Intel[®] Gaudi[®]2 AI Accelerator for Deep Learning Training and Inference

Karthikeyan Vaidyanathan November 2023

Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more at https://habana.ai/habana-claims-validation/

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Agenda

- Gaudi2 programming model and recent MLPERF results
- Experience at scale
 - Use case1: SWIFT congestion control
 - Use case2: Packet/message spraying

Intel Xeon and Gaudi2 Processors for Models E2E

intel. GAUDI

Train and deploy large scale GenAI and LLMs

Gaudi2 Clusters and systems for models from billions to trillions of parameters

Fine tune and run thousands of domain specialized models with targeted curated data sets from the data center and the factory floor to devices

Intel Xeon for fine tuning and inferencing models up to tens of billions of parameters

Intel[®] Gaudi[®] Accelerator Roadmap

Intel delivers increasingly competitive Training Performance

- One of only three accelerators submitting GPT-3 results: Intel, Nvidia, Google
- Xeon continues to be the only CPU to submit training results on the MLPerf Benchmark.

intel.

Xeon

intel. ⁶

Intel[®] Gaudi[®]2 Accelerator Performance Doubled with FP8

- Intel Gaudi team projected to customers +90% performance gain with FP8
- Delivered more than promised: 103% on GPT-3 industry benchmark

Intel® Gaudi®2 performance advances strengthen competitive price-performance vs. H100

- Gaudi2 performance on ResNet near that of H100.
- H100 with FP8 outperformed Gaudi2 with BF16 on BERT.
- Vs.TPU, Gaudi2 delivered 3x performance on GPT-3.
- Given its significantly lower server cost vs. H100 server cost, Intel Gaudi2 delivers price-performance advantage vs. H100 across models.

For complete results information and configurations, see MLCommons publication: <u>https://mlcommons.org/en/inference-datacenter-31/</u>

See backup for workloads and configurations. Results may vary.

Outstanding Intel[®]Gaudi[®]2 Al Accelerator performance on MLPerf v3.1 Inference Benchmark GPTJ-99 Server Throughput Samples/sec,

Intel Gaudi2 Accelerator with FP8: near-parity performance on GPT-J (Server) with H100

- Gaudi 2 inference performance on GPT-J: -9% (Server) and -28% (Offline) vs H100
- Gaudi 2 outperformed A100 by 2.4x (Server) and 2x (Offline)
- Gaudi 2 employed FP8 and reached 99.9% accuracy

For complete results information and configurations, see MLCommons publication: https://mlcommons.org/en/inference-datacenter-31/

See backup for workloads and configurations. Results may vary.

SynapseAl Software: Optimized for Intel® Gaudi® Performance and Ease of Use

* SynapseAl[®]

- Shared software suite for training and inference
- Start running on Intel Gaudi accelerators with minimal code changes
- Integrated with PyTorch and TensorFlow
- Rich library of performance-optimized kernels
- Advanced users can write their custom kernels
- Docker container images and Kubernetes orchestration
- Habana Developer Site & Habana Al GitHub
- <u>Habana Developer Forum</u>

HCCL API

// Communicator creation
hcclGetUniqueId(hcclUniqueId* uniqueId);

hcclCommInitRank(hcclComm_t* comm, int nranks, hcclUniqueId commId, int rank);

// Communicator destruction

hcclCommDestroy(hcclComm_t comm);

// Collectives communication

hcclReduceScatter(void* sbuff, void* rbuff, size_t recvcount, hcclDataType_t datatype, hcclRedOp_t op, hcclComm_t comm, synStreamHandle stream_handle);

hcclAllReduce(void* sbuff, void* rbuff, size_t count, hcclDataType_t datatype, hcclRedOp_t op, hcclComm_t comm, synStreamHandle stream_handle);

hcclBroadcast(void* sbuff, void* rbuff, size_t count, hcclDataType_t datatype, int root, hcclComm_t comm, synStreamHandle stream_handle);

hcclAllGather(void* sbuff, void* rbuff, size_t sendcount, hcclDataType_t datatype, hcclComm_t comm, synStreamHandle stream_handle);

hcclReduce(void* sbuff, void* rbuff, size_t count, hcclDataType_t datatype, hcclRedOp_t op, int root, hcclComm_t comm, synStreamHandle stream_handle); hcclAlltoAll(...);

// Point-to-point communication

hcclSend(void* sbuff, size_t count, hcclDataType_t datatype, int peer, hcclComm_t comm, synStreamHandle stream);

hcclRecv(void* rbuff, size_t count, hcclDataType_t datatype, int peer, hcclComm_t comm, synStreamHandle stream);

// Aggregation/Composition

hcclGroupStart();

hcclGroupEnd();

- PFC is great but does not work for multi-tenant and multi-level switches
- When packet drops occur, utilization is poor

SWIFT congestion control for Habana Gaudi2

	#packets	
7:1 congestion, No PFC	dropped	Bandwidth utilization
Default	276787	10-50%
SWIFT		
for 4KB/8KB MTU (targetdelay=20usecs, ai=2, beta=0.5,min_cwnd=2, max_cwnd=32)	~1	~98%

SWIFT: https://dl.acm.org/doi/pdf/10.1145/3387514.3406591

intel.

