

Accelerating Deep Learning with MVAPICH

OSU Booth Talk (SC '17)

Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K. Panda

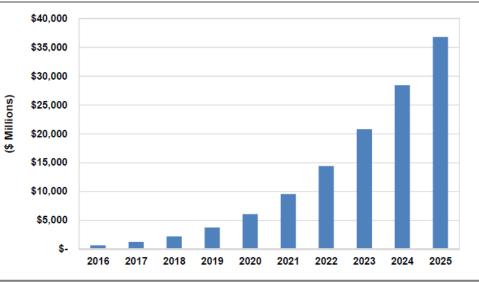
Network Based Computing Laboratory Dept. of Computer Science and Engineering The Ohio State University

Agenda

- Introduction
 - Deep Learning Trends
 - CPUs and GPUs for Deep Learning
 - Message Passing Interface (MPI)
- Co-design Efforts
 - OSU-Caffe
 - NCCL-augmented MPI Broadcast
 - Large-message CUDA-Aware MPI Collectives
- Characterization of Deep Learning Workloads
 - CPUs vs. GPUs for Deep Learning with Caffe

DL Frameworks and Trends

- Caffe, TensorFlow, CNTK and Chart 1.1 many more..
- Most frameworks are exploiting GPUs to accelerate training
- Diverse applications Image Recognition, Cancer Detection, Self-Driving Cars, Speech Processing etc.



Artificial Intelligence Revenue, World Markets: 2016-2025

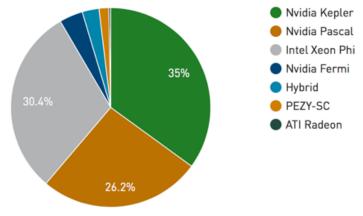
(Source: Tractica)

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

GPUs are great for Deep Learning

- NVIDIA GPUs have been the main driving force for faster training of Deep Neural Networks (DNNs)
 - The ImageNet Challenge (ILSVRC)
 - 90% of the ImageNet teams used GPUs in 2014*
 - DL models like AlexNet, GoogLeNet, and VGG
 - A natural fit for DL due to the throughputoriented nature
 - GPUs are also growing in the HPC arena! \rightarrow

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/



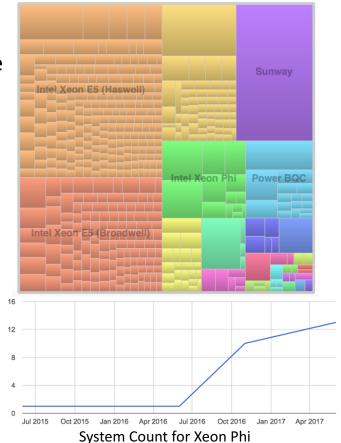
https://www.top500.org/statistics/list/

Accelerator/CP Family Performance Share

And CPUs are catching up fast

- Intel CPUs are everywhere and many-core CPUs are emerging according to Top500.org
- Host CPUs exist even on the GPU nodes
 - Many-core Xeon Phis are increasing
- Xeon Phi 1st generation was a co-processor
- Unlike Xeon Phi 2nd generation, which is a selfhosted processor!
- Usually, we hear CPUs are 10x 100x slower than GPUs? [1-3]
 - But can we do better?
- 1- https://dl.acm.org/citation.cfm?id=1993516
- 2- http://ieeexplore.ieee.org/abstract/document/5762730/
- **3-** <u>https://dspace.mit.edu/bitstream/handle/1721.1/51839/MIT-CSAIL-TR-2010-013.pdf?sequence=1</u>

https://www.top500.org/statistics/list/



OSU Booth - SC '17

What to use for scale-out? (Distributed training of Neural Nets.)

