Current and Future Challenges of the Tofu Interconnect for Emerging Applications

Yuichiro Ajima
Senior Architect
Next Generation Technical Computing Unit
Fujitsu Limited
Index

- Fujitsu’s strategy for emerging applications
- Recent projects conducted by JST-CREST teams
 - Graph500 benchmark (Prof. Fujisawa’s team)
 - Inchworm (Prof. Nanri’s team)
- Fujitsu’s Deep Learning Unit
- Emerging technologies and future challenges
Emerging Applications

- Three core technologies in Fujitsu’s vision
 - HPC, deep learning and quantum computing
- Three domains of emerging applications
 - Big data analytics, cognitive applications and optimization problems
Multi-Domain Application

- Example: Fujitsu’s ‘Deep Tensor’
- A loose combination of graph analytics and neural network
 - Graph analytics: sparse matrix processing
 - Convolutional neural network: dense matrix processing

“Fujitsu Technology to Elicit New Insights from Graph Data that Expresses Ties between People and Things”,
Interconnect Development Strategy

- Develop highly scalable domain-specific machines
 - For higher performance beyond the end of Moore’s Law
- Fujitsu has developed Tofu interconnect as HPC interconnect
- High scalability technology will propagate to other machines
Tofu Interconnect

- Highly scalable HPC interconnect
 - Tofu interconnect: developed for the K computer
 - Tofu interconnect 2: developed for PRIMEHPC FX100

- Physical 6D mesh/torus and virtual 1/2/3D torus network
- Fujitsu MPI provides topology-aware collective communication
Recent Work on Big Data Analytics

- Two Recent projects conducted by JST-CREST teams

- Optimization of Graph500 benchmark (Prof. Fujisawa’s team)
 - Parallel breadth-first search of huge graph
 - Topology-aware optimization of communication

- Parallelization of Inchworm (Prof. Nanri’s team)
 - The first phase of de novo transcriptome assembly
 - Construct and traverse a dictionary of k-mer (DNA substring of length k)
 - Uses distributed data structure APIs for productivity
Index

- Fujitsu’s strategy for emerging applications
- Recent projects conducted by JST-CREST teams
 - Graph500 benchmark (Prof. Fujisawa’s team)
 - Inchworm (Prof. Nanri’s team)
- Fujitsu’s Deep Learning Unit
- Emerging technologies and future challenges
Graph500 Benchmark

- Parallel breadth-first search of a huge graph
 - Calculate an array of parent vertices

- Hyper-sparse adjacency matrix
 \[
 A = \begin{pmatrix}
 A_{1,1} & \cdots & A_{1,2^S} \\
 \vdots & \ddots & \vdots \\
 A_{2^S,1} & \cdots & A_{2^S,2^S}
 \end{pmatrix}
 \]
 - Size of adjacency matrix = $2^S \times 2^S$ ($S =$ problem scale)
 - Number of edges = 16×2^S
 - As problem scale increases, adjacency matrix becomes sparse

- Two key points of optimization
 - Compression of the adjacency matrix for computation
 - Distribution of the adjacency matrix for communication
Direction-Optimizing Search [Beamer, SC12]

- Target of Graph500 is a scale-free network
 - It includes high-degree vertices
 - If the currently visited vertices include high-degree vertices:
 - The number of edges to traverse in the next step will increase significantly
 - Reversing search direction may reduce the number of edges to traverse

- Top-down direction
 - Search next vertices directly
 - From the currently visited vertices
 \[\text{next} = (A \times \text{current}) \land \neg \text{visited} \]

- Bottom-up direction
 - Search all unvisited vertices
 - For the adjacent vertices of the currently visited vertices
 \[\text{next} = (A \land \{ \neg \text{visited} \mid \neg \text{visited} \mid \ldots \})^T \times \text{current} \]
2D Partitioning [Yoo, SC05]

- Partitioning of the adjacency matrix in two-dimensions
 - Distribution of edges according to both source and destination vertices

- Each searching step requires:
 - All-gather communication for search calculation in one dimension
 - All-to-all communication for update in the other dimension

- Good scalability
 - Each node uses only a part of the vectors, such as current or next
 - If the problem scale is large, the vectors will be too large for memory

- High performance
 - Collective communication groups are small
 - Update communication can be overlapped by computation when the search direction does not change in the next step
2D Partitioning on the K computer

