
An Autonomous Execution Model for GPUs:
When CPUs Take a Back Seat

Assoc. Prof. Didem Unat

SC23@ESMP2 Workshop • 13 Nov 2023

Koç University, Istanbul, Turkiye

dunat@ku.edu.tr

mailto:dunat@ku.edu.tr

Traditional Multi-GPU Model

2

● Data path has moved to the GPU

● Control path still on the CPU

● CPU involvement adds
latencies

What if we move everything to the GPU?

CPU-controlled

How do we free the GPU?

3

● Move the time loop to the GPU

● Initiate communication from the
GPU

● Explicitly overlap on the GPU

● Synchronize within and across
devices directly from the GPU

Allow the GPU to take the reins of the data and control paths!

CPU-Free

4

CPU-Free Execution Model

 Persistent Kernel
All TBs

Comm TBs

Comp TBs

i++ < max

Device-wide Sync

TB Specialization

Start i=0

GPU-initiated
inter-GPU
communication &
synchronization

● CPU-Free model grants
complete autonomy to the GPU

● Both data and control paths
move to device-side

● Components
○ Persistent kernels
○ GPU-initiated data movement
○ TB specialization
○ Device-side synchronization

5

Persistent Kernels

 Persistent Kernel
All TBs

Comm TBs

Comp TBs

i++ < max

Device-wide Sync

TB Specialization

Start i=0

GPU-initiated
inter-GPU
communication &
synchronization

● Move time loop to GPU using a
persistent kernel

● Discrete kernel - Launched
repeatedly

● Persistent kernel - Launched
once

● Long running persistent kernel
grants GPU more autonomy

6

GPU-initiated Data Movement

 Persistent Kernel
All TBs

Comm TBs

Comp TBs

i++ < max

Device-wide Sync

TB Specialization

Start i=0

GPU-initiated
inter-GPU
communication &
synchronization

● Initiate communication
directly from GPU

● Communication:
○ Data transmission
○ Multi-GPU synchronization

● NVSHMEM used as
communication mechanism

● NVSHMEM provides efficient
GPU-side communication
primitives

7

TB Specialization for Overlap

 Persistent Kernel
All TBs

Comm TBs

Comp TBs

i++ < max

Device-wide Sync

TB Specialization

Start i=0

GPU-initiated
inter-GPU
communication &
synchronization

● Specialize few thread blocks to
handle communication

● Remaining thread blocks
compute

● Traditional overlap uses
concurrent GPU streams

● Streams are synced through
GPU events

8

Device-side Synchronization

 Persistent Kernel
All TBs

Comm TBs

Comp TBs

i++ < max

Device-wide Sync

TB Specialization

Start i=0

GPU-initiated
inter-GPU
communication &
synchronization

● Within GPU - Device-side
barriers

● Across GPUs - Device-initiated
signal / flag mechanisms

● CUDA Cooperative Groups API

● NVSHMEM signal operations /
barriers for multi-GPU sync

9

Reduced Kernel Launch / CPU Synchronization Overheads

CPU-controlled execution needs multiple API calls

● Kernel launches

● Communication calls

● Multiple streams

● GPU events

● Global barriers (OpenMP, MPI barriers)

One fused kernel eliminates these overheads

10

Reduces Communication Overheads and Overlaps Better

● Can initiate communication as soon as
the data is ready

● Can inline communication with
computation

● When device not saturated, API call
latencies dominate

● CPU-Free can overlap in small domains

● Especially relevant in strong scaling

● More asynchrony

11

Shared Memory Caching

● Shared memory has lifetime of kernel

● CPU-Free execution can reuse shared memory across iterations

● We integrate PERKS kernel into our model

[1]: Zhang et al., PERKS: a Locality-Optimized Execution Model for Iterative Memory-bound GPU Applications

12

Use-Cases

● Jacobi 2D / 3D

● Conjugate Gradient

Published at Multi-GPU Communication Schemes for Iterative Solvers: When CPUs are Not in Charge.
In Proceedings of the 37th International Conference on Supercomputing (ICS '23).

13

Use-Case 1 - Jacobi Stencil

TB Specialization

HaloInnerBoundary

Comm TB

Comm TB

Comp TBs

…

Halo Update

Domain

Halo Update

Use-Case 2 - Conjugate Gradient

Saxpy - Local computations; no
communication

SpMV - Need entries on other
GPUs; need communication

Dot - Global sync point because of
global reduction

Each step depends on previous

No possible overlap

Saxpy Dot SpMV

14[2]: M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems

Use-Case 2 - Conjugate Gradient Saxpy Dot SpMV

Introduce auxiliary vectors to allow
overlap

Can implement dot product global
reductions with one reduction

Can overlap dot product global reductions
with SpMV

15

● Pipelined CG can showcase overlap

● We implement CPU-Free for both Standard and Pipelined CG

[3]: P. Ghysels and W. Vanroose, Hiding Global Synchronization Latency in the Preconditioned Conjugate Gradient Algorithm

16

Use-Case 2 - Conjugate Gradient

𝛾 = r ⊙ r 𝛿 = r ⊙ w

q = Aw

Saxpy

Dot

SpMV

Reduction

Comm TB Comp TBs

…

Saxpy x 6

All TBs

…

17

Evaluation

● Jacobi 2D/3D

● Conjugate Gradient

8 NVLink all-to-all connected NVIDIA A100 GPUs

Published at Multi-GPU Communication Schemes for Iterative Solvers: When CPUs are Not in Charge.
In Proceedings of the 37th International Conference on Supercomputing (ICS '23).

18

Jacobi 3D - Strong Scaling

● Consistently lower communication overheads
● Excels in strong scaling scenarios

○ Underperforms at small numbers of GPUs (compute-bound)
○ As GPU count increases, overheads start to dominate
○ CPU-Free pulls ahead at larger GPU counts

19

Conjugate Gradient

CPU-Free achieves 1.63x and 1.54x geo mean speedup over CPU-Controlled
for Pipelined and Standard CG, respectively

20

Comparison with Petsc

Outperforms PETSc for 13 out 18 sparse matrices

21

Work in Progress

● Compiling autonomous CPU-free code from Python

● Developing profiling and monitoring tools for inter-GPU

communication

● Building a runtime system that uses CudaGraphs for CPU-free

execution - particularly useful for irregular applications

● Extending the CPU-free model to AMD GPUs

22

Extending the DACE compiler

● 44.5% performance improvement at

8 GPUs

● 26.8% improvement in

communication latency

● Little overall communication,

improvements attributed to

synchronization overheads

23

Outlook

● Hard-to-scale management overheads can be moved to GPU

● GPUs can be more autonomous

○ Managing their own communication, synchronization etc

● Less reliance on CPU

● Need to automate this process and support it with tools

● Do we need fat expensive CPUs to be attached to GPUs?

○ Modular supercomputers

■ Use light CPUs for GPUs nodes

■ Reduce cost and energy consumption

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 949587).

CPU-Free Model

● Outperforms CPU-controlled baselines for both Jacobi

2D/3D and CG

● Especially suited for communication latency-bounded
and strong scaling scenarios
○ Any application suggestions?

● Code available at

https://github.com/ParCoreLab/CPU-Free-model

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 949587).

https://github.com/ParCoreLab/CPU-Free-model