- What is Message Passing Interface (MPI)?
 - a de-facto standard for expressing distributed-memory parallel programming
 - used for communication between processes in multi-process applications
- **MVAPICH2** is a high performance implementation of the MPI standard

- What can MPI do for Deep Learning?
 - MPI has been used for large scale scientific applications
 - Deep Learning can also exploit MPI to perform high-performance communication
- Why do I need communication in Deep Learning?
 - If you use one GPU or one CPU, you do not need communication
 - But, one GPU or CPU is not enough!
 - DL wants as many compute elements as it can get!
 - MPI is a great fit Broadcast, Reduce, and Allreduce is what most DL workloads

Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 2,825 organizations in 85 countries
 - More than 432,000 (> 0.4 million) downloads from the OSU site direc
 - Empowering many TOP500 clusters (June '17 ranking)
 - 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
 - 15th, 241,108-core (Pleiades) at NASA
 - 20th, 462,462-core (Stampede) at TACC
 - Available with software stacks of many vendors and Linux Distros (RedHat and Su
 - <u>http://mvapich.cse.ohio-state.edu</u>
- Empowering Top500 systems for over a decade
 - System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 - Sunway TaihuLight (1st in Jun'17, 10M cores, 100 PFlops)

OSU Booth - SC '17

10 Years & Going Strong!

Deep Learning Frameworks – CPUs or GPUs?

- There are several Deep Learning (DL) or DNN Training frameworks
 - Caffe, Cognitive Toolkit, TensorFlow, MXNet, and counting....
- Every (almost every) framework has been optimized for NVIDIA GPUs
 - cuBLAS and cuDNN have led to significant performance gains!
- But every framework is able to execute on a CPU as well
 - So why are we not using them?
 - Performance has been "terrible" and several studies have reported significant degradation when using CPUs (see nvidia.qwiklab.com)
- But there is hope, actually a lot of great progress here!
 - And MKL-DNN, just like cuDNN, has definitely rekindled this!!
 - Coupled with Intel Xeon Phi (Knights Landing or KNL) and MC-DRAM, the landscape for CPU-based DL looks promising..

How to efficiently scale-out a Deep Learning (DL) framework and take advantage of heterogeneous High **Performance Computing (HPC) resources** like GPUs and Xeon Phi(s)?

Research Challenges

Performance Possible strategies trends that can Performance Various datasets and to evaluate the be observed for a behavior for networks handled performance of DL single node hardware features differently in DL frameworks frameworks Scale-out of DNN Computation and training for CPUcommunication based and GPUcharacteristics of based DNN training DL workloads? Let us bring HPC and DL "together"!