Packet collision at large-scale

intel.

		0.0 0.00		v v.v.					0.03			0.00				010 010			0.00		
Et5/1	Uplink 10.2 0:15	0.0 0.0%	0 0.	0 0.0%	θ	Ft5/1	Uplink 10.2 0:15	4748.2	4.8%	71	0.0	0.0%	0	Ft5/1	Uplink 10.2 0:15	0.0 0.0%	0	0.0	0.0%	0	
Et5/3	Uplink 10.2 0:15	0.0 0.0%		0 0.0%	θ	Et5/3	Uplink 10.2 0:15	0.0	0.0%	0		0.0%	0	Et5/3	Uplink 10.2 0:15	0.0 0.0%	0		0.0%	0	
Et5/5	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		Et5/5	Uplink 10.2 0:15	0.0				0.0%		Et5/5	Uplink 10.2 0:15	12.2 0.0%	22	0.0		Å	
Et5/7	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		Et5/7	Uplink 10.2 0:15	0.0	0.0%			0.0%		Et5/7	Uplink 10.2 0:15	1.1 0.0%	0		0.0%	Å	
Et7/1	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		Et3/7	Uplink 10.2 0:15	8.2		0		0.0%	0	Et7/1	Uplink 10.2 0:15	0.0 0.0%		0.0		å	
Et7/3	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		E(//1 E+7/2	Uplink 10.2 0:15	0.0	0.0%			0.0%		Et7/3	Uplink 10.2 0:15	0.0 0.0%			0.0%	ö	
Et7/5	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		EL// 3 E+7/5	Uplink 10.2 0:15	0.0				0.0%		Et7/5	Uplink 10.2 0:15	0.0 0.0%			0.0%	9	
Et7/7	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		EL//J	Uplink 10.2 0:15	0.0	0.0%			0.0%		Et7/7	Uplink 10.2 0:15	0.0 0.0%			0.0%	Å	
Et9/1	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		Et9/1	Uplink 10.2 0:15	0.0				0.0%		Et9/1	Uplink 10.2 0:15	0.0 0.0%			0.0%	Å	
Et9/1 Et9/3	Uplink 10.2 0:15	4742.0 4.8%		0 0.0%		E(9/1	Uplink 10.2 0:15		0.0%			0.0%		Et9/1 Et9/3	Uplink 10.2 0:15	0.0 0.0%			0.0%	ŏ	
Et9/5	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		E19/5	Uplink 10.2 0:15		0.0%			0.0%		Et9/5 Et9/5	Uplink 10.2 0:15	0.0 0.0%			0.0%	Å I	
Et9/5 Et9/7	Uplink 10.2 0:15	15.8 0.0%		0 0.0%		Et9/5 Et9/7	Uplink 10.2 0:15		0.0%			0.0%		Et9/5 Et9/7	Uplink 10.2 0:15	4742.7 4.8%	9 71		0.0%	Å	
Et11/1	Uplink 10.2 0:15	8.2 0.0%		0 0.0%		Et9// Et11/1	Uplink 10.2 0:15	0.0				0.0%		Et11/1	Uplink 10.2 0:15	4/42.7 4.8% 8.3 0.0%			0.0%	Å	
Et11/3	Uplink 10.2 0:15	4742.0 4.8%		1 0.0%		Et11/1 Et11/3	Uplink 10.2 0:15		0.0%			4.8%	01	Et11/1 Et11/3	Uplink 10.2 0:15	4742.7 4.8%	71		0.0%	õ	
Et11/5	Uplink 10.2 0:15	0.0		0 0.0%		Et11/5 Et11/5	Uplink 10.2 0:15	0.0				4.0%	01	Et11/5	Uplink 10.2 0:15	4749.8 4.8%	71		0.0%	ö	
Et11/7	Uplink 10.2 0:15	0.0 0.0		0 0.0%		Et11/5 Et11/7	Uplink 10.2 0:15	0.0			0.0			Et11/3 Et11/7	Uplink 10.2 0:15	4742.7 4.8%	71	1.1		0	
Et13/1	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		Et11/7 Et13/1	Uplink 10.2 0:15	0.0			0.0			Et13/1	Uplink 10.2 0:15	4/42./ 4.8% 0.0 0.0%	/1		0.0%	9	
Et13/3	Uplink 10.2 0:15	0.0 0.0%	-10 -19		71	Et13/1 Et13/3	Uplink 10.2 0:15		0.0%	0	0.0			Et13/1 Et13/3	Uplink 10.2 0:15	4742.7 4.8%	71		0.0%	0	
Et13/5	Uplink 10.2 0:15	0.0 0.0%		9.5%	143	Et13/5	Uplink 10.2 0:15		0.0%			4.7%	71	Et13/5 Et13/5	Uplink 10.2 0:15	0.0 0.0%	/1		0.0%	õ	
Et13/3	Uplink 10.2 0:15	0.0 0.0%	0	50,00	145	Et13/3 Et13/7	Uplink 10.2 0:15	0.0			4741.1		71	Et13/3 Et13/7	Uplink 10.2 0:15	0.0 0.0%			0.0%	õ	
Et15/1	Uplink 10.2 0:15	0.0 0.0%	0			Et15/1	Uplink 10.2 0:15		4.8%		1.1		0	Et15/1	Uplink 10.2 0:15	0.0 0.0%			0.0%	18	
Et15/3	Uplink 10.2 0:15	0.0 0.0%	θ Δτ			Et15/3	Uplink 10.2 0:15	4748.2		71	0.0			Et15/3	Uplink 10.2 0:15	0.0 0.0%			0.0%	0	
