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Introduction

 HPC usage is expanding: New users without HPC

® |
HPC User v= Tasks
background ? i=
e Execution of parallel workloads is complex! , ;
Select an HPC
— Learning new interfaces, features, and the terminologies Application
Find and Install
— Complex dependencies, installation and execution __Dependencies / Proposed
) . o I”St?” H‘PC Conversational
e Steep learning curves for executing tasks and utilizing HPC! (___application SAl Interface
f Read the )
* Intuitive Expression: Users naturally convey needs through (__documentation
(Create the Job script |
words & text _and launch the job
e Emergence of science gateways like Open OnDemand }

— GUI-based interface: more accessible and easier

HPC System
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Research Challenges

Creating an Al-enabled conversational interface for HPC faces several challenges, including:

Network Based Computing Laboratory

Technical HPC terms: ASR and NLU models lack tailored HPC datasets, hindering
accurate interpretation of technical terms and abbreviations.

Complex relationships: Mapping complex HPC component relationships can be time-
consuming and complex

Software installation: HPC software package installation is a challenge, especially for
novice users, even with package managers like Spack

Conversational Al integration: Integrating conversational Al into science gateways
requires a modular interface and determining the interface between conversational Al
and science gateways
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Proposed Framework for Conversational Al for HPC Tasks

-
4“
-

HPC User &
!/ Speech Input - \
. Automatic Natural it .
Audio Text Entities|gntity/value
Ql)) —  Speech Language > .
! R i Understandi Extraction
Select an APC ) ecognition nderstanding
q Application ) Text Input

Find and Install
Dependencies

\

(J%D Text

- Proposed
Install HPC Conversational o
agEllcatlon } SAl Interface NO s KG . : ¥
Read the w < Complete ~ — o,
documentation Feedback/ T Inference 2
- — Questions T Select KG
Create the Job script l Yes Software
and launch the job Installer
: =z Iz z \ Generator /
HPC System s -~
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Generating HPC Dataset for Speech and Text

We create an HPC dataset for text and speech containing HPC terminology:
1. Generate basic text queries and label each entity into five broad categories
— System, software, model, argument, data

2. Generate combinations of entities with different arguments.
— Example: the number of combinations for running MPI benchmarks amounts to 315K queries.
3. Develop synonyms for HPC terminologies to create additional queries.
— Example: the mentioned MPI-benchmarks query set extends to 19 million queries
4. Include permutations of phrases to restrict DNN from learning any ordering of arguments

— Example: MPIl-benchmark dataset contains 7 million rows just by including permutations.

The datasets are called HPC-ASR and HPC-NLU

Network Based Computing Laboratory ISC 2023 8




Training Speech and Text Processing Models for HPC

Automatic Speech Recognition Natural Language Understanding(NLU)
e Model: Transformer based Speech2Text e Model: Bert entity recognition
e Dataset: TIMIT + HPC-ASR [proposed] e Datasets: HPC-NLU [proposed]
e Pretrained on LibriSpeech e Output: Identify entities and tasks

e Qutput: transcribed text

Tokenl Token2 Token3 Token4
| Token-level Classifier |
r 1 1t 1
| T Emeeddi?gs T \
BERT
I;xi?:;[gr »| Tokenizer >oeq28eq | T I ‘I‘ 1 ‘
Tokeni
Speech2Text architecture | ° EFlzer ‘
Sentence

BERT architecture

Network Based Computing Laboratory
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Creating HPC OntOIOgy “ Table 1. Major object properties in SAI O ontolagy

Relation Property| Domain| Range Description
canBe any any Defines possible values (OR)
Software . e
any Captures run capability
e Capture workload relations o vodel
depends Software| System | Captures software dependency
needs any any |Defines requirements (no default)
® PrOpose and create SAI-O hasArgs any |Argument|Defines optional values (defaults)
hasSoftware any | Software | Captures software availability

ontology for capturing

complex workload
Knowledge Graph based on SAI-O ontology for Inception-3 Model

£ =
( * acc’uracy H * rllflmberOfNodes ] { L 2 ImggeNet } . T
1 - / [
~ ; -~ _|"# PPN A T —_Q MNIST
[* # optimizer ‘-» }»l # inception3 ]_ _______ - 4 B i
1~ . TIX ~—{" 4 ObjectRecogniti L & CIFAR
1 1 & o poch s \ onDataset [7
per app |Cat|0n p = // [ model_arg }
= - * + —
/= ™
e AN * data_arg AN
// [ = ComputerVision ] § N a—— X = ASR_Data
e - - N =
& } NLP eI pata | %@ NLP-data