- The adjacency matrix was divided into 288×288
 - K computer: $82,944$ nodes $= 24 \times 18 \times 16 \times 2 \times 3 \times 2$
 - $18 \times 16 = 288$ and $24 \times 2 \times 3 \times 2 = 288$

- 288 row and 288 column communicators
 - Each node participated in one row and one column communicator
 - Each communicator consisted of all nodes in a 6D rectangular submesh, so that Fujitsu MPI used topology-aware algorithm
 - All-gather: three-phase quad rings algorithm
 - All-to-all: uniformly overlaid symmetrical pattern algorithm

- Communication was overlapped with computation if the number of vertices to be updated was small
 - Otherwise, an MPI collective operation was called
 - Different implementation was required for each dimension and direction

Repository: github.com/suzumura/graph500
Graph500 Performance on the K computer

- History and breakdown [Ueno, IEEE Big Data 2016]
 - 17,977 GTEPS using 2D partitioning (June 2014)
 - 19,585 GTEPS using hybrid top-down/bottom-up (Nov. 2014)
 - 38,621 GTEPS by improved sparse matrix computation (July 2015)
 - Compute-efficient compression, vertex reordering for access locality and improved inter-thread load balance
- The ratio of computation time was relatively small
- Communication time became a major bottleneck in large scale

- High-throughput interconnect is important for graph BFS
Index

- Fujitsu’s strategy for emerging applications
- Recent projects conducted by JST-CREST teams
 - Graph500 benchmark (Prof. Fujisawa’s team)
 - Inchworm (Prof. Nanri’s team)
- Fujitsu’s Deep Learning Unit
- Emerging technologies and future challenges
Trinity

- A major Extraction de novo transcript assembly software
 - of RNA sequences without reference DNA
 - Consist of Inchworm, Chrysalis and Butterfly

- Usually run on a large memory machine
 - Inchworm is the most memory-consuming process

- Input: short reads of Next-Generation Sequencing (NGS)
 - NGS is a high-throughput DNA/RNA sequencing platform
 - Large number of short reads that are around 100 base pairs
 - Short reads overlap each other
 - Reads contains errors or unusable data at a certain ratio
Inchworm

- **Overview of Trinity’s processing**
 - Extracts ‘contigs’ (overlapped series of \(k \)-mers) from short reads
 - Constructs partial de Bruijn graphs from contigs
 - Finds Eulerian path for each disconnected subgraph

- **Inchworm**
 - Pre-process for de Bruijn graph construction
 - Counts the number of occurrences of each \(k \)-mer
 - Constructs ‘contigs’ with high-frequency \(k \)-mers

- **Parallelization of Inchworm**
 - Distributed data structure APIs
 - ACP communication library
 - Supports: Tofu, InfiniBand and UDP

Repository: github.com/project-ace/ACP
Parallel Construction of k-mer Dictionary

- Using map data structure
 1. Each process creates a map that can be accessed from any process
 2. Each process reads input in parallel and inserts k-mers into the maps

The process of inserting k-mer involves three steps

1. Hashing of the k-mer to determine in which process’s map to store it
2. Inserting the k-mer and value 1 into the map
3. Atomically incrementing the existing value if step 2 fails
Multiset data structure

- We added ‘multiset’ data structure to ACP
 - Multiset is an extended data structure of the ‘set’
 - Set: insertion fails if the key already exists
 - Multiset: insertion increments the counter of the key and does not fail

- Multiset simplifies k-mer insertion process
 1. The k-mer is hashed to determine in which process’s multiset to store it
 2. The k-mer is inserted into the multiset

- We also extended multiset API for the next splicing process
 - Retrieve: obtains the counter value of the specified key
 - Remove-all: deletes the specified key regardless of its counter value
Parallel \(k\)-mer Splicing

- Each process selects a \(k\)-mer as a starting point
- Processing of \(k\)-mer splicing for each direction
 1. Retrieves counter values of four, ATGC, adjacent \(k\)-mer candidates
 2. Ends the splicing process if no adjacent \(k\)-mer is found in step 1
 3. Selects the \(k\)-mer with the highest counter value
 4. Splices the selected \(k\)-mer to the contig
 5. Deletes the selected \(k\)-mer from the \(k\)-mer dictionary
- This process is the same as the sequential version, except that the \(k\)-mer dictionary is distributed