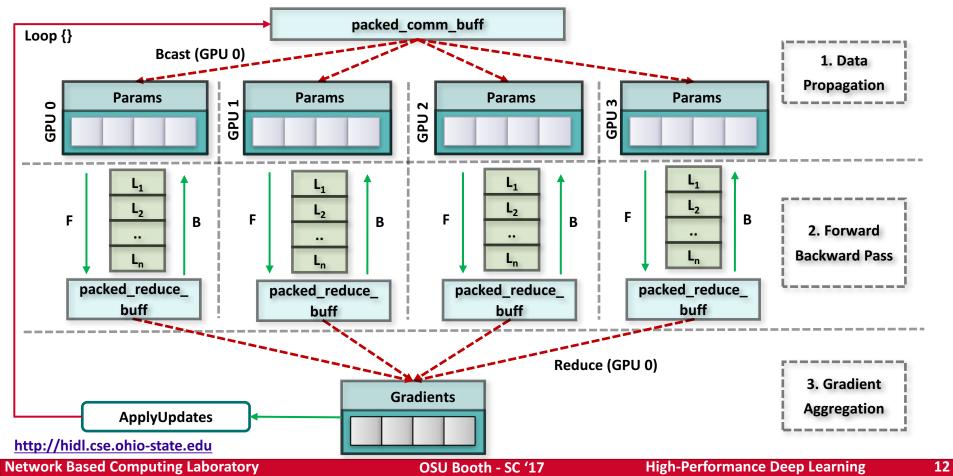
Network Based Computing Laboratory

OSU Booth - SC '17

Agenda

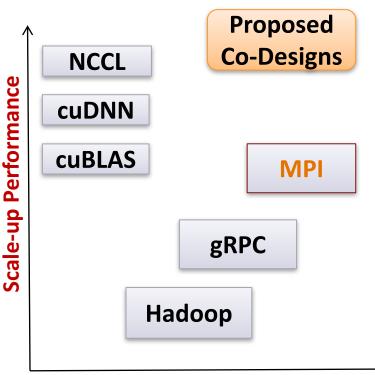
- Introduction
 - Deep Learning Trends
 - CPUs and GPUs for Deep Learning
 - Message Passing Interface (MPI)
- Co-design Efforts
 - OSU-Caffe
 - NCCL-augmented MPI Broadcast
 - Large-message CUDA-Aware MPI Collectives
- Characterization of Deep Learning Workloads
 - CPUs vs. GPUs for Deep Learning with Caffe

Caffe Architecture



OSU-Caffe: Co-design to Tackle New Challenges for MPI Runtimes

- Deep Learning frameworks are a different game altogether
 - Unusually large message sizes (order of megabytes)
 - Most communication based on GPU buffers
- Existing State-of-the-art
 - cuDNN, cuBLAS, NCCL --> scale-up performance
 - CUDA-Aware MPI --> scale-out performance
 - For small and medium message sizes only!
- Proposed: Can we co-design the MPI runtime (MVAPICH2-GDR) and the DL framework (Caffe) to achieve both?
 - Efficient **Overlap** of Computation and Communication
 - Efficient Large-Message Communication (Reductions)
 - What application co-designs are needed to exploit communication-runtime co-designs?



Scale-out Performance

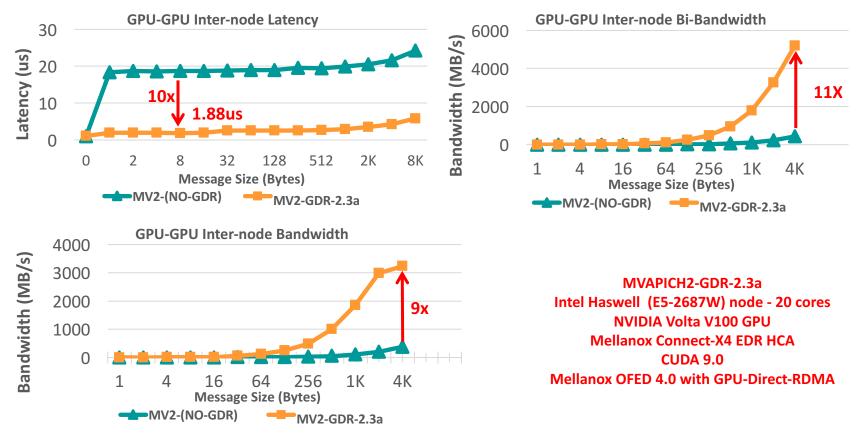
A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU Clusters. In *Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming* (PPoPP '17)

Network Based Computing Laboratory

OSU Booth - SC '17

High-Performance Deep Learning

MVAPICH2-GDR: Scale-out for GPU-based Distributed Training



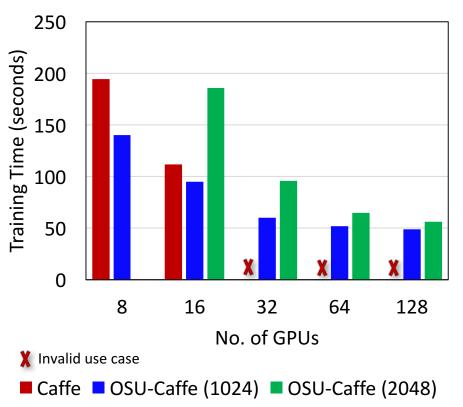
MVAPICH2-GDR: Performance that meets Deep Learning requirements!