] [—J System _arg Nz
I _
| m < “Thi % RI2
‘7 - [ € communicationRu ] owl:Thing ;J

ntime

dependencies and relations

[* & batchS|ze ]

N

e Create Knowledge Graph

s

ning

V = Queue
w ‘ Horovod Pytorch } [ SO ] S ———
e :—éz_ogx;ﬂ TensorF { * I"(')C‘)Al"c_)égﬂ -TensorF H 0 ti(c:)rovod Pytorch ] [+ compilér ] [+ Ii‘brary ] [+ R J
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SAl Workflow

Knowledge Graph Query Software Installer OnDemand Integration
e  Given extracted entities e  Checks & installs e  HPC Integration and accessibility
e Queries all KGs dependencies via Spack Deployment modes:

—  Uses SPARQL *  Single Spack config e  Passenger: shared resources

—  Max-hit for KG selection ¢  Single Spack environment e Interactive: exclusive resources
e  Gathers arguments * Reuse environment if it S

— Required args already exists! E[I . #est?-rblarlt:ﬁ?e! I]

_  Optional args e Asynchronous installation g[,%“}“?"aﬁ%]

Apn

Login Node ™\ /&_ Compute Node ™

5 [Inference Engine] ': [ Inference Engine]

e  Check against user input

5 [Prccessing Enginel i [Processing Engine]

e Query user till completion

3
Application-level Application-level

Processin

App Setup

App Setup Script

Job Script ||

OnDemand Pas:
OnDemand Interactivi

|

- e e e

Middleware
MPI Package Manager
HPC Applications Deep Learning I
s

-

/,
\
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Evaluation Platform and Methodology

DL Framework: PyTorch is used to define and train DNNs for ASR and NLU.
DNNs: Speech2Text, BERT-based entity detection and classification
Datasets: LibriSpeech, TIMIT, HPC-ASR, and HPC-NLU

Methodology:

1. Compare the performance of pre-trained and fine-tuned Speech2Text models on the HPC
test dataset

2. Test the NLU model trained from scratch on predicting entities for given text or speech query
3. Evaluate end-to-end performance of ASR and NLU models

4. Provide overhead evaluation of the SAI pipeline, scaling of SAl as a Passenger App, and
performance of SAl as an Interactive App

Network Based Computing Laboratory ISC 2023 13




DL Models Performance Evaluation

ASR Evaluation:

Train Dataset Test Dataset R
* Improved word error rate for Speech2Text model Base (LibriSpeech) HPC-ASR ( 86.2
from 86.2% to 3.7% Base+TIMIT+HPC-ASR | HPC-ASR -
T
NLU Evaluation: Improved transition of speech to text
e 60K training size, 5M test size
_ o Test Dataset Fl-score | Precision | Recall
* Achieved 99% accuracy and precision HPC-NLU (5MeT0.999 | 0.999 0.09
ASR + NLU Evaluation: Predicting entities correctly!
e Pipelines ASR+NLU for inference accuracy
e Testing 100 queries from 4 individuals Metric User1 | User2 | User3 | User4 | Average

WER 1 8.6 8.3 8.03
e  M1: Adjust predicted sentence length to match original Accuracy M2 |(0.97 ) 0.90 0.80 (f"g';k 0.907
T

e M2: Drop less important/incorrect words to match Accuracy M1 081 | 083 | 097 [\ 0.849 /
User #1 and #4 are new to SAl and not used in training

High success rate and flexibility
recognizing new users' voices!
ISC 2023 14
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Overhead of SAl Passenger App Pipeline for Different Queries

o
")