Et15/5	Uplink 10.2 0:15	0.0 0.0%	0 47			Et15/5	Uplink 10.2 0:15	0.0		0	0.0			Et15/5	Uplink 10.2 0:15	0.0 0.0%			4.8%	71	
Et15/7	Uplink 10.2 0:15	0.0 0.0%	0 4734.			Et15/7	Uplink 10.2 0:15	4733.9		71	0.0			Et15/7	Uplink 10.2 0:15	4735.5 4.7%	71		0.0%	â	
Et17/1	Uplink 10.2 0:15	0.0 0.0%	0 0.			C+17/1	Unlink 10.2 0:15	0.0		0	0.0		õ	Et17/1	Uplink 10.2 0:15	0.0 0.0%	0		4.8%	71	
Et17/3	Uplink 10.2 0:15	0.0 0.0%	0						0 08	0	0.0		θ	Et17/3	Uplink 10.2 0:15	0.0 0.0%	θ		0.0%	Θ	
Et17/5	Uplink 10.2 0:15	0.0 0.0%			cortair		tout o	ort	C	-11	0.0		0	Et17/5	Uplink 10.2 0:15	0.0 0.0%			4.8%	90	
Et17/7	Uplink 10.2 0:15	4757		πιγ	certair	I UU	ιμαι μ		.>		2.0	0.0%		Et17/7	Uplink 10.2 0:15	0.0 0.0%		0.0	0.0%	θ	
Et19/1	Uplink 10.2 0:15											9.0%		Et19/1	Uplink 10.2 0:15	0.0 0.0%		0.0	0.0%	Θ	
Et19/3	Uplink 10.2 0:15		h	210	e traffic	ran	d ract	arc	2			8%	71	Et19/3	Uplink 10.2 0:15	1.1 0.0%		4742.7	4.8%	71	
Et19/5	Uplink 10.2 0:15			avç	ruanny	- an	u i est	are	-			.0%		Et19/5	Uplink 10.2 0:15	0.0 0.0%		0.0	0.0%	0	
Et19/7	Uplink 10.2 0:15											0.0%		Et19/7	Uplink 10.2 0:15	0.0 0.0%			0.0%	Θ	
Et21/1	Uplink 10.2 0:15	0.0		id	le and	lini	itilizaa					0.0%		Et21/1	Uplink 10.2 0:15	0.0 0.0%			0.0%	Θ	
Et21/3	Uplink 10.2 0:15	0.0 0.0%			ie and	unc				0		0.0%		Et21/3	Uplink 10.2 0:15	0.0 0.0%			4.8%	71	
Et21/5	Uplink 10.2 0:15	0.0 0.0%		0 0.00				8.2				0.0%		Et21/5	Uplink 10.2 0:15	0.0 0.0%			0.0%	θ	
Et21/7	Uplink 10.2 0:15	4742.0 4.8%		0 0.0%		Et21/7	Uplink 10.2 0:15	0.0	0.0%			0.0%		Et21/7	Uplink 10.2 0:15	4742.7 4.8%	71		0.0%	θ	
Et23/1	Uplink 10.2 0:15	0.0 0.0%		2 4.8%	71	Et23/1	Uplink 10.2 0:15	0.0	0.0%	0		0.0%	0	Et23/1	Uplink 10.2 0:15	0.0 0.0%	θ		4.8%	71	
Et23/3	Uplink 10.2 0:15	0.0 0.0%		0 0.0%	0	Et23/3	Uplink 10.2 0:15	0.0		0		4.8%	71	Et23/3	Uplink 10.2 0:15	0.0 0.0%	θ		0.0%	0	
Et23/5	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		Et23/5	Uplink 10.2 0:15	0.0	0.0%			0.0%		Et23/5	Uplink 10.2 0:15	0.0 0.0%			0.0%	Θ	
Et23/7	Uplink 10.2 0:15	0.0 0.0%		1 0.0%		Et23/7	Uplink 10.2 0:15	0.0				0.0%		Et23/7	Uplink 10.2 0:15	0.0 0.0%			0.0%	0	
Et25/1	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		Et25/1	Uplink 10.2 0:15 Uplink 10.2 0:15	0.0	0.0%			0.0%		Et25/1	Uplink 10.2 0:15	0.0 0.0%			0.0%	0	
Et25/3	Uplink 10.2 0:15	8.2 0.0% 4742.0 4.8%		0 0.0%		Et25/3		0.0 0.0				0.0% 0.0%		Et25/3	Uplink 10.2 0:15	0.0 0.0% 0.0 0.0%			0.0%	0	
Et25/5 Et25/7	Uplink 10.2 0:15 Uplink 10.2 0:15	4/42.0 4.8%		0 0.0% 0 0.0%		Et25/5 Et25/7	Uplink 10.2 0:15 Uplink 10.2 0:15		0.0% 0.0%			0.0%		Et25/5 Et25/7	Uplink 10.2 0:15 Uplink 10.2 0:15	0.0 0.0% 0.0 0.0%			0.0% 0.0%	0	
Et25/7 Et27/1	Uplink 10.2 0:15	8.3 0.0%		0 0.0% 3 0.0%	9	Et25/7 Et27/1	Uplink 10.2 0:15		0.0%			0.0%		Et25/7 Et27/1	Uplink 10.2 0:15	0.0 0.0%			0.0%	0	
Et27/1 Et27/3	Uplink 10.2 0:15	0.0 0.0%		0 0.0%	0	Et27/1 Et27/3	Uplink 10.2 0:15	0.0	0.0%			0.0%	0	Et27/1 Et27/3	Uplink 10.2 0:15	4742.7 4.8%	71	1.1		9	
Et27/5	Uplink 10.2 0:15	0.0 0.0%		0 0.0%		Et27/5	Uplink 10.2 0:15	0.0	0.0%			4.7%	71	Et27/5	Uplink 10.2 0:15	0.0 0.0%	0		0.0%	Ø	16
F+27/7	Unlink 10.2 0.15	0.0 0.08	0 0	0 0.0%	0	Et27/3	Unlink 10.2 0.15	0.0	0.0%	A	0.0	A A%	Â	F+27/7	Unlink 10.2 0.15	0.0 0.0%	ē.	0.0	0.0%	õ	

