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Emerging Applications

 Three core technologies in Fujitsu’s vision

HPC, deep learning and quantum computing

 Three domains of emerging applications

 Big data analytics, cognitive applications and optimization problems
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Multi-Domain Application

 Example: Fujitsu’s ‘Deep Tensor’

 A loose combination of graph analytics and neural network

Graph analytics: sparse matrix processing

Convolutional neural network: dense matrix processing
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“Fujitsu Technology to Elicit New Insights from Graph Data that Expresses Ties between People and Things”, 

http://www.fujitsu.com/global/about/resources/news/press-releases/2016/1020-01.html
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Interconnect Development Strategy

Develop highly scalable domain-specific machines

 For higher performance beyond the end of Moore’s Law

 Fujitsu has developed Tofu interconnect as HPC interconnect

High scalability technology will propagate to other machines
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Tofu Interconnect

Highly scalable HPC interconnect

 Tofu interconnect: developed for the K computer

 Tofu interconnect 2: developed for PRIMEHPC FX100

 Physical 6D mesh/torus and virtual 1/2/3D torus network

 Fujitsu MPI provides topology-aware collective communication
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Recent Work on Big Data Analytics

 Two Recent projects conducted by JST-CREST teams

Optimization of Graph500 benchmark (Prof. Fujisawa’s team)

 Parallel breadth-first search of huge graph

 Topology-aware optimization of communication

 Parallelization of Inchworm (Prof. Nanri’s team)

 The first phase of de novo transcriptome assembly

Construct and traverse a dictionary of k-mer (DNA substring of length k)

Uses distributed data structure APIs for productivity
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Graph500 Benchmark

 Parallel breadth-first search of a huge graph

Calculate an array of parent vertices

Hyper-sparse adjacency matrix

 Size of adjacency matrix = 2S × 2S (S = problem scale)

Number of edges = 16×2S

 As problem scale increases, adjacency matrix becomes sparse

 Two key points of optimization

Compression of the adjacency matrix for computation

Distribution of the adjacency matrix for communication
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Direction-Optimizing Search [Beamer, SC12]

 Target of Graph500 is a scale-free network

 It includes high-degree vertices

 If the currently visited vertices include high-degree vertices:

• The number of edges to traverse in the next step will increase significantly  

• Reversing search direction may reduce the number of edges to traverse

 Top-down direction

 Search next vertices directly

 From the currently visited vertices

 Bottom-up direction

 Search all unvisited vertices

 For the adjacent vertices of the currently                                           
visited vertices

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

current

next

current

next

next = (A × current) & ¬ visited

next = (A &   ¬ visited | ¬ visited | … )T × current

9



2D Partitioning [Yoo, SC05]

 Partitioning of the adjacency matrix in two-dimensions

Distribution of edges according to both source and destination vertices

 Each searching step requires:

 All-gather communication for search calculation in one dimension

 All-to-all communication for update in the other dimension

Good scalability

 Each node uses only a part of the vectors, such as current or next

 If the problem scale is large, the vectors will be too large for memory 

High performance

Collective communication groups are small

Update communication can be overlapped by computation when the 
search direction does not change in the next step
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2D Partitioning on the K computer

 The adjacency matrix was divided into 288×288

 K computer: 82,944 nodes = 24×18×16×2×3×2

 18×16 = 288 and 24×2×3×2= 288

 288 row and 288 column communicators

 Each node participated in one row and one column communicator

 Each communicator consisted of all nodes in a 6D rectangular submesh, 
so that Fujitsu MPI used topology-aware algorithm

• All-gather: three-phase quad rings algorithm

• All-to-all: uniformly overlaid symmetrical pattern algorithm

Communication was overlapped with computation if the 
number of vertices to be updated was small

Otherwise, an MPI collective operation was called

Different implementation was required for each dimension and direction

Repository: github.com/suzumura/graph500
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Graph500 Performance on the K computer

 The ratio of computation time was 
relatively small

Communication time became a 
major bottleneck in large scale

High-throughput interconnect is 
important for graph BFS
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History and breakdown [Ueno, IEEE Big Data 2016]

 17,977 GTEPS using 2D partitioning (June 2014)

 19,585 GTEPS using hybrid top-down/bottom-up (Nov. 2014)

 38,621 GTEPS by improved sparse matrix computation (July 2015)

• Compute-efficient compression, vertex reordering for access locality and 
improved inter-thread load balance
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Trinity

 A major Extraction de novo transcript assembly software

 of RNA sequences without reference DNA

Consist of Inchworm, Chrysalis and Butterfly

Usually run on a large memory machine

 Inchworm is the most memory-consuming process

 Input: short reads of Next-Generation Sequencing (NGS)

NGS is a high-throughput DNA/RNA sequencing platform

 Large number of short reads that are around 100 base pairs

 Short reads overlap each other

Reads contains errors or unusable data at a certain ratio
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Inchworm

