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Emerging Applications

ÂThree core technologies in Fujitsuôs vision

ÂHPC, deep learning and quantum computing

ÂThree domains of emerging applications

ÂBig data analytics, cognitive applications and optimization problems
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Multi-Domain Application

ÂExample: Fujitsuôs óDeep Tensorô

ÂA loose combination of graph analytics and neural network

ÂGraph analytics: sparse matrix processing

ÂConvolutional neural network: dense matrix processing

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

ñFujitsu Technology to Elicit New Insights from Graph Data that Expresses Ties between People and Thingsò, 

http://www.fujitsu.com/global/about/resources/news/press-releases/2016/1020-01.html
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Interconnect Development Strategy

ÂDevelop highly scalable domain-specific machines

ÂFor higher performance beyond the end of Mooreôs Law

ÂFujitsu has developed Tofu interconnect as HPC interconnect

ÂHigh scalability technology will propagate to other machines
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Tofu Interconnect

ÂHighly scalable HPC interconnect

ÂTofu interconnect: developed for the K computer

ÂTofu interconnect 2: developed for PRIMEHPC FX100

ÂPhysical 6D mesh/torus and virtual 1/2/3D torus network

ÂFujitsu MPI provides topology-aware collective communication
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Recent Work on Big Data Analytics

ÂTwo Recent projects conducted by JST-CREST teams

ÂOptimization of Graph500 benchmark (Prof. Fujisawaôs team)

ÂParallel breadth-first search of huge graph

ÂTopology-aware optimization of communication

ÂParallelization of Inchworm (Prof. Nanriôs team)

ÂThe first phase of de novo transcriptome assembly

ÂConstruct and traverse a dictionary of k-mer (DNA substring of length k)

ÂUses distributed data structure APIs for productivity
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Graph500 Benchmark

ÂParallel breadth-first search of a huge graph

ÂCalculate an array of parent vertices

ÂHyper-sparse adjacency matrix

ÂSize of adjacency matrix = 2S 2S (S= problem scale)

ÂNumber of edges = 16 2S

ÂAs problem scale increases, adjacency matrix becomes sparse

ÂTwo key points of optimization

ÂCompression of the adjacency matrix for computation

ÂDistribution of the adjacency matrix for communication
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Direction-Optimizing Search [Beamer, SC12]

ÂTarget of Graph500 is a scale-free network

ÂIt includes high-degree vertices

ÂIf the currently visited vertices include high-degree vertices:

ÅThe number of edges to traverse in the next step will increase significantly  

ÅReversing search direction may reduce the number of edges to traverse

ÂTop-down direction

ÂSearch next vertices directly

ÂFrom the currently visited vertices

ÂBottom-up direction

ÂSearch all unvisited vertices

ÂFor the adjacent vertices of the currently                                           
visited vertices
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2D Partitioning [Yoo, SC05]

ÂPartitioning of the adjacency matrix in two-dimensions

ÂDistribution of edges according to both source and destination vertices

ÂEach searching step requires:

ÂAll-gather communication for search calculation in one dimension

ÂAll-to-all communication for update in the other dimension

ÂGood scalability

ÂEach node uses only a part of the vectors, such as current or next

ÂIf the problem scale is large, the vectors will be too large for memory 

ÂHigh performance

ÂCollective communication groups are small

ÂUpdate communication can be overlapped by computation when the 
search direction does not change in the next step
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2D Partitioning on the K computer

ÂThe adjacency matrix was divided into 288 288

ÂK computer: 82,944 nodes = 24 18 16 2 3 2

Â18 16 = 288 and 24 2 3 2= 288

Â288 row and 288 column communicators

ÂEach node participated in one row and one column communicator

ÂEach communicator consisted of all nodes in a 6D rectangular submesh, 
so that Fujitsu MPI used topology-aware algorithm

ÅAll-gather: three-phase quad rings algorithm

ÅAll-to-all: uniformly overlaid symmetrical pattern algorithm

ÂCommunication was overlapped with computation if the 
number of vertices to be updated was small