Solution: Packet spraying

intel.

Packet spraying solution

HCCL collectives BW	With collisions	Packet spraying	Expected
All2All	22 GB/s	64 GB/s	65 GB/s
Allgather	183 GB/s	272 GB/s	272 GB/s

L(J/J	ODUTHU 10:5 0:10	J12+/ 0+J0	10 13.	3113 113.0	6.0	LL3/3	Ob(THV 1015 0113	101010 1.00	10	1013.5	1.0.0	10	LLJ/J	OPTIN 10.2	0.15	1020.5	1.0.0	10 10		0.0 10
	Uplink 10.2 0:15	0.0 0.0%	0 10	21.9 1.0%	17	Et3/7	Uplink 10.2 0:15	511.7 0.5%			0.0%		Et3/7	Uplink 10.2			9.0%		1.0 0.	
	Uplink 10.2 0:15	2.6 0.0%		2.6 0.0%		Et5/1	Uplink 10.2 0:15	0.9 0.0%		0.9	0.0%		Et5/1	Uplink 10.2			9.0%		1.0 0.	.5% 8
Et5/3	Uplink 10.2 0:15	512.7 0.5%	10 53	10.9 0.5%		Et5/3	Uplink 10.2 0:15	511.7 0.5%		0.0	0.0%		Et5/3	Uplink 10.2	0:15		2.0%	32 5	1.9 0.	.5% 9
	Uplink 10.2 0:15	510.1 0.5%		10.1 0.5%		Et5/5	Uplink 10.2 0:15	513.5 0.5%	11	0.9	0.0%		Et5/5	Uplink 10.2			9.5%		0.0 0.	
	Uplink 10.2 0:15	1021.0 1.0%		11.8 0.5%		Et5/7	Uplink 10.2 0:15	510.8 0.5%			0.0%		Et5/7	Uplink 10.2			9.5%		21.2 1.	
	Uplink 10.2 0:15	0.9 0.0%		20.1 1.0%	15	Et7/1	Uplink 10.2 0:15	0.9 0.0%		510.0	0.5%		Et7/1	Uplink 10.2			9.5%		1.0 0.	
	Uplink 10.2 0:15	510.9 0.5%		11.8 0.5%		Et7/3	Uplink 10.2 0:15	510.8 0.5%			0.5%		Et7/3	Uplink 10.2			9.0%		22.0 1.	
	Uplink 10.2 0:15	511.8 0.5%		30.2 1.5%	23	Et7/5	Uplink 10.2 0:15	1104.2 1.1%	16	2761.4	2.8%	42	Et7/5	Uplink 10.2				16	0.0 0.	
	Uplink 10.2 0:15	1021.0 1.0%		10.1 0.5%	7	Et7/7	Uplink 10.2 0:15	0.0 0.0%	0	511.7	0.5%	9	Et7/7	Uplink 10.2			9.5%	7 15	32.2 1.	
	Uplink 10.2 0:15	1021.0 0%		21.0 1.0%	16	Et9/1	Uplink 10.2 0:15	511.7 0.5%		512.6	0.5%	10	Et9/1	Uplink 10.2			9.0%	2	1.7 0.	
	Uplink 10.2 0:15	510.1		1.7 0.0%		Et9/3	Uplink 10.2 0:15	511.7 0.5%			0.5%	8	Et9/3	Uplink 10.2					21.2 1.	
	Uplink 10.2 0:15	510.9 0.5		10.1 0.5% 11.8 0.5%		ET9/5	Uplink 10.2 0:15 Uplink 10.2 0:15	1019.9 1.0% 0.9 0.0%	15	0.0 1019.9	0.0%		ET9/5	Uplink 10.2			1.5% 0.5%	23	1.7 0.	
	Uplink 10.2 0:15 Uplink 10.2 0:15	0.0 0.0% 1.7 0.0%		11.8 0.5% 21.9 1.0%	9 17	Et9// Et11/1	Uplink 10.2 0:15	0.9 0.0% 510.0 0.5%		511.7	1.0% 0.5%	15	Et9/7 Et11/1	Uplink 10.2 Uplink 10.2			9.0%	9 10	0.9 0. 21.1 1.	
