MVAPICH2-X - High-Performance MPI and PGAS Libraries for Modern Clusters

Khaled Hamidouche
The Ohio State University
E-mail: hamidouc@cse.ohio-state.edu:
http://www.cse.ohio-state.edu/~hamidouc
Overview of MVAPICH2 / MVAPICH2-X

• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 • MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002
 • MVAPICH2-X (MPI + PGAS), Available since 2011
 • Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 • Support for Virtualization (MVAPICH2-Virt), Available since 2015
 • Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 • Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
• Used by more than 2,675 organizations in 83 countries
• More than 402,000 (> 0.4 million) downloads from the OSU site directly
• Empowering many TOP500 clusters (Nov ’16 ranking)
 • 1st ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China
 • 13th ranked 241,108-core cluster (Pleiades) at NASA
 • 17th ranked 519,640-core cluster (Stampede) at TACC
 • 40th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
• Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 • http://mvapich.cse.ohio-state.edu
• Empowering Top500 systems for over a decade
 • System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 • Sunway TaihuLight at NSC, Wuxi, China (1st in Nov’16, 10,649,640 cores, 93 PFlops)

• Unified communication runtime for MPI, UPC, OpenSHMEM, CAF
• Available with MVAPICH2-X 1.9 (2012) onwards!
 • http://mvapich.cse.ohio-state.edu

Feature Highlights
• Supports MPI+X: OpenMP, OpenSHMEM, UPC, CAF, UPC++, MPI(+OpenMP) + OpenSHMEM, MPI(+OpenMP) + UPC + CAF
• MPI-3 compliant, OpenSHMEM v1.0h standard compliant, UPC v1.2 standard compliant (with initial support for UPC 1.3), CAF 2008 standard (OpenUH), UPC++
• Scalable Inter-node and intra-node communication – point-to-point and collectives
Application Level Performance with Graph500 and Sort

Graph500 Execution Time

<table>
<thead>
<tr>
<th>No. of Processes</th>
<th>Time (s)</th>
<th>MPI-Simple</th>
<th>MPI-CSC</th>
<th>MPI-CSR</th>
<th>Hybrid (MPI+OpenSHMEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4K</td>
<td></td>
<td>30</td>
<td>23</td>
<td>17</td>
<td>13X</td>
</tr>
<tr>
<td>8K</td>
<td></td>
<td>32</td>
<td>25</td>
<td>18</td>
<td>7.6X</td>
</tr>
<tr>
<td>16K</td>
<td></td>
<td>35</td>
<td>28</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

- **Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design**
 - 8,192 processes
 - 2.4X improvement over MPI-CSR
 - 7.6X improvement over MPI-Simple
 - 16,384 processes
 - 1.5X improvement over MPI-CSR
 - 13X improvement over MPI-Simple

Sort Execution Time

<table>
<thead>
<tr>
<th>Input Data - No. of Processes</th>
<th>Time (seconds)</th>
<th>MPI</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>500GB-512</td>
<td>2408</td>
<td></td>
<td>1172</td>
</tr>
<tr>
<td>1TB-1K</td>
<td>2078</td>
<td></td>
<td>1062</td>
</tr>
<tr>
<td>2TB-2K</td>
<td>3048</td>
<td></td>
<td>1372</td>
</tr>
<tr>
<td>4TB-4K</td>
<td>5040</td>
<td></td>
<td>1572</td>
</tr>
</tbody>
</table>

- **Performance of Hybrid (MPI+OpenSHMEM) Sort Application**
 - 4,096 processes, 4 TB Input Size
 - MPI – 2408 sec; 0.16 TB/min
 - Hybrid – 1172 sec; 0.36 TB/min
 - 51% improvement over MPI-design

Next Step for PGAS models: Accelerator Support

Global Address Space with Host and Device Memory

- Extend Memory model for heterogeneous Memory Domains:
- `heap_on_device/heap_on_host` (a way to indicate location of heap)
- `host_buf = shmalloc(sizeof(int), 0); dev_buf = shmalloc(sizeof(int), 1);

CUDA-Aware OpenSHMEM; Same extension for UPC and any other PGAS model

More extensions for efficient support for MIC systems

PE 0

```c
dev_buf = shmalloc(size, 1);
shmem_putmem(dev_buf, dev_buf, size, pe)
```

PE 1

```c
dev_buf = shmalloc(size, 1);
```


Application Evaluation: GPULBM and 2DStencil with MPI+OpenSHMEM

GPULBM: 64x64x64

- Redesign the application
 - CUDA-Aware MPI + Send/Recv => hybrid CUDA-Aware MPI + OpenSHMEM
 - cudaMalloc => shmalloc(size,1);
 - MPI_Send/recv => shmem_put + fence
 - 53% and 45%
 - Degradation is due to small Input size
- Will be available in future MVAPICH2-GDR

2DStencil 2Kx2K

- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
- New designs achieve 20% and 19% improvements on 32 and 64 GPU nodes
