Exascale Topologies: The Good, the Bad, and the Not-so-Pretty

ExaComm Workshop @ ISC, 16 July 2015

Cyriel Minkenberg, Bogdan Prisacari, German Rodriguez Herrera, Wolfgang Denzel (IBM Research – Zurich)
Philip Heidelberger, Dong Chen, Craig Stunkel, Yutaka Sugawara (IBM TJ Watson Research Center)
Acknowledgment

- This work was supported and partially funded by Lawrence Berkeley National Laboratory (LBNL), on behalf of the US Department of Energy, under LBNL subcontract number 7078416.
Agenda

1. **Network challenges**
 - Cost, scale, energy, reliability, performance at scale, balance

2. **Topologies**
 - Low-diameter networks, including some new options

3. **Routing algorithms**
 - Direct, Valiant, Adaptive

4. **Performance evaluation**
 - Traffic: Uniform, adversarial, exchange patterns
 - Topologies: 1 old, 2 new

5. **Conclusions**
Network challenges
Compute nodes are getting “fat”

- On Nov. 2014 Top 500 list, 75 systems use accelerators, mostly NVIDIA GPUs or Intel MIC (Xeon Phi)
- Five of the Top 10 systems, incl. #1 & #2
- Two classes of ~20 PF/s systems
 - “Thin” nodes: 100K nodes @ 0.2 TFLOP/s/node; CPU-only
 - “Fat” nodes: 10 K nodes @ 2 TFLOP/s/node; CPU+accelerators
- “Fat” nodes imply that per-node FLOP rate is growing much faster than per-node network bandwidth!
Fat vs thin in the Top 10

<table>
<thead>
<tr>
<th>#</th>
<th>System</th>
<th>Manuf. & type</th>
<th>Rmax [PFLOP/s]</th>
<th>#cores</th>
<th>Accel.</th>
<th>Nodes</th>
<th>TFLOPs/ node</th>
<th>Network & Topology</th>
<th>BW/node [GB/s]</th>
<th>B/FLOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tianhe-2</td>
<td>NUDT</td>
<td>54.9</td>
<td>3.12 M</td>
<td>XeonPhi (2+3)</td>
<td>16,000</td>
<td>3.4</td>
<td>Custom Fat tree</td>
<td>16</td>
<td>0.0047</td>
</tr>
<tr>
<td>2</td>
<td>Titan</td>
<td>Cray XK7</td>
<td>27.1</td>
<td>560 K</td>
<td>GPU (1+1)</td>
<td>18,688</td>
<td>1.45</td>
<td>Custom 3D Torus</td>
<td>9.6</td>
<td>0.0066</td>
</tr>
<tr>
<td>3</td>
<td>Sequoia</td>
<td>IBM BG/Q</td>
<td>20.1</td>
<td>1.57 M</td>
<td>-</td>
<td>98,304</td>
<td>0.2</td>
<td>Custom 5D Torus</td>
<td>20</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>Fujitsu</td>
<td>11.3</td>
<td>705 K</td>
<td>-</td>
<td>88,128</td>
<td>0.13</td>
<td>Custom 6D Torus</td>
<td>20</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>Mira</td>
<td>IBM BG/Q</td>
<td>10.1</td>
<td>786 K</td>
<td>-</td>
<td>49,152</td>
<td>0.2</td>
<td>Custom 5D Torus</td>
<td>20</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>Piz Daint</td>
<td>Cray XC30</td>
<td>7.8</td>
<td>116 K</td>
<td>GPU</td>
<td>5,272</td>
<td>1.48</td>
<td>Custom Dragonfly</td>
<td>64</td>
<td>0.043</td>
</tr>
<tr>
<td>7</td>
<td>Stampede</td>
<td>Dell PowerEdge</td>
<td>8.5</td>
<td>462 K</td>
<td>XeonPhi (2+1)</td>
<td>6,400</td>
<td>1.5</td>
<td>InfiniBand Fat tree</td>
<td>7+7</td>
<td>0.009</td>
</tr>
<tr>
<td>8</td>
<td>JUQUEEN</td>
<td>IBM BG/Q</td>
<td>5.9</td>
<td>459 K</td>
<td>-</td>
<td>28,672</td>
<td>0.2</td>
<td>Custom 3D Torus</td>
<td>20</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>Vulcan</td>
<td>IBM BG/Q</td>
<td>5.0</td>
<td>393 K</td>
<td>-</td>
<td>24,576</td>
<td>0.2</td>
<td>Custom 3D Torus</td>
<td>20</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>Cray CS-Storm</td>
<td></td>
<td>6.1</td>
<td>73 K</td>
<td>GPU (x+y)</td>
<td>?</td>
<td>>10?</td>
<td>InfiniBand Fat tree</td>
<td>7+7</td>
<td>~0.001?</td>
</tr>
</tbody>
</table>
Towards exascale: degrading system balance