	Uplink 10.2 0:15	510.9 0.5%		21.9 1.0% 20.1 0.5%	7	Et11/1 Ft11/2	Uplink 10.2 0:15	510.0 0.5% 511.7 0.5%	0	2.6	0.0%	3	Et11/1 Et11/3	Uplink 10.2 Uplink 10.2			9.0% 9.5%		1.1 1. 11.9 0.	
	Uplink 10.2 0:15	1.8 0.0%		0.1 0.3%		Et11/5	Uplink 10.2 0:15	1529.9 1.5%	23	510.8	0.5%	8	Et11/5 Et11/5	Uplink 10.2			9.9% 9.0%		1.9 0. 10.1 0.	
	Uplink 10.2 0:15	1020.1 1.0%	1	2.0%		Et11/3	Uplink 10.2 0:15	1019.9 1.0%	15	510.8	0.5%	8	Et11/5 Et11/7	Uplink 10.2					ll.0 0.	
	Uplink 10.2 0:15	1021.0 1.0%	16		0	Et13/1	Uplink 10.2 0:15	510.0 0.5%	7	1.8	0.0%		Et13/1	Uplink 10.2			9.0%	0	0.9 0.	
	Uplink 10.2 0:15	510.1 0.5%	7		2	Et13/3	Uplink 10.2 0:15	0.9 0.0%		511.7	0.5%		Et13/3	Uplink 10.2				10 5	1.9 0.	
	Uplink 10.2 0:15	511.8 0.5%			0	Et13/5	Uplink 10.2 0:15	0.9 0.0%		1020.8	1.0%		Et13/5	Uplink 10.2					32.2 1.	
Et13/7	Uplink 10.2 0:15	510.1 0.5%		1		Et13/7	Uplink 10.2 0:15	1531.6 1.5%	25	510.8	0.5%		Et13/7	Uplink 10.2	0:15	1021.1	1.0%	16	0.9 0.	.0% 1
Et15/1	Uplink 10.2 0:15	510.9 0.5%	8 53	10.1		Et15/1	Uplink 10.2 0:15	1.8 0.0%		510.8	0.5%		Et15/1	Uplink 10.2	0:15	1530.4	1.5%	23	0.9 0.	0% 0
	Uplink 10.2 0:15	0.9 0.0%		0.9		Et15/3	Uplink 10.2 0:15	0.9 0.0%		0.9	0.0%		Et15/3	Uplink 10.2					1.0 0.	
	Uplink 10.2 0:15	1021.9 1.0%		0.9		Et15/5	Uplink 10.2 0:15	1020.8 1.0%			1.0%		Et15/5	Uplink 10.2				23	0.9 0.	
	Uplink 10.2 0:15	511.8 0.5%		21.9 1.6		C+15/7	Unlink 10.2 0:15	1019.9 1.0%	15	0.9	0.0%	1	Et15/7	Uplink 10.2					1.0 0.	
	Uplink 10.2 0:15	1020.1 1.0%	15					<u>00</u> 0.0%		1020.8	1.0%	16	Et17/1	Uplink 10.2			9.5%	8 5	10.1 0.	
	Uplink 10.2 0:15	510.9 0 5							46	511.7	0.5%		Et17/3	Uplink 10.2			9.5%	8	0.9 0.	
	Uplink 10.2 0:15 Uplink 10.2 0:15 ⊿	0		Δm	lost all	nor	te ara			510.8 0.9	0.5% 0.0%	8	Et17/5 Et17/7	Uplink 10.2 Uplink 10.2		511.0 0.9	9.5% 9.0%	8 5. 1	1.9 0. 0.0 0.	
	Uplink 10.2 0:15						ts are				1.0%	16	Et17/7 Et19/1	Uplink 10.2 Uplink 10.2		1.8			1.7 0.	
	Uplink 10.2 0:15										0.5%	10	Et19/1 Et19/3	Uplink 10.2			9.5%		1.7 0.	