OSU-Caffe 0.9: Scalable Deep Learning on GPU Clusters

- Caffe : A flexible and layered Deep Learning framework.
- Benefits and Weaknesses
 - Multi-GPU Training within a single node
 - Performance degradation for GPUs across different sockets
 - Limited Scale-out
- OSU-Caffe: MPI-based Parallel Training
 - Enable Scale-up (within a node) and Scale-out (across multi-GPU nodes)
 - Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-10 dataset
 - Scale-out on 128 GPUs for training GoogLeNet network on ImageNet dataset

OSU-Caffe 0.9 available from HiDL site

GoogLeNet (ImageNet) on 128 GPUs



Network Based Computing Laboratory

OSU Booth - SC '17

Efficient Broadcast for MVAPICH2-GDR using NVIDIA NCCL

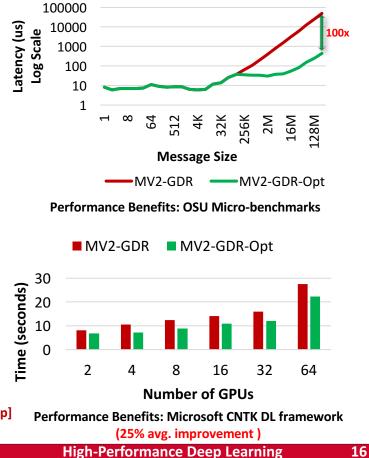
- NCCL has some limitations
 - Only works for a single node, thus, no scale-out on multiple nodes
 - Degradation across IOH (socket) for scale-up (within a node)
- We propose optimized MPI_Bcast
 - Communication of very large GPU buffers (order of megabytes)
 - Scale-out on large number of dense multi-GPU nodes
- Hierarchical Communication that efficiently exploits:
 - CUDA-Aware MPI_Bcast in MV2-GDR
 - NCCL Broadcast primitive

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning,

A. Awan , K. Hamidouche , A. Venkatesh , and D. K. Panda,

The 23rd European MPI Users' Group Meeting (EuroMPI 16), Sep 2016 [Best Paper Runner-Up]

OSU Booth - SC '17



Network Based Computing Laboratory

Pure MPI Large Message Broadcast

- MPI_Bcast: Design and Performance Tuning for DL Workloads
 - Design ring-based algorithms for large messages
 - Harness a multitude of algorithms and techniques for best performance across the full range of message size and process/GPU count
- Performance Benefits
 - Performance comparable or better than NCCLaugmented approaches for large messages
 - Up to 10X improvement for small/medium message sizes with micro-benchmarks
 - Up to 7% improvement for VGG training

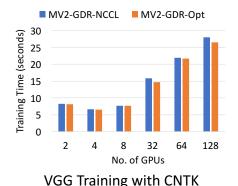
A. A. Awan, C-H. Chu, H. Subramoni, and D. K. Panda. Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL?, arXiv '17 (https://arxiv.org/abs/1707.09414)

Network Based Computing Laboratory

OSU Booth - SC '17

17

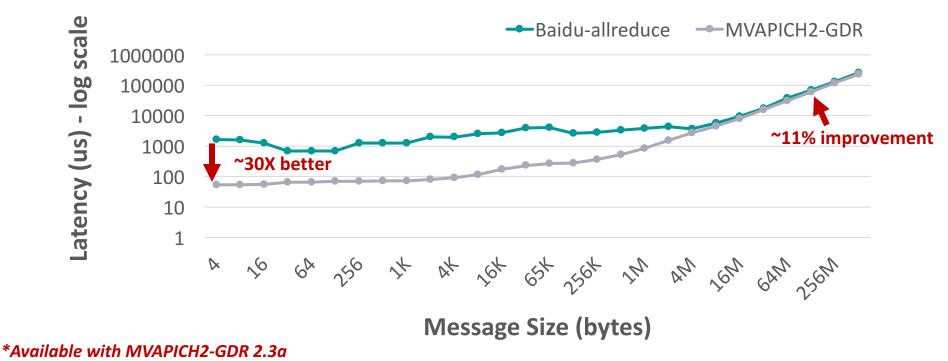
MV2-GDR-NCCL -MV2-GDR-Opt Latency (ms) - logscale 1000 100 10 1 0.1 0.01 0.001 32K ∞ ¥ 56K 64 512 16M 28M ZZ Message Size (bytes) MPI Bcast Benchmark: 128 GPUs (8 nodes)