- Pre-exascale (~2017)
 - > 40 TFLOP/s per node
 - Dual-rail InfiniBand 4xEDR (2x 12.5 GB/s) per node
 - Bytes/FLOP < 0.000625
 - Bytes/FLOP = 0.1 would require >320 IB 4xEDR links per compute node

- Exascale balance can be expected to be similarly poor
 - E.g., node performance x2, IB links x2 (HDR)

Anticipated design point for exascale systems has moved from >100,000 nodes of <10 TFLOP/s to 10,000-25,000 nodes of 40-100 TFLOP/s
Price-performance

- InfiniBand QDR/FDR cable list price data
 - Normalized w.r.t. data rate: $/Gbps
 - Passive copper (top)
 - Active optical (bottom)
 - Roughly linear with cable length

- Optical has ~6x higher offset (integrated transceivers) and ~2x lower slope
 - Large fraction of total cost in optical cables

- InfiniBand FDR switch ports
 - Normalized w.r.t. data rate: $/Gbps
(Very) Rough exascale network cost estimate

\[C_{\text{network}} = 8 \cdot \Gamma \cdot \beta \cdot R_{\text{max}} \]

aggregate price-performance
\[\approx 10 \text{ $/Gbps} \]

peak compute rate
\[\approx 10^{18} \text{ FLOP/s} \]

communication-to-computation ratio
\[\approx 0.1 \text{ byte/FLOP} \]

\[\Rightarrow C_{\text{network}} \approx 8 \text{ G$} \gg 30 \text{ M$} = 200 \times 15\% \]
Something’s gotta give…

- Byte/FLOP ratios are going to have to drop by up to two orders of magnitude (< 0.001 B/F)
- Need **cost-effective** topologies with as few links and ports per endpoint as possible to achieve desired number of endpoints
- Need **optimized packaging** to maximize fraction of electrical links (backplane traces, TwinAx, coax) and minimize number of active optical links
- Major potential cost savings by integrating optical links with the switches and endpoints
 - Eliminate pluggable transceivers
 - Lead role for silicon photonics?

System balance is worsening significantly
Network power

- Network power
 - Electrical links: integrated electrical IO; proportional to number of switch ports
 - Optical links: integrated electrical IO plus discrete optical transceiver; proportional to 2x number of optical links
 - Switching power; proportional to diameter

\[P_{\text{network}} = 8 \cdot (2L_{\text{opt}} \varepsilon_{\text{opt}} + (M + 1) \varepsilon_{\text{ele}} + \beta) \]

Cost is currently a stronger constraint than power
Topologies
Present network options

- **Ethernet**
 - Suitable for smaller commodity clusters
 - Topology options basically limited to trees
 - Lacks virtual channels & proper flow control

- **Infiniband**
 - Suitable for high-end systems in terms of scale, performance, features
 - Better price/performance than Ethernet at high data rates
 - Limited choice of vendors

- **Custom/Proprietary**
 - Aries, p775 hub, Tianhe, BG/Q torus, Tofu
 - Highest performance, densest integration
 - Substantial cost of design and implementation
 - Custom solution could integrate network on CPU, eliminating NICs and/or switches
Topologies

- Network topology plays a critical w.r.t. overall cost
 - Each endpoint requires multiple links and switch ports depending on topology
 - Packaging considerations

- We consider high-radix, low(ish)-diameter topologies only
 - Low diameter means lower cost, because fewer links and switch ports per end point
 - Fewer hops means lower latency
 - Discrete, high-radix switches

- Topologies
 - Fat tree: two-level and three-level
 - Dragonfly: two-tier and three-tier
 - Multi-layer full mesh (aka stacked all-to-all)
 - “Dragontree”
 - Slim fly
 - 3D HyperX

- Metrics
 - Scale S: number of endpoints
 - Diameter D: max. number of links across all shortest paths
 - Number of links per endpoint L
 - Number of switch ports per endpoint M
Topologies (1)

- **k-ary n-tree**
- Max scale $S = N \left(\frac{r}{2} \right)^{n-1}$, where n is the number of levels
- Two-level: $D = 2$, $L = 2$, $M = 3$
- Three-level: $D = 4$, $L = 3$, $M = 5$

