oo . .. =]
e’ = MVAPICH HiDL
SSeHiBD ~
High-Performance - == MP|, PGAS and Hybrid MPI+PGAS Library High-Performance
’ Big Data Deep Learning

SAl: Al-Enabled Speech Assistant Interface for Science Gateways in HPC

Pouya Kousha, Arpan Jain, Ayyappa Kolli, Matt Lieber,
Mingzhe Han, Nick Contini, Hari Subramoni, DK Panda

The Network Based Computing Laboratory
The Ohio State University

, Follow us on

https://twitter.com/mvapich

http://mvapich.cse.ohio-state.edu/

https://twitter.com/mvapich
http://mvapich.cse.ohio-state.edu/

Presentation Outline

e Introduction and Motivation
e Problem Statement

e Proposed Designs

e Performance Evaluation

e Discussion

e Concluding Remarks

Network Based Computing Laboratory ISC 2023 p

Introduction

 HPC usage is expanding: New users without HPC

® |
HPC User v= Tasks
background ? i=
e Execution of parallel workloads is complex! , ;
Select an HPC
— Learning new interfaces, features, and the terminologies Application
Find and Install
— Complex dependencies, installation and execution __Dependencies / Proposed
) . o I”St?” H‘PC Conversational
e Steep learning curves for executing tasks and utilizing HPC! (___application SAl Interface
f Read the)
* Intuitive Expression: Users naturally convey needs through (__documentation
(Create the Job script |
words & text _and launch the job
e Emergence of science gateways like Open OnDemand }

— GUI-based interface: more accessible and easier

HPC System

Network Based Computing Laboratory ISC 2023 3

Presentation Outline

e |ntroduction and Motivation
e Problem Statement

e Proposed Designs

e Performance Evaluation

e Discussion

e Concluding Remarks

Network Based Computing Laboratory ISC 2023 4

Research Challenges

Creating an Al-enabled conversational interface for HPC faces several challenges, including:

Network Based Computing Laboratory

Technical HPC terms: ASR and NLU models lack tailored HPC datasets, hindering
accurate interpretation of technical terms and abbreviations.

Complex relationships: Mapping complex HPC component relationships can be time-
consuming and complex

Software installation: HPC software package installation is a challenge, especially for
novice users, even with package managers like Spack

Conversational Al integration: Integrating conversational Al into science gateways
requires a modular interface and determining the interface between conversational Al
and science gateways

ISC 2023 5

Proposed Framework for Conversational Al for HPC Tasks

-
4“
-

HPC User &
!/ Speech Input - \
. Automatic Natural it .
Audio Text Entities|gntity/value
Ql)) — Speech Language > .
! R i Understandi Extraction
Select an APC) ecognition nderstanding
q Application) Text Input

Find and Install
Dependencies

\

(J%D Text

- Proposed
Install HPC Conversational o
agEllcatlon } SAl Interface NO s KG . : ¥
Read the w < Complete ~ — o,
documentation Feedback/ T Inference 2
- — Questions T Select KG
Create the Job script l Yes Software
and launch the job Installer
: =z Iz z \ Generator /
HPC System s -~
Network Based Computing Laboratory ISC 2023 ()

Presentation Outline

e Introduction and Motivation
e Problem Statement

* Proposed Designs

e Performance Evaluation

e Dicussion

e Concluding Remarks

Network Based Computing Laboratory ISC 2023 7

Generating HPC Dataset for Speech and Text

We create an HPC dataset for text and speech containing HPC terminology:
1. Generate basic text queries and label each entity into five broad categories
— System, software, model, argument, data

2. Generate combinations of entities with different arguments.
— Example: the number of combinations for running MPI benchmarks amounts to 315K queries.
3. Develop synonyms for HPC terminologies to create additional queries.
— Example: the mentioned MPI-benchmarks query set extends to 19 million queries
4. Include permutations of phrases to restrict DNN from learning any ordering of arguments

— Example: MPIl-benchmark dataset contains 7 million rows just by including permutations.

