TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS

Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23rd 2016
MULTI GPU PROGRAMMING

Node 0

- MEM
- GPU
- CPU
- PCIe Switch
- IB

Node 1

- MEM
- GPU
- CPU
- PCIe Switch
- IB

Node N-1

- MEM
- GPU
- CPU
- PCIe Switch
- IB

...
MULTI GPU PROGRAMMING
Minimizing Communication Overhead

Application:
- Expose enough Parallelism
- Balance Load
- Minimize communication
- Hide communication time

MPI/System SW/HW:
- Maximize BW
- Minimize Latencies
Halo updates for 1D domain decomposition with periodic boundary conditions

Unidirectional rings are important building block for collective algorithms
MAXIMIZING BANDWIDTH
Bidirectional intra node GPU to GPU

CPU staging pipeline can achieve good GPU to GPU Bandwidth:

- GPUA to CPU
- CPU to GPUB
- GPUB to CPU:
- CPU to GPUA:
MAXIMIZING BANDWIDTH
MVAPICH2-GDR 2.2b intra-node GPU-to-GPU pt2pt BiBW

Bandwidth (MB/s) vs Data Size (KB)

- Staging BW (MB/s)
TREND TO DENSER GPU NODES

Dual Socket + 8 Tesla K80 = 16 GPUs
TREND TO DENSER GPU NODES

Dual Socket + 8 Tesla K80 = 16 GPUs

8 GPUs per CPU Socket

BiBW Staging Pipeline:

 2 writes and 2 reads in CPU mem per Com. pair

 9 Com. pairs (including IB and intra Socket)

CPU Memory BW: 70 GB/s

 70 GB/s / (9*(2+2)) = 70 GB/s / 36

 1.94 GB/s (12% of PCI-E x16 gen3)
GPUDIRECT P2P

Maximizes intra node inter GPU Bandwidth

Avoids Host memory and system topology bottlenecks
MAXIMIZING BANDWIDTH
MVPAICH2-GDR 2.2b intra-node GPU-to-GPU pt2tp BiBW

Bandwidth (MB/s)

Staging BW (MB/s)
P2P BW (MB/s)

21.3 GB/s
P100 supports 4 NVLinks
Up to 94% bandwidth efficiency
Supports read/writes/atomics to peer GPU
Supports read/write access to NVLink-enabled CPU
Links can be ganged for higher bandwidth
NVLink - GPU Cluster

Two fully connected quads, connected at corners

160GB/s per GPU bidirectional to Peers

Load/store access to Peer Memory

Full atomics to Peer GPUs

High speed copy engines for bulk data copy

PCIe to/from CPU
NVLINK TO CPU

Fully connected quad
120 GB/s per GPU bidirectional for peer traffic
40 GB/s per GPU bidirectional to CPU
Direct Load/store access to CPU Memory
High Speed Copy Engines for bulk data movement
GPUDIRECT P2P ON PASCAL
early results, P2P thru NVLink

OpenMPI intra-node GPU-to-GPU pt2pt BiBW

P100 NVLink
K80@875 PCI-E

34.2 GB/s
Host staging pipeline increases latency because of staging step.

GPUDirect RDMA allows 3rd party devices to directly read/write GPU memory.

No host staging necessary for inter node GPU to GPU messages.

IB stack is optimized for latencies.

Using Loop back for GPU to GPU messages also helps with intra node GPU to GPU latency.
MINIMIZING LATENCY

MVAPICH2-GDR 2.2b intra-node GPU-to-GPU pt2pt latency
SCALING LIMITER CPU

(Time marked for one step, Domain size/GPU - 1024, Boundary - 16, Ghost Width - 1)
SCALING LIMITER CPU

(Time marked for one step, Domain size/GPU - 128, Boundary - 16, Ghost Width - 1)
while (t < T) {
 //...
 for (int i=0; i<num_neighbors; ++i) {
 MPI_Irecv(..., req);
 compute_boundary<<<grid,block,0,stream>>>(...);
 cudaStreamSynchronize(stream);
 MPI_Isend(..., req + 1);
 MPI_Waitall(..., req, ...);
 }
 //...
}
GPUDIRECT ASYNC
expose GPU front-end unit

CPU prepares work plan
• hardly parallelizable, branch intensive
• GPU orchestrates flow

Runs on optimized front-end unit
• Same one scheduling GPU work
• Now also scheduling network communications
**(volatile uint32_t*)h_flag = 0;
//...
cuStreamWaitValue32(stream, d_flag, 1, CU_STREAM_WAIT_VALUE_EQ);
calc_kernel<<<GSZ,BSZ,0,stream>>>();
cuStreamWriteValue32(stream, d_flag, 2, 0);
//...
**(volatile uint32_t*)h_flag = 1;
//...
cudaStreamSynchronize(stream);
assert(*(volatile uint32_t*)h_flag == 2);
while (t < T) {
 //...
 for (int i=0; i<num_neighbors;++i) {
 mp_irecv(... ,req);
 compute_boundary<<<grid,block,0,stream>>>(...);
 mp_isend_on_stream(... ,req + 1, stream);
 mp_wait_all_on_stream(... ,req,stream);
 }
 //...
}
2D STENCIL PERFORMANCE
weak scaling, RDMA vs. RDMA+Async

2D Stencil

Percentage Improvement

local lattice size

8192 4096 2048 1024 512 256 128 64 32 16 8

0,00% 5,00% 10,00% 15,00% 20,00% 25,00% 30,00% 35,00%

four nodes, IVB Xeon CPUs, K40m GPUs, Mellanox Connect-IB FDR, Mellanox FDR switch
GPUDIRECT ASYNC + INFINIBAND
preview release of components

CUDA Async extensions, with CUDA 8
Peer-direct async extension, in MLNX OFED 3.x, soon