
Copyright 2017 FUJITSU LIMITED

Current and Future Challenges

of the Tofu Interconnect for

Emerging Applications

Yuichiro Ajima

Senior Architect

Next Generation Technical Computing Unit

Fujitsu Limited

0June 22, 2017, ExaComm 2017 Workshop

ÂFujitsuôs strategy for emerging applications

ÂRecent projects conducted by JST-CREST teams

ÂGraph500 benchmark (Prof. Fujisawaôs team)

ÂInchworm (Prof. Nanriôs team)

ÂFujitsuôs Deep Learning Unit

ÂEmerging technologies and future challenges

Index

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 1

Emerging Applications

ÂThree core technologies in Fujitsuôs vision

ÂHPC, deep learning and quantum computing

ÂThree domains of emerging applications

ÂBig data analytics, cognitive applications and optimization problems

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

Quantum
Computing

Deep
LearningHPC

Big data analytics Cognitive applications

Optimization problems

2

Multi-Domain Application

ÂExample: Fujitsuôs óDeep Tensorô

ÂA loose combination of graph analytics and neural network

ÂGraph analytics: sparse matrix processing

ÂConvolutional neural network: dense matrix processing

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

ñFujitsu Technology to Elicit New Insights from Graph Data that Expresses Ties between People and Thingsò,

http://www.fujitsu.com/global/about/resources/news/press-releases/2016/1020-01.html

3

Interconnect Development Strategy

ÂDevelop highly scalable domain-specific machines

ÂFor higher performance beyond the end of Mooreôs Law

ÂFujitsu has developed Tofu interconnect as HPC interconnect

ÂHigh scalability technology will propagate to other machines

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

Tofu interconnect Inter -DLU direct
interconnect

Interconnect for large -scale
quasi quantum computerQuantum

Computing

Deep
LearningHPC

4

Tofu Interconnect

ÂHighly scalable HPC interconnect

ÂTofu interconnect: developed for the K computer

ÂTofu interconnect 2: developed for PRIMEHPC FX100

ÂPhysical 6D mesh/torus and virtual 1/2/3D torus network

ÂFujitsu MPI provides topology-aware collective communication

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

Tofu interconnect 2

2010 2012 2015

Tofu interconnect

5

Recent Work on Big Data Analytics

ÂTwo Recent projects conducted by JST-CREST teams

ÂOptimization of Graph500 benchmark (Prof. Fujisawaôs team)

ÂParallel breadth-first search of huge graph

ÂTopology-aware optimization of communication

ÂParallelization of Inchworm (Prof. Nanriôs team)

ÂThe first phase of de novo transcriptome assembly

ÂConstruct and traverse a dictionary of k-mer (DNA substring of length k)

ÂUses distributed data structure APIs for productivity

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 6

ÂFujitsuôs strategy for emerging applications

ÂRecent projects conducted by JST-CREST teams

ÂGraph500 benchmark (Prof. Fujisawaôs team)

ÂInchworm (Prof. Nanriôs team)

ÂFujitsuôs Deep Learning Unit

ÂEmerging technologies and future challenges

Index

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 7

Graph500 Benchmark

ÂParallel breadth-first search of a huge graph

ÂCalculate an array of parent vertices

ÂHyper-sparse adjacency matrix

ÂSize of adjacency matrix = 2S 2S (S= problem scale)

ÂNumber of edges = 16 2S

ÂAs problem scale increases, adjacency matrix becomes sparse

ÂTwo key points of optimization

ÂCompression of the adjacency matrix for computation

ÂDistribution of the adjacency matrix for communication

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

A1,1

A2S, 2S

A1,2S

A2S,1

A =

8

Direction-Optimizing Search [Beamer, SC12]

ÂTarget of Graph500 is a scale-free network

ÂIt includes high-degree vertices

ÂIf the currently visited vertices include high-degree vertices:

ÅThe number of edges to traverse in the next step will increase significantly

ÅReversing search direction may reduce the number of edges to traverse

ÂTop-down direction

ÂSearch next vertices directly

ÂFrom the currently visited vertices

ÂBottom-up direction

ÂSearch all unvisited vertices

ÂFor the adjacent vertices of the currently
visited vertices

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

current

next

current

next

next = (A current) & ¬ visited

next =(A & ¬ visited | ¬visited | é)T current

9

2D Partitioning [Yoo, SC05]

ÂPartitioning of the adjacency matrix in two-dimensions

ÂDistribution of edges according to both source and destination vertices

ÂEach searching step requires:

ÂAll-gather communication for search calculation in one dimension

ÂAll-to-all communication for update in the other dimension

ÂGood scalability

ÂEach node uses only a part of the vectors, such as current or next

ÂIf the problem scale is large, the vectors will be too large for memory

ÂHigh performance

ÂCollective communication groups are small

ÂUpdate communication can be overlapped by computation when the
search direction does not change in the next step

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 10

2D Partitioning on the K computer

ÂThe adjacency matrix was divided into 288 288

ÂK computer: 82,944 nodes = 24 18 16 2 3 2

Â18 16 = 288 and 24 2 3 2= 288

Â288 row and 288 column communicators

ÂEach node participated in one row and one column communicator

ÂEach communicator consisted of all nodes in a 6D rectangular submesh,
so that Fujitsu MPI used topology-aware algorithm