The datasets are called HPC-ASR and HPC-NLU

Network Based Computing Laboratory ISC 2023 8

Training Speech and Text Processing Models for HPC

Automatic Speech Recognition Natural Language Understanding(NLU)
e Model: Transformer based Speech2Text e Model: Bert entity recognition
e Dataset: TIMIT + HPC-ASR [proposed] e Datasets: HPC-NLU [proposed]
e Pretrained on LibriSpeech e Output: Identify entities and tasks

e Qutput: transcribed text

Tokenl Token2 Token3 Token4
| Token-level Classifier |
r 1 1t 1
| T Emeeddi?gs T \
BERT
I;xi?:;[gr »| Tokenizer >oeq28eq | T I ‘I‘ 1 ‘
Tokeni
Speech2Text architecture | ° EFlzer ‘
Sentence

BERT architecture

Network Based Computing Laboratory

ISC 2023 9

Creating HPC OntOIOgy “ Table 1. Major object properties in SAI O ontolagy

Relation Property| Domain| Range Description
canBe any any Defines possible values (OR)
Software . e
any Captures run capability
e Capture workload relations o vodel
depends Software| System | Captures software dependency
needs any any |Defines requirements (no default)
® PrOpose and create SAI-O hasArgs any |Argument|Defines optional values (defaults)
hasSoftware any | Software | Captures software availability

ontology for capturing

complex workload
Knowledge Graph based on SAI-O ontology for Inception-3 Model

£ =
(* acc’uracy H * rllflmberOfNodes] { L 2 ImggeNet } . T
1 - / [
~ ; -~ _|"# PPN A T —_Q MNIST
[* # optimizer ‘-» }»l # inception3]_ _______ - 4 B i
1~ . TIX ~—{" 4 ObjectRecogniti L & CIFAR
1 1 & o poch s \ onDataset [7
per app |Cat|0n p = // [model_arg }
= - * + —
/= ™
e AN * data_arg AN
// [= ComputerVision] § N a—— X = ASR_Data
e - - N =
& } NLP eI pata | %@ NLP-data

] [—J System _arg Nz
I _
| m < “Thi % RI2
‘7 - [€ communicationRu] owl:Thing ;J

ntime

dependencies and relations

[* & batchS|ze]

N

e Create Knowledge Graph

s

ning

V = Queue
w ‘ Horovod Pytorch } [SO] S ———
e :—éz_ogx;ﬂ TensorF { * I"(')C‘)Al"c_)égﬂ -TensorF H 0 ti(c:)rovod Pytorch] [+ compilér] [+ Ii‘brary] [+ R J
Network Based Computing Laboratory ISC 2023 10

SAl Workflow

Knowledge Graph Query Software Installer OnDemand Integration
e Given extracted entities e Checks & installs e HPC Integration and accessibility
e Queries all KGs dependencies via Spack Deployment modes:

— Uses SPARQL * Single Spack config e Passenger: shared resources

— Max-hit for KG selection ¢ Single Spack environment e Interactive: exclusive resources
e Gathers arguments * Reuse environment if it S

— Required args already exists! E[I . #est?-rblarlt:ﬁ?e! I]

_ Optional args e Asynchronous installation g[,%“}“?"aﬁ%]

Apn

Login Node ™\ /&_ Compute Node ™

5 [Inference Engine] ': [Inference Engine]

e Check against user input

5 [Prccessing Enginel i [Processing Engine]

e Query user till completion

3
Application-level Application-level

Processin

App Setup

App Setup Script

Job Script ||

OnDemand Pas:
OnDemand Interactivi

|

- e e e

Middleware
MPI Package Manager
HPC Applications Deep Learning I
s

-

/,
\

Network Based Computing Laboratory ISC 2023 11

Presentation Outline

e Introduction and Motivation
e Problem Statement

e Proposed Designs

e Performance Evaluation

e Discussion

e Concluding Remarks

Network Based Computing Laboratory ISC 2023 12

Evaluation Platform and Methodology

DL Framework: PyTorch is used to define and train DNNs for ASR and NLU.
DNNs: Speech2Text, BERT-based entity detection and classification
Datasets: LibriSpeech, TIMIT, HPC-ASR, and HPC-NLU