Overview of Trinity’s processing

 Extracts ‘contigs’ (overlapped series of k-mers) from short reads

Constructs partial de Bruijn graphs from contigs

 Finds Eulerian path for each disconnected subgraph

 Inchworm

 Pre-process for de Bruijn graph construction

• Counts the number of occurrences of each k-mer

• Constructs ‘contigs’ with high-frequency k-mers

 Parallelization of Inchworm

Distributed data structure APIs

 ACP communication library

• Supports: Tofu, InfiniBand and UDP

Repository: github.com/project-ace/ACP
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Parallel Construction of k-mer Dictionary

Using map data structure

1. Each process creates a map that can be accessed from any process

2. Each process reads input in parallel and inserts k-mers into the maps 

 The process of inserting k-mer involves three steps

1. Hashing of the k-mer to determine in which process’s map to store it

2. Inserting the k-mer and value 1 into the map

3. Atomically incrementing the existing value if step 2 fails 

 There is additional overhead due to the separate steps 2 and 3
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Multiset data structure

We added ‘multiset’ data structure to ACP

Multiset is an extended data structure of the ‘set’

 Set: insertion fails if the key already exists

Multiset: insertion increments the counter of the key and does not fail

Multiset simplifies k-mer insertion process

1. The k-mer is hashed to determine in which process’s multiset to store it

2. The k-mer is inserted into the multiset

We also extended multiset API for the next splicing process

Retrieve: obtains the counter value of the specified key

Remove-all: deletes the specified key regardless of its counter value

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 17



Parallel k-mer Splicing

 Each process selects a k-mer as a starting point

 Processing of k-mer splicing for each direction

1. Retrieves counter values of four, ATGC, adjacent k-mer candidates

2. Ends the splicing process if no adjacent k-mer is found in step 1

3. Selects the k-mer with the highest counter value

4. Splices the selected k-mer to the contig

5. Deletes the selected k-mer from the k-mer dictionary

 This process is the same as the sequential version, except that the k-mer 
dictionary is distributed

 Future research

Retrieve four adjacent k-mer candidates through a single API call

• Exclude base pairs at both ends of k-mer in process selection

 Increase probability of storing adjacent k-mers in the same process

• Predict input and adjust the hash function of process selection 
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Deep Learning Unit
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© RIKEN

Dedicated processor for 
large-scale deep learning

Deep Learning Unit (DLU)

© RIKEN

K computer

PRIMEHPC FX10

PRIMEHPC FX100

Post-K*

* RIKEN and Fujitsu are currently developing the post-K computer
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DLUTM Architecture

New ISA developed for deep learning

Highly power-efficient with simple microarchitecture

High bandwidth memory of HBM2

 Large-scale network of inter-DLU direct connection
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DLUTM Architecture (Cont.)

Heterogeneous core

Master core handles Memory access and controls DPU

 FP32, FP16 and Deep Learning Integer

 INT16 and INT8 with automatic scaling
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DLU Roadmap

 The 2020s will be the era of domain-specific machines

DLUTM is Fujitsu’s first processor for this era

Multiple generations of DLUs are included in the roadmap

Continuous processor development strategy, similar to Fujitsu’s strategy 
in HPC, UNIX and Mainframe areas
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Emerging Packaging Technology

 Packaging technologies impact node architecture

Off-package interconnect also needs to adapt to new node architectures

Recent multi-chip package technology

High density chip-to-chip interconnection

 Si-IP with TSVs

• TSMC Chip-on-Wafer-on-Substrate (CoWoS)

• NVIDIA Tesla P100 and V100

 Small bridge for chip-to-chip interconnection

• Intel Embedded Multi-die Interconnect Bridge (EMIB)

• Altera Stratix 10
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Thin Package without Substrate

 Fan-out wafer-level packaging (FOWLP)

Redistribution layer is supported by mold

 Better signal integrity and low power loss

 Variations of FOWLP

Multi-chip FOWLP

• High density chip-to-chip interconnection

 FOWLP package-on-package

• TSMC InFO-PoP

• Apple A10

 Inductor integrated FOWLP

• Further reduction in power loss

 Fan-out panel-level packaging (FOPLP)

 Low-cost solution
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Future System and Interconnect

 Future node architecture

 Substrateless packaging technology

Heterogeneous integration

Optical transceiver module on package

 Trade-offs related to package size

 Package size of FOWLP is generally smaller than that of Si-IP

 Smaller package size improves yield rate

 Smaller node requires high scalability and high parallel efficiency

 Interconnect design for future domain-specific machines 

Different package technology, scalability, media, speed and cost

 Some systems will incorporate dedicated interconnect design

 For other systems, interconnect should be designed as a configurable IP
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Summary

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 28



Summary

 Three domains of emerging applications

 Big data analytics, cognitive applications and optimization problems

 Fujitsu will develop highly scalable domain-specific machines 

Recent projects conducted by JST-CREST teams

Optimization of Graph500 benchmark by Prof. Fujisawa’s team

 Parallelization of Inchworm by Prof. Nanri’s team

 Fujitsu’s Deep Learning Unit

 Large-scale network of inter-DLU direct connection

 Future challenges

Higher scalability for the trade-off between yield rate and package size

Not only dedicated design but also configurable IP is required
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