- Recursive structure: at each tier, sub-groups form a full mesh
- Max scale $S_{2t} \approx \frac{1}{64} r^4$; $S_{3t} \approx \frac{1}{16,384} r^8$
- Two-tier: $D = 3$, $L = 2.5$, $M = 4$
- Three-tier: $D = 7$, $L = 4.5$, $M = 8$
Topologies (2)

- Two-tier dragonfly where intra-group topology is a two-level fat tree instead of a full mesh
 - \(S \approx \left(\frac{r}{2} \right)^4 \)
 - \(D = 3, \; L = 2.5, \; M = 4 \)

Dragontree

- Same, but using multiple \(\left(\frac{r}{2} \right) \) links in between each pair of groups
 - \(S \approx \left(\frac{r}{2} \right)^3 \)
 - \(D = 3, \; L = 2.5, \; M = 4 \)
Topologies (3)

- Three-dimensional generalized hypercube aka flattened butterfly aka HyperX

- $S \approx \frac{1}{256} N^4$

- $D = 3, \ L = 2.5, \ M = 4$

- Two-tier dragonfly where intra-group topology is a 2D Generalized Hypercube instead of a full mesh

- $S \approx \left(\frac{r}{6}\right)^2 \left(\frac{r}{3} + 1\right)^4 \approx \frac{r^6}{2916}$

- $D = 5, \ L = 3.5, \ M = 6$
Topologies (4)

- Based on McKay-Miller-Širáň (MMS) graphs
- \(S \approx \left(\frac{N}{2} \right)^3 \)
- \(D = 2, \; L = 2, \; M = 3 \)

Stacked all-to-all aka multi-level full mesh

- Start from a full mesh; insert a global switch in each link of the mesh; stack multiple planes connected via the global switches
- \(S \approx \left(\frac{N}{2} \right)^3 \)
- \(D = 2, \; L = 2, \; M = 3 \)
Stacked All-to-all

“Stacked” representation

Tree representation

Orthogonal fat tree

- Trade (more) scale for (less) path diversity; construction is related to Latin Squares

- Indirect topology – diameter 2 among endpoints; diameter 3 among switches!

- $S = 2(k^3 - k^2 + k)$, $D = 2$, $L = 2$, $M = 3$: twice the scale of MLFM/SF at same cost/endpoint
High-level topology comparison

<table>
<thead>
<tr>
<th>Topology</th>
<th>Diameter</th>
<th>Maximum scale N</th>
<th>#links/endpoint</th>
<th>#ports/endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>r</td>
<td>$r = 36$</td>
<td>$r = 48$</td>
</tr>
<tr>
<td></td>
<td>dir</td>
<td>in</td>
<td>$\frac{r^2}{2}$</td>
<td>$\frac{r^3}{8}$</td>
</tr>
<tr>
<td>2-level Fat Tree</td>
<td>2</td>
<td>-</td>
<td>648</td>
<td>1152</td>
</tr>
<tr>
<td>Multi-layer Full Mesh</td>
<td>2</td>
<td>4</td>
<td>$\approx \frac{r^3}{8}$</td>
<td>6,156</td>
</tr>
<tr>
<td>Slim Fly</td>
<td>2</td>
<td>4</td>
<td>$\approx \frac{r^3}{8}$</td>
<td>6,144</td>
</tr>
<tr>
<td>Orthogonal fat tree</td>
<td>2</td>
<td>4</td>
<td>$\approx \frac{r^3}{4}$</td>
<td>11,052</td>
</tr>
<tr>
<td>3D HyperX</td>
<td>3</td>
<td>6</td>
<td>r^4</td>
<td>9,000</td>
</tr>
<tr>
<td>2-tier Dragonfly</td>
<td>3</td>
<td>5 (6)</td>
<td>$\approx \frac{r^4}{64}$</td>
<td>29,412</td>
</tr>
<tr>
<td>DragonTree</td>
<td>3</td>
<td>6</td>
<td>$\approx \frac{r^4}{16}$</td>
<td>105,300</td>
</tr>
<tr>
<td>DragonTree*</td>
<td>3</td>
<td>4</td>
<td>$\approx \frac{r^3}{16}$</td>
<td>6,156</td>
</tr>
<tr>
<td>3-level Fat Tree</td>
<td>4</td>
<td>-</td>
<td>$\frac{r^3}{4}$</td>
<td>11,664</td>
</tr>
<tr>
<td>DragonFB (Aries)</td>
<td>5</td>
<td>8 (10)</td>
<td>$\approx \frac{r^6}{2,916}$</td>
<td>1M</td>
</tr>
<tr>
<td>3-tier Dragonfly</td>
<td>7</td>
<td>11 (14)</td>
<td>$\approx \frac{r^8}{16,384}$</td>
<td>\gg 1M</td>
</tr>
</tbody>
</table>
Scalability