Methodology:

1. Compare the performance of pre-trained and fine-tuned Speech2Text models on the HPC
test dataset

2. Test the NLU model trained from scratch on predicting entities for given text or speech query
3. Evaluate end-to-end performance of ASR and NLU models

4. Provide overhead evaluation of the SAI pipeline, scaling of SAl as a Passenger App, and
performance of SAl as an Interactive App

Network Based Computing Laboratory ISC 2023 13

DL Models Performance Evaluation

ASR Evaluation:

Train Dataset Test Dataset R
* Improved word error rate for Speech2Text model Base (LibriSpeech) HPC-ASR (86.2
from 86.2% to 3.7% Base+TIMIT+HPC-ASR | HPC-ASR -
T
NLU Evaluation: Improved transition of speech to text
e 60K training size, 5M test size
_ o Test Dataset Fl-score | Precision | Recall
* Achieved 99% accuracy and precision HPC-NLU (5MeT0.999 | 0.999 0.09
ASR + NLU Evaluation: Predicting entities correctly!
e Pipelines ASR+NLU for inference accuracy
e Testing 100 queries from 4 individuals Metric User1 | User2 | User3 | User4 | Average

WER 1 8.6 8.3 8.03
e M1: Adjust predicted sentence length to match original Accuracy M2 |(0.97) 0.90 0.80 (f"g';k 0.907
T

e M2: Drop less important/incorrect words to match Accuracy M1 081 | 083 | 097 [\ 0.849 /
User #1 and #4 are new to SAl and not used in training

High success rate and flexibility
recognizing new users' voices!
ISC 2023 14

original content

Network Based Computing Laboratory

Overhead of SAl Passenger App Pipeline for Different Queries

o
")

1

X Text Query

End-to-end Overhead: SAIl Full Pipeline as Passenger App

Z

P::! 0.6 | A Speech Query 1 A4 A

[1+]
e Evaluate inference latency for various speech/text queries 804 1t 14

o X X X x X X X x X X X
e Exclude software installation and execution timing € 02

(]

Qo

©
e Speech latency increases with more query words g o

< 0 5 10 15
e Text latency remains constant Number of words in query

SAl passenger evaluation with different queries —
avg 200 iterations

oSpeech “Text

End-to-end Overhead of SAI Passenger App with Multiple Users o
— 60
e Higher avg. latency for speech/text with more concurrent users 8 5
> 40
e Speech queries more affected than text queries % g 30 ,
® = 20 /a{sk/‘?
Login node performance degrades significantly W
1 2 a4 8 16 28 32

increased passenger mode usage
Number of Users

SAl passenger end-to-end latency across multiple users —
8 words text/speech and average of 200/100 iterations

Network Based Computing Laboratory ISC 2023

Interactive App: Deployment and Portability

Interactive App: Address performance Extending SAI Support to New HPC Software
degradation with scaling users e Two-step process:

e Exclusive resources — Create application KG using SAI-O ontology &
e User-selected architecture supported relationships

Observations: — Add application-specific terms to HPC-ASR and

— Lower latency on V100 GPU node dataset

— NLU is generic to detect new entities!
— Improved over passenger deployment
e SAl provides scripts for ASR model fine-tuning &

Architecture | Deployment | Total ASR NLU KG)
/Model type latency | module | module | module NLU performance improvement
In(eractiyem "0 4019 0.02275 | 0.22655
BDW speech (b ssenger | 0.5024530.2366) 0.0217 | 0.2274 e Modular design: KG portability across systems,
Interactive | 0.2665 N/A™ | 0.0227 | 0.24335 . e
BDW text Passenger | 027125 | N/A 0.0218 | 0.24795 simplified deployment
SKX speech 0.44085 | 0.24105 | 0.0174 | 0.1754 e Integration with Open OnDemand for easy
SKX text _0.22095 0.0242 | 0.19585
V100 speech (Clnteractive | 0.40739((0.16585) 0.0172 | 0.224 porting to new system architectures
V100 text 2664 0.0225 | 0.2433
K80 text 02676 | N/A | 0.0225 | 0.2448