1

X Text Query

End-to-end Overhead: SAIl Full Pipeline as Passenger App

Z

P::! 0.6 | A Speech Query 1 A4 A

[1+]
e  Evaluate inference latency for various speech/text queries 804 1t 14

o X X X x X X X x X X X
e  Exclude software installation and execution timing € 02

(]

Qo

©
e Speech latency increases with more query words g o

< 0 5 10 15
e Text latency remains constant Number of words in query

SAl passenger evaluation with different queries —
avg 200 iterations

oSpeech “Text

End-to-end Overhead of SAI Passenger App with Multiple Users o
— 60
e Higher avg. latency for speech/text with more concurrent users 8 5
> 40
e  Speech queries more affected than text queries % g 30 ,
® = 20 /a{sk/‘?
Login node performance degrades significantly W
1 2 a4 8 16 28 32

increased passenger mode usage
Number of Users

SAl passenger end-to-end latency across multiple users —
8 words text/speech and average of 200/100 iterations
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Interactive App: Deployment and Portability

Interactive App: Address performance Extending SAI Support to New HPC Software
degradation with scaling users e  Two-step process:

e  Exclusive resources — Create application KG using SAI-O ontology &
e User-selected architecture supported relationships

Observations: — Add application-specific terms to HPC-ASR and

— Lower latency on V100 GPU node dataset

— NLU is generic to detect new entities!
— Improved over passenger deployment
e  SAl provides scripts for ASR model fine-tuning &

Architecture | Deployment | Total ASR NLU KG )
/Model type latency | module | module | module NLU performance improvement
In(eractiyem "0 4019 0.02275 | 0.22655
BDW speech (b ssenger | 0.5024530.2366 ) 0.0217 | 0.2274 e  Modular design: KG portability across systems,
Interactive | 0.2665 N/A™ | 0.0227 | 0.24335 . e
BDW text Passenger | 027125 | N/A 0.0218 | 0.24795 simplified deployment
SKX speech 0.44085 | 0.24105 | 0.0174 | 0.1754 e Integration with Open OnDemand for easy
SKX text _0.22095 0.0242 | 0.19585
V100 speech (Clnteractive | 0.40739((0.16585 ) 0.0172 | 0.224 porting to new system architectures
V100 text 2664 0.0225 | 0.2433
K80 text 02676 | N/A | 0.0225 | 0.2448

Compare breakdown & total latency on different architectures,
8-word text/speech query (100 speech/400 text iterations)

Network Based Computing Laboratory ISC 2023 16
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Will ChatGPT/Bard suffice?

e General-purpose language model
— Versatile and it can handle a wide range of language tasks relatively
— May not excel in any specialized task
e (Can be very effective in communicating with humans, but it’s far from the best
when it comes to interacting with HPC systems

e Thereis a need for fine-tuned with the specific objective of effective and
reliable interaction between both HPC users and HPC systems

VS

A Swiss army knife falls short if what we need is a multi-head screwdriver!

Network Based Computing Laboratory ISC 2023



Comparison with State of the Art: ChatGPT

* Query - show me how to benchmark resnet on 2 nodes with 1 PPN

Network Based Computing Laboratory
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Comparison with State of the Art: ChatGPT (Cont.)

e (Qualitative Observations: Lmitations

» ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical
answers. Fixing this issue is challenging, as: (1) during RL training, there’s
currently no source of truth; (2) training the model to be more cautious causes it
to decline guestions that it can answer correctly; and (3) supervised training

* Same question had different answers misleads the model because the ideal answer depends on what the model knows,

e Can lead to reproducibility issues rather than what the human demonstrator knows.

— Sensitivity to user inputs

— Lack of consistent answers

» ChatGPT is sensitive to tweaks to the input phrasing or attempting the same
prompt multiple times. For example, given one phrasing of a question, the model
can claim to not know the answer, but given a slight rephrase, can
answer correctly.