- Number of switch ports to scale to a given number of endpoints
 - Balanced network configuration: full uniform all-to-all bandwidth
- Commercially available switches are expected to have 36-48 ports
- 10,000-15,000 endpoint network provides significantly more freedom of choice w.r.t. topology
- Larger switch radix is generally better, but only if it enables smaller diameter!
Partitionability

- Ability to divide a topology into non-interfering parts
- Main benefit is performance isolation
- Topologies that can naturally provide this: Fat trees, Multi-layer Full Mesh
- Topologies that could provide this by using slow Optical Circuit Switching: Dragonflies, HyperX, Dragontree*, DragonFB
- Not all customers care about this, YMMV
Routing algorithms
Generic routing algorithms

- **Direct**: Shortest path; adaptive load-balancing based on local queue lengths across multiple shortest paths

- **Valiant**: Indirect routing with topology-aware selection of intermediate destination to avoid unproductive hops; direct routing is applied on both segments of the Valiant path
 - Not applicable to Fat Tree
 - Never route indirectly when source and destination attached to same switch, or are within same group in Dragontree*
 - “Optimized” Dragontree*: Second-level switch can be selected as intermediate destination, eliminating down-up hops in intermediate group
 - Multi-layer full mesh: Only endpoint switches are eligible as intermediate destination

- **Adaptive**: Universal Global Adaptive Load-balanced routing: Decides whether to take Direct or Valiant path based on local queue lengths
 - Not applicable to Fat Tree (load-balance adaptively across direct paths)
 - “Optimized” Dragontree*: Decision taken at second-level switch
 - Multi-layer full mesh: Decision taken at local switch (first hop)
Adaptive routing parameters

- **Number of direct paths** D
 - Compute average output queue length L_d across D direct-path output queues
 - $D = 1$ or $D = \text{all}$

- **Threshold** T
 - If $L_d < T$ then route to lowest cost direct path

- **Number of indirect paths** I
 - Randomly select up to I intermediate destinations and determine the corresponding ports to go there (eliminate already selected ports and direct ports)
 - Compute average output queue length L_i of I indirect-path output queues

- **Weight** W
 - If $T \leq L_d \leq W* L_i$ then route to lowest cost direct path, otherwise to intermediate destination with lowest cost

- **Number of direct paths** D
 - $D = \text{all}$
 - We consider ALL direct paths, because we need to evaluate them for direct path load-balancing anyway

- **Threshold** T
 - $T = 10$ KB
 - Prevent indirect routing when backlog is very small

- **Number of indirect paths** I
 - $I = 1$
 - We consider ONE direct path to reduce complexity

- **Weight** W
 - $W = 2$
 - Higher weight to indirect paths to avoid unnecessary detours (latency)

- **Settings selected based on sensitivity analysis**
 - To be included in final report
Performance evaluation
Topologies

- **Fat tree**
 - 24-ary 3-three using radix-48 switches
 - 24 level-2 switches x 24 level-1 switches x 24 endpoints = 13,824 endpoints
 - Serves as performance benchmark

- **Dragontree**
 - Radix-48 switches
 - 24 groups x 24 level-1 switches x 24 endpoints = 13,824 endpoints
 - One group unpopulated: slight imbalance for direct routing (indirect can use links to unpopulated group)

- **Multi-layer full mesh**
 - Radix-47 local switches; radix-48 global switches
 - 24 planes x 24 switches x 24 endpoints = 13,824 endpoints
 - Slight imbalance (23/24) within plane
Combined input-output-queued switch model

Port rate R

Dedicated flow-controlled buffers per VC
Shared buffers across lanes within VC

Crossbar $2N \times 2N$ ports @ rate $S'R$

Port speedup = S
Aggr. Speedup = $2S$

Arbitration: sequential round-robin selection using VOQs (per input, output, VC$_{in}$, VC$_{out}$, lane)

Round-robin service across VCs
Quota-based service across lanes within VC

Dedicated flow-controlled buffers per VC
Shared buffers across lanes within VC

Port rate R

Arbitration: sequential round-robin selection using VOQs (per input, output, VC$_{in}$, VC$_{out}$, lane)

Round-robin service across VCs
Quota-based service across lanes within VC
Simulation parameters