Compare breakdown & total latency on different architectures,
8-word text/speech query (100 speech/400 text iterations)

Network Based Computing Laboratory ISC 2023 16

Presentation Outline

e Introduction and Motivation
e Problem Statement

e Proposed Designs

e Performance Evaluation

e Discussion

e Concluding Remarks

Network Based Computing Laboratory ISC 2023 17

Will ChatGPT/Bard suffice?

e General-purpose language model
— Versatile and it can handle a wide range of language tasks relatively
— May not excel in any specialized task
e (Can be very effective in communicating with humans, but it’s far from the best
when it comes to interacting with HPC systems

e Thereis a need for fine-tuned with the specific objective of effective and
reliable interaction between both HPC users and HPC systems

VS

A Swiss army knife falls short if what we need is a multi-head screwdriver!

Network Based Computing Laboratory ISC 2023

Comparison with State of the Art: ChatGPT

* Query - show me how to benchmark resnet on 2 nodes with 1 PPN

Network Based Computing Laboratory

ISC 2023 19

Comparison with State of the Art: ChatGPT (Cont.)

e (Qualitative Observations: Lmitations

» ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical
answers. Fixing this issue is challenging, as: (1) during RL training, there’s
currently no source of truth; (2) training the model to be more cautious causes it
to decline guestions that it can answer correctly; and (3) supervised training

* Same question had different answers misleads the model because the ideal answer depends on what the model knows,

e Can lead to reproducibility issues rather than what the human demonstrator knows.

— Sensitivity to user inputs

— Lack of consistent answers

» ChatGPT is sensitive to tweaks to the input phrasing or attempting the same
prompt multiple times. For example, given one phrasing of a question, the model
can claim to not know the answer, but given a slight rephrase, can
answer correctly.

¢ |ncorrect answers Courtesy: https://openai.com/blog/chatgpt

— Datais not distributed among GPUs! trainset = torchvision.datasets.CIFAR10(root=

- Compllatlon Issues trainloader = torch.utils.data.Dataloader(tr

shuffle= , hum_workers=2)

criterion = nn.C sEntropyLoss()

~ Screenshot of ChatGPT generate code — missing data
distribution among processes

Network Based Computing Laboratory ISC 2023

mailto:panda@cse.ohio-state.edu

bash D Copy code

Will ChatGPT/Bard suffice? [

ChatGPT produce irrelevant information

— Provided code and extra parameters

— Used CIFAR dataset without inquiring user

source fpath/to/your/condafactivate.sh

Not best practice always! conda activate your.env
— Disabled InfiniBand for NCCL export NCCL_DEBUG=INFO
export NCCL_SOCKET_IFNAME="docker0O,lo
— No knowledge of best practices for performance export NCCL_IB_DISABLE=1

python -m torch.distributed.launch --nproc_per_node=2 --use_env your_pytorck

Lack of specific HPC system configuration
and knowledge module load cuda/10.0

module load python/3.8.0

source =/my_python_env/binfactivate

srun python -m torch.distributed.launch --nproc_per_node=1l --use_env be

Network Based Computing Laboratory ISC 2023 21

!‘y show me how to benchmark resnet on 2 nodes with 1 PPN V4

Google Bard?

v s IVIISSING broadcast of model and
e Task: Requesting same prompt from optimizer parameters using
Bard Torchvision Horovod

> Tensorboard

> Horoved

—_ Diffe re nt a n Swe rs fo r t h e Sa m e p ro m pt 2. Create a dataset. You can use the ImageNet dataset, which is a large dataset of images that is commonly used for benchmarking machine learning

models.

— I n CO rrect a n SWG Th e ge n e rated cod e is 3. Create a ResNet model. You can use the ResNet implementaticn that is provided in PyTorch.