ÂOtherwise, an MPI collective operation was called

ÂDifferent implementation was required for each dimension and direction

Repository: github.com/suzumura/graph500
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Graph500 Performance on the K computer

ÂThe ratio of computation time was 
relatively small

ÂCommunication time became a 
major bottleneck in large scale

ÂHigh-throughput interconnect is 
important for graph BFS
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ÂHistory and breakdown [Ueno, IEEE Big Data 2016]

Â17,977 GTEPS using 2D partitioning (June 2014)

Â19,585 GTEPS using hybrid top-down/bottom-up (Nov. 2014)

Â38,621 GTEPS by improved sparse matrix computation (July 2015)

ÅCompute-efficient compression, vertex reordering for access locality and 
improved inter-thread load balance
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Trinity

ÂA major Extraction de novo transcript assembly software

Âof RNA sequences without reference DNA

ÂConsist of Inchworm, Chrysalis and Butterfly

ÂUsually run on a large memory machine

ÂInchworm is the most memory-consuming process

ÂInput: short reads of Next-Generation Sequencing (NGS)

ÂNGS is a high-throughput DNA/RNA sequencing platform

ÂLarge number of short reads that are around 100 base pairs

ÂShort reads overlap each other

ÂReads contains errors or unusable data at a certain ratio
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Inchworm

ÂOverview of Trinityôs processing

ÂExtracts ócontigsô (overlapped series of k-mers) from short reads

ÂConstructs partial de Bruijn graphs from contigs

ÂFinds Eulerian path for each disconnected subgraph

ÂInchworm

ÂPre-process for de Bruijn graph construction

ÅCounts the number of occurrences of each k-mer

ÅConstructs ócontigsô with high-frequency k-mers

ÂParallelization of Inchworm

ÂDistributed data structure APIs

ÂACP communication library

ÅSupports: Tofu, InfiniBand and UDP

Repository: github.com/project-ace/ACP
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Parallel Construction of k-mer Dictionary

ÂUsing map data structure

1. Each process creates a map that can be accessed from any process

2. Each process reads input in parallel and inserts k-mers into the maps 

ÂThe process of inserting k-mer involves three steps

1. Hashing of the k-mer to determine in which processôs map to store it

2. Inserting the k-mer and value 1 into the map

3. Atomically incrementing the existing value if step 2 fails 

ÂThere is additional overhead due to the separate steps 2 and 3
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Multiset data structure

ÂWe added ómultisetô data structure to ACP

ÂMultiset is an extended data structure of the ósetô

ÂSet: insertion fails if the key already exists

ÂMultiset: insertion increments the counter of the key and does not fail

ÂMultiset simplifies k-mer insertion process

1. The k-mer is hashed to determine in which processôs multiset to store it

2. The k-mer is inserted into the multiset

ÂWe also extended multiset API for the next splicing process

ÂRetrieve: obtains the counter value of the specified key

ÂRemove-all: deletes the specified key regardless of its counter value
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Parallel k-mer Splicing

ÂEach process selects a k-mer as a starting point

ÂProcessing of k-mer splicing for each direction

1. Retrieves counter values of four, ATGC, adjacent k-mer candidates

2. Ends the splicing process if no adjacent k-mer is found in step 1

3. Selects the k-mer with the highest counter value

4. Splices the selected k-mer to the contig

5. Deletes the selected k-mer from the k-mer dictionary

ÂThis process is the same as the sequential version, except that the k-mer 
dictionary is distributed

ÂFuture research

ÂRetrieve four adjacent k-mer candidates through a single API call

ÅExclude base pairs at both ends of k-mer in process selection

ÂIncrease probability of storing adjacent k-mers in the same process

ÅPredict input and adjust the hash function of process selection 
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Deep Learning Unit
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RIKEN

Dedicated processor for 
large -scale deep learning

Deep Learning Unit (DLU)

RIKEN

K computer

PRIMEHPC FX10

PRIMEHPC FX100

Post-K*

* RIKEN and Fujitsu are currently developing the post-K computer
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