- Max. simulated time (uniform traffic) = 1 ms
- Statistics collection interval = 10 us
- Uniform traffic
 - Message size = 512 B
 - Interarrival time @ 100% load = 10.24 ns
- Switch
 - Packet size = 512 B; packet duration = 10.24 ns
 - Per-port buffer size = 50 KB input + 50 KB output
 - Ports per buffer = 2
 - Internal speedup = 1.5x
 - Number of virtual channels = 2
- Adapter buffer size (uniform traffic): 200 KB input + 200 KB output
 - Packet size = 512 B; packet duration = 10.24 ns
 - Interleaving threshold = 512 B
- Latencies
 - Switch traversal = 100 ns
 - Adapter traversal = 100 ns
 - NIC to switch = 10 ns
 - Switch to switch = 50 ns
- Reordering
 - Disabled for random uniform/shift patterns
 - Enabled for exchange patterns
- Routing
 - Direct
 - Valiant
 - Adaptive
Uniform and adversarial traffic
Fat Tree, Dragontree* and multi-layer full mesh
Uniform random traffic for 6,156 endpoints

3-level Fat Tree

Dragontree

Multi-layer full mesh

Relative throughput

Relative load

Direct

Valiant

Adaptive

Uniform random traffic for 6,156 endpoints
Adversarial traffic for 6,156 endpoints

3-level Fat Tree

Dragontree*

Multi-layer full mesh

Dragontree*
Exchange patterns
Nearest neighbor and dimension-wise all-to-all
Exchange patterns for 13,824 endpoints

- Nearest neighbor exchange
 - Simulated tasks form a 3D torus topology
 - Each task sends one message to both neighbors along each dimension
 - Total number of message per task = 6
 - 1 task per network endpoint

- Dimension-wise all-to-all along X, Y, or Z
 - Simulated tasks from a 3D torus topology
 - X: Each task sends one message to each other task with the same Y and Z coordinates
 - Y: Each task sends one message to each other task with the same X and Z coordinates
 - Z: Each task sends one message to each other task with the same X and Y coordinates
 - Total number of message per task = \#X+\#Y+\#Z-3
 - 1 task per network endpoint

- Torus geometry is selected to match network topology hierarchy
 - X within switch
 - Y within subtree, group or plane
 - Z across subtrees, groups, or planes
Fat tree behaves ideal

Dragontree*: direct routing suffers contention along Z axis; valiant and adaptive close to ideal

MLFM: direct routing suffers contention along Y axis; adaptive best
Dimension-wise exchange along X, 128 KB

- All messages stay within the local switch, hence ideal throughput in all cases
Dimension-wise exchange along Y; 128 KB

- Fat tree ideal
- Dragontree* ideal with any routing: all messages stay within group, hence full bandwidth
- MLFM: all messages within plane; Direct and adaptive almost but not quite ideal because per switch there are only 23 local links but 24 endpoints; valiant halves bandwidth
Dimension-wise exchange along Z; 128 KB

- Fat tree ideal
- Dragontree*: direct slightly less than ideal (only 23 links to every other groups but 24 endpoints); valiant halves bandwidth; adaptive close to ideal
- MLFM: all routings perform similarly; not quite full throughput (why?)
Mixed pattern
Interleaved uniform random + permutation traffic
Mixed uniform random + permutation traffic

- N endpoints total, two workloads of $N/2$ ranks each, 1 rank per endpoint
 - Random uniform across $N/2$ ranks
 - Shift permutation across $N/2$ ranks
 - Workload ranks interleaved one by one across endpoints
Mixed Traffic Fat Tree: 6,156 endpoints

- perm_shift_size=162, perm_grp_size = 0
Mixed Traffic Dragontree*: 6,156 endpoints

- perm_shift_size=162, perm_grp_size = 0
Mixed Traffic Multi-layer Full Mesh: 6,156 endpoints

- perm_shift_size=9, perm_grp_size = 171
Conclusions

- Cost is major constraint on the system balance
- Byte per FLOP ratios can be expected to drop significantly for exascale systems
- Increasing node fatness implies that scale is less of an issue
- Diameter-2 or -3 topologies with 2 or 2.5 links and 3 or 4 ports per endpoint are a viable option given radix-48 switches
- Fat tree is the gold standard performance standard
- Performance-wise, these networks can be on par with the more expensive and higher-diameter 3-level fat tree
 - Indirect and adaptive routing is a must
 - Half the performance of fat tree for adversarial patterns
- Next step: Apply more realistic workload patterns via traces (extrae/paraver) and mini-apps (Ember motifs).
Thank you!
Exascale network challenges

1. Cost
2. Balance: Dealing with bandwidth-challenged systems
3. Bandwidth density: Packaging
4. Energy
5. Reliability