¢ |ncorrect answers Courtesy: https://openai.com/blog/chatgpt

— Datais not distributed among GPUs! trainset = torchvision.datasets.CIFAR10(root=

- Compllatlon Issues trainloader = torch.utils.data.Dataloader(tr

shuffle= , hum_workers=2)

criterion = nn.C sEntropyLoss()

~ Screenshot of ChatGPT generate code — missing data
distribution among processes

Network Based Computing Laboratory ISC 2023
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bash D Copy code

Will ChatGPT/Bard suffice? [

ChatGPT produce irrelevant information

— Provided code and extra parameters

— Used CIFAR dataset without inquiring user

source fpath/to/your/condafactivate.sh

Not best practice always! conda activate your.env
— Disabled InfiniBand for NCCL export NCCL_DEBUG=INFO
export NCCL_SOCKET_IFNAME="docker0O,lo
— No knowledge of best practices for performance export NCCL_IB_DISABLE=1

python -m torch.distributed.launch --nproc_per_node=2 --use_env your_pytorck

Lack of specific HPC system configuration
and knowledge module load cuda/10.0

module load python/3.8.0

source =/my_python_env/binfactivate

srun python -m torch.distributed.launch --nproc_per_node=1l --use_env be

Network Based Computing Laboratory ISC 2023 21



!‘y show me how to benchmark resnet on 2 nodes with 1 PPN V4

Google Bard?

v s IVIISSING broadcast of model and
e Task: Requesting same prompt from optimizer parameters using
Bard  Torchvision Horovod

> Tensorboard

> Horoved

—_ Diffe re nt a n Swe rs fo r t h e Sa m e p ro m pt 2. Create a dataset. You can use the ImageNet dataset, which is a large dataset of images that is commonly used for benchmarking machine learning

models.

— I n CO rrect a n SWG Th e ge n e rated cod e is 3. Create a ResNet model. You can use the ResNet implementaticn that is provided in PyTorch.

4. Set up Horovod. Horovod is a distributed training framework that can be used to train machine learning models on multiple GPUs.
I - -
- ReprOdUCIbII Ity for non-dlstrlbuted 5. Run the benchmark. You can use the following command to run the benchmark:

Sure. Here are the steps on how to benchmark ResNet on 2 ni o0 _ 0O
tra I n I ng l horovodrun -np 2 python benchmark.py
L

This command will run the benchmark on 2 nodes, each with 1GPU. The results of the benchmark will be logged to Tensorboard.

+,

+

1. Install the necessary dependencies.

2. Clone the ResNet repository.

3. Create a file called benchmark.py and add the following code: Here is an example of @ benchmark script that you can use:
Python - Python
import tensorflow as tf import torch
import tensorflow_datasets as tfds import torchwvision
import tensorboard
def benchmark(batch_size): import horovod

"“"Benchmarks ResNet on 2 nodes with 1 PPN."""

dotaset = tfds.load("imagenet2012", split="train", shuffle=False)

images = dataset["image"].batch(batch_size)

labels = dataset["label"].batch(batch_size)

with tf.Session() as sess:
resnet = tf.keras.applications.ResNet5@(include_top=False) if __nome__ == "__main__":
predictions = resnet(images) torch.manual_seed(@)
loss = tf.keras.losses.categorical_crossentropy(labels, predictions)

e Wrong Horovod A T

return result device = torch.device("cudo:@"

. N ith horovod.initialize():
e API for init ’ ‘
--name.__ --Mazn benchmark (model, d
for batch_size in [16, 32, 64, 128, 256]: Or INi TETEDE, cui)
print("Batch size: %d" % batch_size)

result = benchmark(batch_size) Use code with caution. Learn mare o
print(result)

def benchmark(medel, device):
inputs = torch.randn(128, 3, 224, 224).to(device)
outputs = model(inputs)
return outputs

This script will benchmark the ResNet18 model on a single GPU. To run the benchmark on 2 nodes with 1 GPU each, you would need to change the

Use code with caution. Learn more u] device variable to cuda:@,cuda:1 .