	Uplink 10.2 0:15				utiliz	ed					0.0%		Et19/5	Uplink 10.2		511.0			1.3 0.	
	Uplink 10.2 0:15	510.9			Grenz						1.0%	17	Et19/7	Uplink 10.2			9.5%		1.0 0.	
	Uplink 10.2 0:15	510.9 0.5%						٥			1.0%	17	Et21/1	Uplink 10.2			9.0%		51.6 2.	
Et21/3	Uplink 10.2 0:15	511.8 0.5%	9 5.	12.7 0.55			0110	510.8 0.5%		0.0	0.0%		Et21/3	Uplink 10.2	0:15		9.5%		10.1 0.	.5% 7
	Uplink 10.2 0:15	0.9 0.0%		10.9 0.5%		Et21/5	Uplink 10.2 0:15	1.8 0.0%			0.5%		Et21/5	Uplink 10.2			9.0%		0.0 0.	
	Uplink 10.2 0:15	510.9 0.5%	8 102	21.9 1.0%	17	Et21/7	Uplink 10.2 0:15	0.0 0.0%		2.6	0.0%		Et21/7	Uplink 10.2			9.5%	7 20	1.4 2.	
	Uplink 10.2 0:15	0.0 0.0%		0.0 0.0%		Et23/1	Uplink 10.2 0:15	0.0 0.0%		1020.8	1.0%	16	Et23/1	Uplink 10.2			9.0%		0.9 0.	
	Uplink 10.2 0:15	1.8 0.0%	2	0.0 0.0%	0	Et23/3	Uplink 10.2 0:15	510.8 0.5%	8	510.8	0.5%	8	Et23/3	Uplink 10.2			9.5%	8	0.0 0.	
	Uplink 10.2 0:15	1020.1 1.0%		10.1 0.5%		Et23/5	Uplink 10.2 0:15	1.8 0.0%			0.5%		Et23/5	Uplink 10.2		511.0			21.1 1.	
	Uplink 10.2 0:15	511.8 0.5%		10.9 0.5% 20.1 1.0%	8	Et23/7	Uplink 10.2 0:15	510.8 0.5%	8	0.0	0.0%		Et23/7	Uplink 10.2					1.0 0.	
	Uplink 10.2 0:15 Uplink 10.2 0:15	510.9 0.5% 1.8 0.0%		20.1 1.0% 30.2 1.5%	15 23	Et25/1 Et25/3	Uplink 10.2 0:15 Uplink 10.2 0:15	0.9 0.0% 0.9 0.0%		510.0 0.9	0.5% 0.0%		Et25/1 Et25/3	Uplink 10.2 Uplink 10.2			1.0% 3.0%	15	0.0 0. 2.6 0.	
	Uplink 10.2 0:15	510.9 0.5%	2 15.	0.0 0.0%	0	Et25/5	Uplink 10.2 0:15	1020.8 1.0%	16	0.9	0.0%		Et25/5 Et25/5	Uplink 10.2			9.0% 9.0%		2.0 0. 10.1 0.	
	Uplink 10.2 0:15	510.9 0.5%	8	0.0 0.0%	0	Et25/7	Uplink 10.2 0:15	1529.9 1.5%	23	1529.9	1.5%	23	Et25/7	Uplink 10.2			9.5%		22.0 1.	
	Uplink 10.2 0:15	0.0 0.0%	0	0.0 0.0%	0	Et27/1	Uplink 10.2 0:15	0.9 0.0%	1	1531.6	1.5%	25	Et27/1	Uplink 10.2					10.1 0.	
	Uplink 10.2 0:15	511.8 0.5%	9 5	11.8 0.5%	9	Et27/3	Uplink 10.2 0:15	511.7 0.5%	9	1020.8	1.0%	16	Et27/3	Uplink 10.2			9.5%		1.0 0.	
F+27/5	Unlink 1A 2 A.15	20/11 2 08	21 10	20 1 1 0%	15	F±27/5	Unlink 10 2 0.15	A Q A AS:	1	20/1 6	2 6%	30	E+27/5	Unlink 10 2	0.15	510 1	5%	7	2.6 A	A% 2