ÅAll-gather: three-phase quad rings algorithm

ÅAll-to-all: uniformly overlaid symmetrical pattern algorithm

ÂCommunication was overlapped with computation if the
number of vertices to be updated was small

ÂOtherwise, an MPI collective operation was called

ÂDifferent implementation was required for each dimension and direction

Repository: github.com/suzumura/graph500

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 11

Graph500 Performance on the K computer

ÂThe ratio of computation time was
relatively small

ÂCommunication time became a
major bottleneck in large scale

ÂHigh-throughput interconnect is
important for graph BFS

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

ÂHistory and breakdown [Ueno, IEEE Big Data 2016]

Â17,977 GTEPS using 2D partitioning (June 2014)

Â19,585 GTEPS using hybrid top-down/bottom-up (Nov. 2014)

Â38,621 GTEPS by improved sparse matrix computation (July 2015)

ÅCompute-efficient compression, vertex reordering for access locality and
improved inter-thread load balance

12

ÂFujitsuôs strategy for emerging applications

ÂRecent projects conducted by JST-CREST teams

ÂGraph500 benchmark (Prof. Fujisawaôs team)

ÂInchworm (Prof. Nanriôs team)

ÂFujitsuôs Deep Learning Unit

ÂEmerging technologies and future challenges

Index

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 13

Trinity

ÂA major Extraction de novo transcript assembly software

Âof RNA sequences without reference DNA

ÂConsist of Inchworm, Chrysalis and Butterfly

ÂUsually run on a large memory machine

ÂInchworm is the most memory-consuming process

ÂInput: short reads of Next-Generation Sequencing (NGS)

ÂNGS is a high-throughput DNA/RNA sequencing platform

ÂLarge number of short reads that are around 100 base pairs

ÂShort reads overlap each other

ÂReads contains errors or unusable data at a certain ratio

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 14

Inchworm

ÂOverview of Trinityôs processing

ÂExtracts ócontigsô (overlapped series of k-mers) from short reads

ÂConstructs partial de Bruijn graphs from contigs

ÂFinds Eulerian path for each disconnected subgraph

ÂInchworm

ÂPre-process for de Bruijn graph construction

ÅCounts the number of occurrences of each k-mer

ÅConstructs ócontigsô with high-frequency k-mers

ÂParallelization of Inchworm

ÂDistributed data structure APIs

ÂACP communication library

ÅSupports: Tofu, InfiniBand and UDP

Repository: github.com/project-ace/ACP

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 15

Parallel Construction of k-mer Dictionary

ÂUsing map data structure

1. Each process creates a map that can be accessed from any process

2. Each process reads input in parallel and inserts k-mers into the maps

ÂThe process of inserting k-mer involves three steps

1. Hashing of the k-mer to determine in which processôs map to store it

2. Inserting the k-mer and value 1 into the map

3. Atomically incrementing the existing value if step 2 fails

ÂThere is additional overhead due to the separate steps 2 and 3

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

TAGTTTAG

35

P0 Pn-1

GTTTAGAG

46

P1

GTAGTTTA 76

AGTTTAGC7TAGTTTAA 13

AGTTTAGC 3

68AGTTTAGA

Hash table Key-value (k-mer and counter) pair

16

Multiset data structure

ÂWe added ómultisetô data structure to ACP

ÂMultiset is an extended data structure of the ósetô

ÂSet: insertion fails if the key already exists

ÂMultiset: insertion increments the counter of the key and does not fail

ÂMultiset simplifies k-mer insertion process

1. The k-mer is hashed to determine in which processôs multiset to store it

2. The k-mer is inserted into the multiset

ÂWe also extended multiset API for the next splicing process

ÂRetrieve: obtains the counter value of the specified key

ÂRemove-all: deletes the specified key regardless of its counter value

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 17

Parallel k-mer Splicing

ÂEach process selects a k-mer as a starting point

ÂProcessing of k-mer splicing for each direction

1. Retrieves counter values of four, ATGC, adjacent k-mer candidates

2. Ends the splicing process if no adjacent k-mer is found in step 1

3. Selects the k-mer with the highest counter value

4. Splices the selected k-mer to the contig

5. Deletes the selected k-mer from the k-mer dictionary

ÂThis process is the same as the sequential version, except that the k-mer
dictionary is distributed

ÂFuture research

ÂRetrieve four adjacent k-mer candidates through a single API call

ÅExclude base pairs at both ends of k-mer in process selection

ÂIncrease probability of storing adjacent k-mers in the same process

ÅPredict input and adjust the hash function of process selection

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 18

ÂFujitsuôs strategy for emerging applications

ÂRecent projects conducted by JST-CREST teams

ÂGraph500 benchmark (Prof. Fujisawaôs team)

ÂInchworm (Prof. Nanriôs team)

ÂFujitsuôs Deep Learning Unit

ÂEmerging technologies and future challenges

Index

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop 19

Deep Learning Unit

Copyright 2017 FUJITSU LIMITEDJune 22, 2017, ExaComm 2017 Workshop

RIKEN

Dedicated processor for
large -scale deep learning

Deep Learning Unit (DLU)

RIKEN

K computer

PRIMEHPC FX10

PRIMEHPC FX100

Post-K*

* RIKEN and Fujitsu are currently developing the post-K computer

20