4. Run the benchmark.py file. ) ‘ . o ‘
The results of the benchmark will be logged to Tensorboard. You can view the results by opening Tensorboard and navigating to the events directory.
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Google Bard with a Descriptive Request

Query: show me how to benchmark resnet50 on 2 nodes with 1 PPN with CIFAR10 dataset using pytorch and horovod

¥y  show me how to benchmark resnet50 on 2 nades with 1 PPN with CIFARIO dataset using pytorch and horovod %

¥ show me how to benchmark resnetS0 on 2 nodes with 1PPN with CIFARIO dataset using pyterch and horoved

Sure, here are the steps on how to benchmark ResNets0 on 2 nodes with 1 PPN with CIFARIO dataset using PyTorch and Horovod: Sure, here are the steps on how to benchmark ResNet50 on 2 nodes with 1 PPN with CIFARIO dataset using PyTorch and Horovod:
1. Install the necessary dependencies. 1. Install the following dependencies:
pip install toreh

pip install horevod
2. Create a file called benchmark.py and add the following code:
Python

import torch
import horovod.torch as hvd

PyTorch
Horovod
NVIDIA apex (optional)

2. Create a Python file called banchmark.py and add the following code:

Python
cef benchmark(model, datolooder):
losses = [1 import torch
for i, (imoges, labels) in enumerate(datoloader): impart torch.nn os nn
images = imoges.cudal)

labels = labels.cuda()

loss = model(images).mean()
losses.append(losa.item())

return losses

if __na ==

Mixing Horovod and

import torchvision.dotosets os dotosets
port torchvision.transforms as tronsforms
port horoved. torch as hvd

# Horovod initiglization
hvd. init()

pytroch.distriuted APIs

model = torch.nn.ResNet5@().cuda()

dotaloader = torch.utils.dota.Datalooder (
CIFAR1®(root=".", troin=True, downlood=True),
bateh_size=hvd.size()
shuffle=True,

losses = benchmark(model, dataloader)
print(losses)

Use code with caution. Learn mare

3. Runthe benchmark py file

pythen benchmark.py

This will benchmark ResNet50 on 2 nodes with 1 PPN with CIFARIO dataset using PyTorch and Horoved. The output will be a lis

epoch.

Here is a breakdown of the code:

« The import import the ¥ namaly PyTorch and Horovad.

+ The benchmark function takes a model and a dataloader as input and returns a list of losses.

« The if __nome

| hope this helps! Let me know if you have any other questions.

No usage of Horovod

= block is the main execution block. It initializes the random seed, initializes Horovod, creates a ResNet50 model,
and creates a dataloader for the CIFARIO dataset. It then calls the benchmark function and prints the cutput.

# Define the optimizer
optimizer = torch.optim.5GD(model .parometers(), 1r=a.1)

# Load the CIFAR1O dataset
train_loader = torch.utils.dota.Datoloader(

datosets.CIFARIO(

transforms.Normalize((@.5, 0.5, @.5),

).
batch_size=hvd.size(),
shuffle=True,

frovod Distributed training
# = hvd.DistributedDataParallel(model)

foin the model

lepoch in ronge(10):

ffor images, lobels in train_looder:
optimizer.zero_grad()
outputs = model(images)
loss = nn.functional.cross_entropy(outputs, labels)
loss.backward()
optimizer.step()

rovod Metrics
t("Horoved metrics:”)
wsPFint(hvd.oll_gather(torch.tensor ([hvd.size(), hvd.ronk])))
Use code with caution. Learn more

3. Run the Python file by executing the following command:

python benchmark . py

(0.299, ©.299, @.299))1)

o
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Concluding Remarks

* Proposed SAl, a conversational Al-enabled interface for science gateways in HPC,
with Automatic Speech Recognition and Entity detection and classification model
* Created an HPC speech and text dataset, defined a new ontology called SAI-O, and used

knowledge graphs to check and validate user tasks, allowing for a general approach for
any HPC application

* Demonstrated capability by supporting three different HPC applications, and integrated
SAl in Open OnDemand, deploying it on real HPC systems

* Evaluated performance and functionality, with positive feedback from early users
e As future work we plan on releasing various components developed

— HPC-ASR and HPC-NLU datasets

— The retrained ASR and NLU models

— Preform user survey
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W oo Thank You!

https://twitter.com/mvapich

Panda@cse.ohio-state.edu
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