4. Set up Horovod. Horovod is a distributed training framework that can be used to train machine learning models on multiple GPUs.
I - -
- ReprOdUCIbII Ity for non-dlstrlbuted 5. Run the benchmark. You can use the following command to run the benchmark:

Sure. Here are the steps on how to benchmark ResNet on 2 ni o0 _ 0O
tra I n I ng l horovodrun -np 2 python benchmark.py
L

This command will run the benchmark on 2 nodes, each with 1GPU. The results of the benchmark will be logged to Tensorboard.

+,

+

1. Install the necessary dependencies.

2. Clone the ResNet repository.

3. Create a file called benchmark.py and add the following code: Here is an example of @ benchmark script that you can use:
Python - Python
import tensorflow as tf import torch
import tensorflow_datasets as tfds import torchwvision
import tensorboard
def benchmark(batch_size): import horovod

"“"Benchmarks ResNet on 2 nodes with 1 PPN."""

dotaset = tfds.load("imagenet2012", split="train", shuffle=False)

images = dataset["image"].batch(batch_size)

labels = dataset["label"].batch(batch_size)

with tf.Session() as sess:
resnet = tf.keras.applications.ResNet5@(include_top=False) if __nome__ == "__main__":
predictions = resnet(images) torch.manual_seed(@)
loss = tf.keras.losses.categorical_crossentropy(labels, predictions)

e Wrong Horovod A T

return result device = torch.device("cudo:@"

. N ith horovod.initialize():
e API for init ’ ‘
--name.__ --Mazn benchmark (model, d
for batch_size in [16, 32, 64, 128, 256]: Or INi TETEDE, cui)
print("Batch size: %d" % batch_size)

result = benchmark(batch_size) Use code with caution. Learn mare o
print(result)

def benchmark(medel, device):
inputs = torch.randn(128, 3, 224, 224).to(device)
outputs = model(inputs)
return outputs

This script will benchmark the ResNet18 model on a single GPU. To run the benchmark on 2 nodes with 1 GPU each, you would need to change the

Use code with caution. Learn more u] device variable to cuda:@,cuda:1 .

4. Run the benchmark.py file.) ‘ . o ‘
The results of the benchmark will be logged to Tensorboard. You can view the results by opening Tensorboard and navigating to the events directory.

Network Based Computing Laboratory ISC 2023 22

Google Bard with a Descriptive Request

Query: show me how to benchmark resnet50 on 2 nodes with 1 PPN with CIFAR10 dataset using pytorch and horovod

¥y show me how to benchmark resnet50 on 2 nades with 1 PPN with CIFARIO dataset using pytorch and horovod %

¥ show me how to benchmark resnetS0 on 2 nodes with 1PPN with CIFARIO dataset using pyterch and horoved

Sure, here are the steps on how to benchmark ResNets0 on 2 nodes with 1 PPN with CIFARIO dataset using PyTorch and Horovod: Sure, here are the steps on how to benchmark ResNet50 on 2 nodes with 1 PPN with CIFARIO dataset using PyTorch and Horovod:
1. Install the necessary dependencies. 1. Install the following dependencies:
pip install toreh

pip install horevod
2. Create a file called benchmark.py and add the following code:
Python

import torch
import horovod.torch as hvd

PyTorch
Horovod
NVIDIA apex (optional)

2. Create a Python file called banchmark.py and add the following code:

Python
cef benchmark(model, datolooder):
losses = [1 import torch
for i, (imoges, labels) in enumerate(datoloader): impart torch.nn os nn
images = imoges.cudal)

labels = labels.cuda()

loss = model(images).mean()
losses.append(losa.item())

return losses

if __na ==

Mixing Horovod and

import torchvision.dotosets os dotosets
port torchvision.transforms as tronsforms
port horoved. torch as hvd

Horovod initiglization
hvd. init()

pytroch.distriuted APIs

model = torch.nn.ResNet5@().cuda()

dotaloader = torch.utils.dota.Datalooder (
CIFAR1®(root=".", troin=True, downlood=True),
bateh_size=hvd.size()
shuffle=True,

losses = benchmark(model, dataloader)
print(losses)

Use code with caution. Learn mare

3. Runthe benchmark py file

pythen benchmark.py

This will benchmark ResNet50 on 2 nodes with 1 PPN with CIFARIO dataset using PyTorch and Horoved. The output will be a lis

epoch.