Large Message Allreduce: MVAPICH2-GDR vs. Baidu-allreduce

• Performance gains for MVAPICH2-GDR 2.3a* compared to Baidu-allreduce

8 GPUs (4 nodes log scale-allreduce vs MVAPICH2-GDR



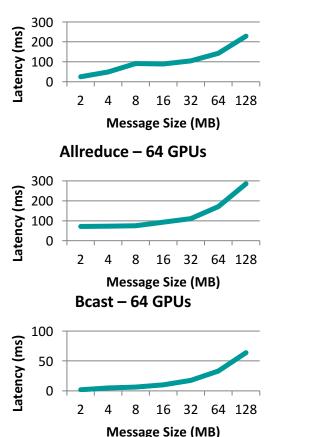
Network Based Computing Laboratory

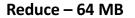
OSU Booth - SC '17

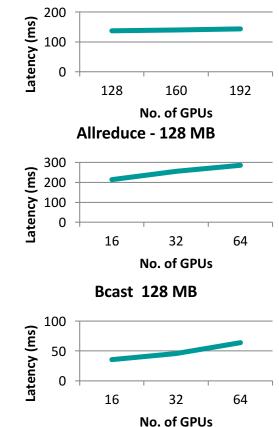
Large Message Optimized Collectives for Deep Learning

Reduce – 192 GPUs

- MVAPICH2-GDR provides optimized collectives for large message sizes
- Optimized Reduce, Allreduce, and Bcast
- Good scaling with large number of GPUs
- Available in MVAPICH2-GDR 2.2 and higher







Network Based Computing Laboratory

OSU Booth - SC '17

Agenda

- Introduction
 - Deep Learning Trends
 - CPUs and GPUs for Deep Learning
 - Message Passing Interface (MPI)
- Co-design Efforts
 - OSU-Caffe
 - NCCL-augmented MPI Broadcast
 - Large-message CUDA-Aware MPI Collectives
- Characterization of Deep Learning Workloads
 - CPUs vs. GPUs for Deep Learning with Caffe

Understanding the Impact of Execution Environments

Generic

Convolution Laver

ATLAS

BLAS Libraries

Hardware

DL Frameworks (Caffe, TensorFlow, etc.)

Other BLAS Libraries

OpenBLAS

- Performance depends on many factors
- Hardware Architectures
 - GPUs
 - Multi-/Many-core CPUs
 - Software Libraries: cuDNN (for GPUs), MKL-DNN/MKL 2017 (for CPUs)
- Hardware and Software codesign
 - Software libraries optimized for one platform will not help the other!
 - cuDNN vs. MKL-DNN

Other Processors

Network Based Computing Laboratory

OSU Booth - SC '17

cuDNN Optimized

Convolution Layer

cuDNN/cuBLAS

Many-core GPU

(Pascal P100)

DL Applications (Image Recognition, Speech Processing, etc.)

MKL Optimized

Convolution Layer

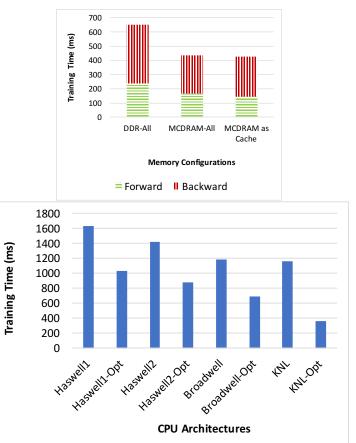
MKL 2017

Multi-/Many-core

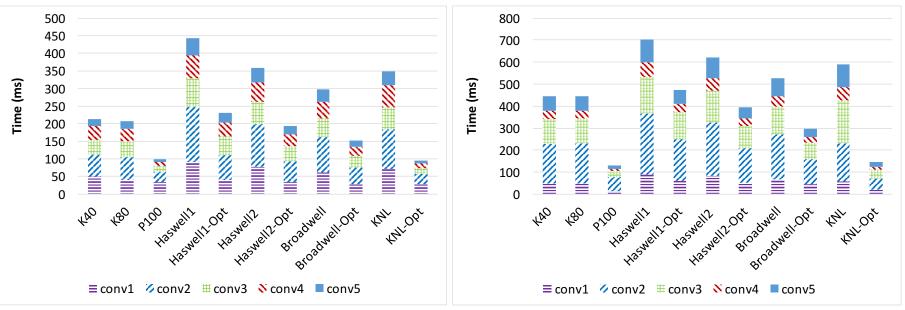
(Xeon, Xeon Phi)