Developer Resources

Gaudi Developer Site: developer.Habana.ai

Home Resources v Documentation v Catalog v Forum Explore More *habana Developer

Home » Resources » Habana Model Performance Data

Habana Model Performance Data

See the latest performance data for Gaudi2 training, Gaudi2 inference, Gaudi training and Gaudi inference. For information on models and container are currently integrated with Habana's Synapse AI software suite visit the Habana catalog.

TRAINING	

Gaudi2 MLPerf™ 3.0 Training Performance

These performance numbers have been generated with the latest version of SynapseAl and are improvements over the officially submitted numb on MLCommons website.

Framework Version	Model	# HPU	Precision	Time To Train	
PyTorch 2.0.1	MLPerf 3.0 - GPT3	256	bf16	442.5 min	
PyTorch 2.0.1	MLPerf 3.0 - BERT	64	bf16	2.2 min	
PyTorch 2.0.1	MLPerf 3.0 - BERT	8	bf16	13.3 min	
PyTorch 2.0.1	MLPerf 3.0 - ResNet	8	bf16	16.4 min	
PyTorch 2.0.1	MLPerf 3.0 - 3D U-Net	8	bf16	21.3 min	
TensorFlow 2.12.1	MLPerf 3.0 - ResNet	8	bf16	15.9 min	
TensorFlow 2.12.1	MLPerf 3.0 - BERT	8	bf16	14.5 min	

Gaudi2 Reference Models Training Performance

how <u> </u>	9				Search:				
Framework Version	Model	# HPU	Precision	Throughput	Accuracy	Time To Train			
Select Pramework *	Filter Model								
DeepSpeed 0.9.4	Megatron-DeepSpeed BLOOM 13B	64	bf16	64.37 sent/sec					
DeepSpeed 0.9.4	Megatron-DeepSpeed LLaMA 13B	64	bf16	55.12 sent/sec					
Lightning 2.0.4	Stable Diffusion	64	bf16	6820.62 img/sec					
Lightning 2.0.4	Stable Diffusion	8	bf16	1202.97 img/sec					
Lightning 2.0.4	Stable Diffusion	1	bf16	151.88 img/sec					
Lightning 2.0.4	Stable Diffusion Fine Tuning	1	bf16	54.9 img/sec					
Lightning 2.0.4	Stable Diffusion Fine Tuning Textual Inversion	1	bf16	17.72 img/sec					
PyTorch 2.0.1	ResNet50 LARS	32	bf16	181438.19 img/sec	76.1	6.58 min			
PyTorch 2.0.1	ResNet50 LARS	16	bf16	91426.23 img/sec	76.42	11.4 min			
PyTorch 2.0.1	ResNet50 LARS	8	bf16	46244.93 img/sec	76.05	18.75 min			
PuTorch 2.0.1	RacNatS01 ARS	1	hf16	5707 10 imn/sac					

Habana GitHub

Model-References Public

E README.md

Please visit this page for performance information

This repository is a collection of models that have been ported to run on Habana Gaudi AI accelerator. They are intended as examples, and will be reasonably optimized for performance while still being easy to read.

