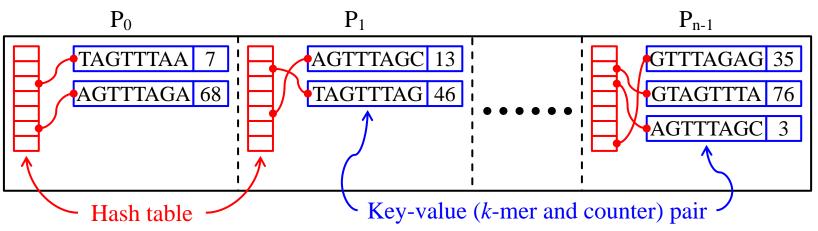
 Supports: Tofu, InfiniBand and UDP
 Repository: github.com/project-ace/ACP

Illumina reads Inchworm Contigs Contigs Chrysalis Contig clusters de Bruijn graphs Butterfly Reconstructed isoforms

Parallel Construction of k-mer Dictionary

Using map data structure

- 1. Each process creates a map that can be accessed from any process
- 2. Each process reads input in parallel and inserts *k*-mers into the maps



The process of inserting *k*-mer involves three steps

- 1. Hashing of the *k*-mer to determine in which process's map to store it
- 2. Inserting the *k*-mer and value 1 into the map
- 3. Atomically incrementing the existing value if step 2 fails
- There is additional overhead due to the separate steps 2 and 3

Multiset data structure

- We added 'multiset' data structure to ACP
 - Multiset is an extended data structure of the 'set'
 - Set: insertion fails if the key already exists
 - Multiset: insertion increments the counter of the key and does not fail

Multiset simplifies k-mer insertion process

- 1. The *k*-mer is hashed to determine in which process's multiset to store it
- 2. The *k*-mer is inserted into the multiset

We also extended multiset API for the next splicing process

- Retrieve: obtains the counter value of the specified key
- Remove-all: deletes the specified key regardless of its counter value

Parallel k-mer Splicing

- Each process selects a k-mer as a starting point
- Processing of *k*-mer splicing for each direction
 - 1. Retrieves counter values of four, ATGC, adjacent *k*-mer candidates
 - 2. Ends the splicing process if no adjacent *k*-mer is found in step 1
 - 3. Selects the *k*-mer with the highest counter value
 - 4. Splices the selected *k*-mer to the contig
 - 5. Deletes the selected *k*-mer from the *k*-mer dictionary
 - This process is the same as the sequential version, except that the k-mer dictionary is distributed

Future research

- Retrieve four adjacent k-mer candidates through a single API call
 - Exclude base pairs at both ends of *k*-mer in process selection
- Increase probability of storing adjacent k-mers in the same process
 - Predict input and adjust the hash function of process selection

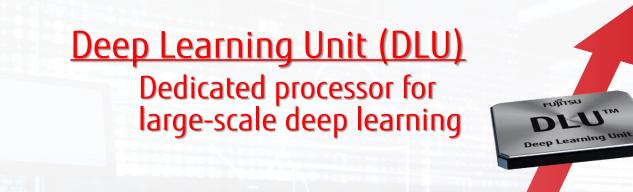
Index

- Fujitsu's strategy for emerging applications
- Recent projects conducted by JST-CREST teams
 - Graph500 benchmark (Prof. Fujisawa's team)
 - Inchworm (Prof. Nanri's team)
- Fujitsu's Deep Learning Unit
- Emerging technologies and future challenges

Deep Learning Unit

© RIKEN

FUJITSU



PRIMEHPC FX10

* RIKEN and Fujitsu are currently developing the post-K computer

K computer

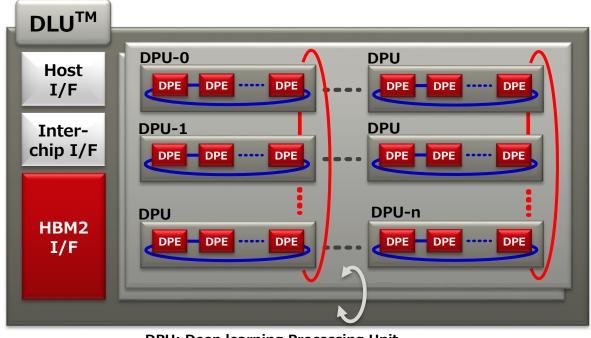
Post-K*

PRIMEHPC FX100

DLU[™] Architecture

FUĴITSU

- New ISA developed for deep learning
- Highly power-efficient with simple microarchitecture
- High bandwidth memory of HBM2
- Large-scale network of inter-DLU direct connection



DPU: Deep learning Processing Unit DPE: Deep learning Processing Element

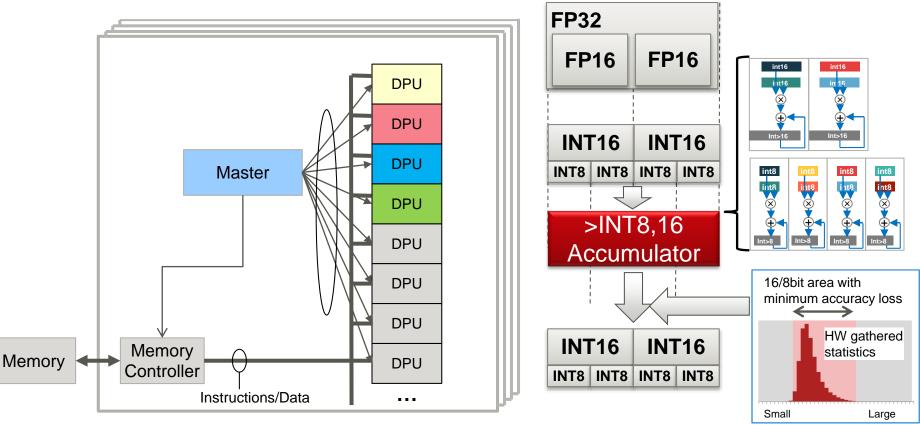
DLU[™] Architecture (Cont.)