Impact of MKL engine and MC-DRAM for Intel-Caffe

- We use *MCDRAM as Cache* for all the subsequent results
- On average, DDR-All is up to 1.5X slower than MCDRAM
- MKL engine is up to *3X better* than default Caffe engine
- **Biggest** gains for **Intel Xeon Phi** (manycore) architecture
- Both Haswell and Broadwell architectures get significant speedups (*up to 1.5X*)



The Full Landscape for AlexNet Training



- Convolutions in the Forward and Backward Pass
- Faster Convolutions → Faster Training
- Most performance gains are based on *conv2* and *conv3*.

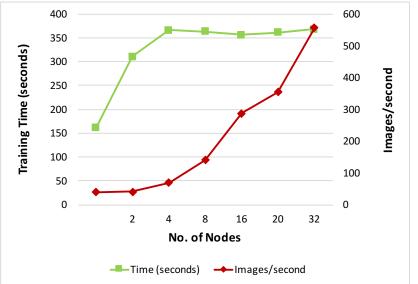
Network Based Computing Laboratory

Multi-node Results: ResNet-50

- All results are *weak scaling*
 - The batch size remains constant per solver but increases overall by:
 - Batch-size * #nodes or
 - Batch-size * #gpus
- Images/second is a derived metric but more meaningful for understanding scalability
- Efficiency is another story [1]
 - Larger DNN architectures → Less scalability due to communication overhead

Con., https://www.intel.com/content/www/us/en/events/hpcdevcon/overview.html

1. Experiences of Scaling TensorFlow On Up to 512 Nodes On CORI Supercomputer, Intel HPC Dev.



ResNet-50 Intel-Caffe

OSU Booth - SC '17

Summary

- Deep Learning is on the rise
 - Rapid advances in software, hardware, and availability of large datasets is driving it
- Single node or single GPU is not enough for Deep Learning workloads
- We need to focus on distributed Deep Learning but there are many challenges
- MPI offers a great abstraction for communication in DL Training tasks
- A co-design of Deep Learning frameworks and communication runtimes will be required to make DNN Training scalable

Thank You!

awan.10@osu.edu

http://web.cse.ohio-state.edu/~awan.10

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

High Performance Deep Learning <u>http://hidl.cse.ohio-state.edu/</u>

The High-Performance Deep Learning Project http://hidl.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

Network Based Computing Laboratory

OSU Booth - SC '17

Please join us for other events at SC '17

- Workshops
 - ESPM2 2017: Third International Workshop on Extreme Scale Programming Models and Middleware
- Tutorials
 - InfiniBand, Omni-Path, and High-Speed
 Ethernet for Dummies
 - InfiniBand, Omni-Path, and High-Speed
 Ethernet: Advanced Features, Challenges in
 Designing, HEC Systems and Usage
- BoFs
 - MPICH BoF: MVAPICH2 Project: Latest
 Status and Future Plans

- ACM SRC Posters
 - Co-designing MPI Runtimes and Deep Learning
 Frameworks for Scalable Distributed Training on GPU
 Clusters
 - High-Performance and Scalable Broadcast Schemes for
 Deep Learning on GPU Clusters
- Booth Talks
 - The MVAPICH2 Project: Latest Developments and Plans
 Towards Exascale Computing
 - Exploiting Latest Networking and Accelerator Technologies for MPI, Streaming, and Deep Learning: An MVAPICH2-Based Approach
 - Accelerating Deep Learning with MVAPICH
 - MVAPICH2-GDR Library: Pushing the Frontier of HPC and Deep Learning

Please refer to <u>http://mvapich.cse.ohio-state.edu/talks/</u> for more details

Network Based Computing Laboratory

OSU Booth - SC '17

High-Performance Deep Learning