Computer Vision

Models	Framework	Validated on Gaudi	Validated on Gaudi2
ResNet50, ResNeXt101	PyTorch	Training	Training, Inference
ResNet50 for PyTorch Lightning	PyTorch Lightning	Training	Training
ResNet152	PyTarch	Training	
MobileNetV2	PyTorch	Training	
UNet 2D, Unet3D	PyTarch Lightning	Training, Inference	Training, Inference
SSD	PyTorch	Training	Training
GoogLeNet	PyTorch	Training	
Vision Transformer	PyTorch	Training	
DINO	PyTarch	Training	
YOLOX	PyTorch	Training	
YOLOV3	PyTarch	Training	
ResNet50 Keras	TensorFlow	Training	Training
ResNeXt101	TensorFlow	Training	Training
SSD	TensorFlow	Training	Training
Mask R-CNN	TensorFlow	Training	Training
UNet 2D	TensorFlow	Training	Training
UNet 3D	TensorFlow	Training	Training
DenseNet	TensorFlow	Training	
Vision Transformer	TensorFlow	Training	

Stable Diffusion

Stable Diffusion v1.5

Stable Diffusion v2.1

Stable Diffusion FineTuning PyTorch

PyTorch

PyTorch

Natural Language Processing

Models	Framework
BERT Pretraining and Finetuning	PyTorch
DeepSpeed BERT-1.58, BERT-58	PyTorch
BART	PyTorch
HundingFace BLOOM	PyTorch

What is a Habana P HPUs offer fast model training about BERT pre-training and examples. If you are not famili look at our conceptual guide. Install To install the latest stable rele plp install --upgrade-str Audio Framework Validated on Gaudi Validated on Gaudi2 Models Way2Vec2ForCTC PyTorch Inference Inference Hubert PyTorch Training **Generative Models** Models Framework Validated on Gaudi Validated on Gaudi2 Inference V-Diffusion PyTorch

PyTorch Lightning Training, Inference

Training

Inference

Inference

Habana Optimum Library on **Hugging Face Hub**

		Validated Models			
		The following model architectures, tasks a			
README.md			ng	Inference	Tasks
	+ .*	habanc		~	text classification question answering language modeling
SO				1	question answering language modeling
Optimum Ha	bana			1	question answering language modeling
rocessor (HPU). It provid	is a set of tools enabling easy mo	formers and Diffusers libraries and Habana's Gaudi odel loading, training and inference on single- and mu cially validated models and tasks is available here. Use		1	question answering language modeling
in try other models and	asks with only few changes.		13	~	language modeling text generation
what is a Haban	Processing Unit (HPI	0)?	-	DeepSpeed	text generation
		eat price-performance ratio. Check out this blog post ana Gaudi2 versus Nvidia A100 GPUs for concrete		Single card	text generation
amples. If you are not fi ok at our conceptual gu		to know more about them, we recommend you take a	Speed	Single card DeepSpeed	language modeling text generation
nstall	days and this works are		ipeed	DeepSpeed	language modeling text generation
			-	DeepSpeed	text generation
pip imtallupgrade-	trategy mager optimum[habana]		ipeed	DeepSpeed LoRA	language modeling text generation
		StableLM	×	Single card	text generation
		Falcon	×	Single card	text generation
		CodeGen	×	Single card	text generation
n Gaudi2		MPT	×	Single card	text generation
		75	1	~	summarization translation question answering
		VIT	1	1	image classification
	and a	Swin	1	1	image classification
di Validated on Gau	2	Wav2Vec2	1	7	audio classification speech recognition
Training, Inference		CLIP	1	1	contrastive image-text training
Training		BridgeTower	1	1	contrastive image-text training
Inference		ESMFold	×	Single card	 protein folding

Summary

- Intel Gaudi2 continues to be the only viable alternative to NVIDIA's H100 for GenAI/LLM compute, with a significant priceperformance advantage.
- 4th Gen Intel Xeon processors help customers train small- to mid-sized deep learning models, as well as fine tuning and transfer learning.
- Intel is well positioned to address every phase of the AI continuum across AI workloads, from large to small models giving customers choice.

Thank you