Heterogeneous core

Master core handles Memory access and controls DPU

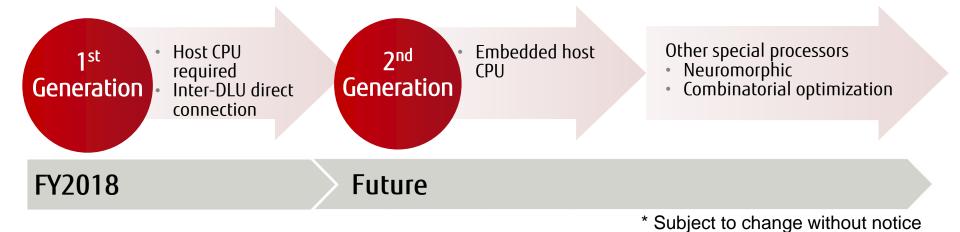
FP32, FP16 and Deep Learning Integer

■ INT16 and INT8 with automatic scaling



DLU Roadmap

- The 2020s will be the era of domain-specific machines
 DLUTM is Fujitsu's first processor for this era
- Multiple generations of DLUs are included in the roadmap
 - Continuous processor development strategy, similar to Fujitsu's strategy in HPC, UNIX and Mainframe areas



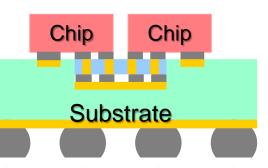
Index

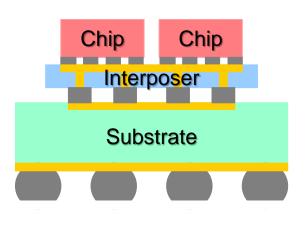
- Fujitsu's strategy for emerging applications
- Recent projects conducted by JST-CREST teams
 - Graph500 benchmark (Prof. Fujisawa's team)
 - Inchworm (Prof. Nanri's team)
- Fujitsu's Deep Learning Unit
- Emerging technologies and future challenges

Emerging Packaging Technology

- Packaging technologies impact node architecture
 - Off-package interconnect also needs to adapt to new node architectures
- Recent multi-chip package technology
 - High density chip-to-chip interconnection
 - Si-IP with TSVs
 - TSMC Chip-on-Wafer-on-Substrate (CoWoS)
 - NVIDIA Tesla P100 and V100

- Small bridge for chip-to-chip interconnection
 - Intel Embedded Multi-die Interconnect Bridge (EMIB)
 - Altera Stratix 10





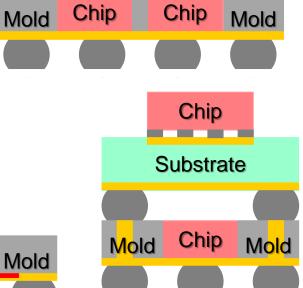
Thin Package without Substrate

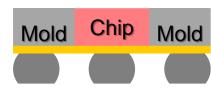
- Fan-out wafer-level packaging (FOWLP)
 - Redistribution layer is supported by mold
 - Better signal integrity and low power loss
- Variations of FOWLP
 - Multi-chip FOWLP
 - High density chip-to-chip interconnection
 - FOWLP package-on-package
 - TSMC InFO-PoP
 - Apple A10
 - Inductor integrated FOWLP
 - Further reduction in power loss

Fan-out panel-level packaging (FOPLP)

Low-cost solution

Metal plate





Chip

Mold

Future System and Interconnect

- Future node architecture
 - Substrateless packaging technology
 - Heterogeneous integration
 - Optical transceiver module on package
- Special Unit
 CPU
- Trade-offs related to package size
 - Package size of FOWLP is generally smaller than that of Si-IP
 - Smaller package size improves yield rate
 - Smaller node requires high scalability and high parallel efficiency

Interconnect design for future domain-specific machines

- Different package technology, scalability, media, speed and cost
- Some systems will incorporate dedicated interconnect design
- For other systems, interconnect should be designed as a configurable IP

Summary

Summary

- Three domains of emerging applications
 - Big data analytics, cognitive applications and optimization problems
 - Fujitsu will develop highly scalable domain-specific machines
 - Recent projects conducted by JST-CREST teams
 - Optimization of Graph500 benchmark by Prof. Fujisawa's team
 - Parallelization of Inchworm by Prof. Nanri's team
- Fujitsu's Deep Learning Unit
 - Large-scale network of inter-DLU direct connection

Future challenges

- Higher scalability for the trade-off between yield rate and package size
- Not only dedicated design but also configurable IP is required

FUJTSU

shaping tomorrow with you