Here is a breakdown of the code:

« The import import the ¥ namaly PyTorch and Horovad.

+ The benchmark function takes a model and a dataloader as input and returns a list of losses.

« The if __nome

| hope this helps! Let me know if you have any other questions.

No usage of Horovod

= block is the main execution block. It initializes the random seed, initializes Horovod, creates a ResNet50 model,
and creates a dataloader for the CIFARIO dataset. It then calls the benchmark function and prints the cutput.

Define the optimizer
optimizer = torch.optim.5GD(model .parometers(), 1r=a.1)

Load the CIFAR1O dataset
train_loader = torch.utils.dota.Datoloader(

datosets.CIFARIO(

transforms.Normalize((@.5, 0.5, @.5),

).
batch_size=hvd.size(),
shuffle=True,

frovod Distributed training
= hvd.DistributedDataParallel(model)

foin the model

lepoch in ronge(10):

ffor images, lobels in train_looder:
optimizer.zero_grad()
outputs = model(images)
loss = nn.functional.cross_entropy(outputs, labels)
loss.backward()
optimizer.step()

rovod Metrics
t("Horoved metrics:”)
wsPFint(hvd.oll_gather(torch.tensor ([hvd.size(), hvd.ronk])))
Use code with caution. Learn more

3. Run the Python file by executing the following command:

python benchmark . py

(0.299, ©.299, @.299))1)

o

Presentation Outline

e Introduction and Motivation
e Problem Statement

e Proposed Designs

e Performance Evaluation

e Demo

e Concluding Remarks

Network Based Computing Laboratory ISC 2023 24

Concluding Remarks

* Proposed SAl, a conversational Al-enabled interface for science gateways in HPC,
with Automatic Speech Recognition and Entity detection and classification model
* Created an HPC speech and text dataset, defined a new ontology called SAI-O, and used

knowledge graphs to check and validate user tasks, allowing for a general approach for
any HPC application

* Demonstrated capability by supporting three different HPC applications, and integrated
SAl in Open OnDemand, deploying it on real HPC systems

* Evaluated performance and functionality, with positive feedback from early users
e As future work we plan on releasing various components developed

— HPC-ASR and HPC-NLU datasets

— The retrained ASR and NLU models

— Preform user survey

Network Based Computing Laboratory ISC 2023 25

W oo Thank You!

https://twitter.com/mvapich

Panda@cse.ohio-state.edu

d
Ao&ﬁase Co%e»
] %

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

C X . ,
@
BN MVAPICH S HIBD HiDL
-_ an ri + ibrar R .
* MPI, PGAS and Hybrid MPI+PGAS Library ngh_PerfDrmance ngh_Performance
Big Data Deep Learning
The High-Performance MPI/PGAS Project The High-Performance Big Data Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hibd.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/
Network Based Computing Laboratory ISC 2023 26

http://nowlab.cse.ohio-state.edu/
mailto:Panda@cse.ohio-state.edu
https://twitter.com/mvapich

	SAI: AI-Enabled Speech Assistant Interface for Science Gateways in HPC
	Presentation Outline
	Introduction
	Presentation Outline
	Research Challenges
	Proposed Framework for Conversational AI for HPC Tasks
	Presentation Outline
	Generating HPC Dataset for Speech and Text
	Training Speech and Text Processing Models for HPC
	Creating HPC Ontology
	SAI Workflow
	Presentation Outline
	Evaluation Platform and Methodology
	DL Models Performance Evaluation
	Overhead of SAI Passenger App Pipeline for Different Queries
	Interactive App: Deployment and Portability
	Presentation Outline
	Will ChatGPT/Bard suffice?
	Comparison with State of the Art: ChatGPT
	Comparison with State of the Art: ChatGPT (Cont.)
	Will ChatGPT/Bard suffice?
	Google Bard?
	Google Bard with a Descriptive Request
	Presentation Outline
	Concluding Remarks
	Thank You!