Future research

- Retrieve four adjacent \(k\)-mer candidates through a single API call
 - Exclude base pairs at both ends of \(k\)-mer in process selection
- Increase probability of storing adjacent \(k\)-mers in the same process
 - Predict input and adjust the hash function of process selection
Index

- Fujitsu’s strategy for emerging applications
- Recent projects conducted by JST-CREST teams
 - Graph500 benchmark (Prof. Fujisawa’s team)
 - Inchworm (Prof. Nanri’s team)
- Fujitsu’s Deep Learning Unit
- Emerging technologies and future challenges
Deep Learning Unit (DLU)
Dedicated processor for large-scale deep learning
DLU™ Architecture

- New ISA developed for deep learning
- Highly power-efficient with simple microarchitecture
- High bandwidth memory of HBM2
- Large-scale network of inter-DLU direct connection

DPU: Deep learning Processing Unit
DPE: Deep learning Processing Element
DLU™ Architecture (Cont.)

- **Heterogeneous core**
 - Master core handles Memory access and controls DPU

- **FP32, FP16 and Deep Learning Integer**
 - INT16 and INT8 with automatic scaling

- **Accumulator**

 - FP32
 - FP16
 - INT16
 - INT16
 - INT8
 - INT8

- **16/8bit area with minimum accuracy loss**

- **HW gathered statistics**
DLU Roadmap

- The 2020s will be the era of domain-specific machines
- DLU™ is Fujitsu’s first processor for this era

- Multiple generations of DLUs are included in the roadmap
 - Continuous processor development strategy, similar to Fujitsu’s strategy in HPC, UNIX and Mainframe areas

1st Generation
- Host CPU required
- Inter-DLU direct connection

2nd Generation
- Embedded host CPU

Other special processors
- Neuromorphic
- Combinatorial optimization

FY2018
Future

* Subject to change without notice
Fujitsu’s strategy for emerging applications
Recent projects conducted by JST-CREST teams
 • Graph500 benchmark (Prof. Fujisawa’s team)
 • Inchworm (Prof. Nanri’s team)
Fujitsu’s Deep Learning Unit
Emerging technologies and future challenges
Emerging Packaging Technology

- Packaging technologies impact node architecture
 - Off-package interconnect also needs to adapt to new node architectures

- Recent multi-chip package technology
 - High density chip-to-chip interconnection
 - Si-IP with TSVs
 - TSMC Chip-on-Wafer-on-Substrate (CoWoS)
 - NVIDIA Tesla P100 and V100
 - Small bridge for chip-to-chip interconnection
 - Intel Embedded Multi-die Interconnect Bridge (EMIB)
 - Altera Stratix 10
Thin Package without Substrate

- Fan-out wafer-level packaging (FOWLP)
 - Redistribution layer is supported by mold
 - Better signal integrity and low power loss

- Variations of FOWLP
 - Multi-chip FOWLP
 - High density chip-to-chip interconnection
 - FOWLP package-on-package
 - TSMC InFO-PoP
 - Apple A10
 - Inductor integrated FOWLP
 - Further reduction in power loss

- Fan-out panel-level packaging (FOPLP)
 - Low-cost solution
Future System and Interconnect

- Future node architecture
 - Substrateless packaging technology
 - Heterogeneous integration
 - Optical transceiver module on package

- Trade-offs related to package size
 - Package size of FOWLP is generally smaller than that of Si-IP
 - Smaller package size improves yield rate
 - Smaller node requires high scalability and high parallel efficiency

- Interconnect design for future domain-specific machines
 - Different package technology, scalability, media, speed and cost
 - Some systems will incorporate dedicated interconnect design
 - For other systems, interconnect should be designed as a configurable IP
Summary
Summary

- Three domains of emerging applications
 - Big data analytics, cognitive applications and optimization problems
 - Fujitsu will develop highly scalable domain-specific machines

- Recent projects conducted by JST-CREST teams
 - Optimization of Graph500 benchmark by Prof. Fujisawa’s team
 - Parallelization of Inchworm by Prof. Nanri’s team

- Fujitsu’s Deep Learning Unit
 - Large-scale network of inter-DLU direct connection

- Future challenges
 - Higher scalability for the trade-off between yield rate and package size
 - Not only dedicated design but also configurable IP is required