
Scheduling of MPI-2 One Sided 
Operations over InfiniBand

Wei Huang
Gopalakrishnan Santhanaraman
Hyun-Wook Jin
Dhabaleswar K. Panda

Network Based Computing Laboratory
The Ohio State University



Outline

• Background
– InfiniBand, MPI2 and MVAPICH2

• Motivation
• Design and Implementation
• Performance Evaluation
• Conclusion and Future Work



InfiniBand
• The InfiniBand Architecture (IBA): new industry 

standard for high speed interconnect
• IBA supports channel semantics (send/recv) 

and RDMA semantics.
• RDMA (Remote Direct Memory Access) has 

better performance than Send/Recv
• VAPI: Mellanox implementation of InfiniBand

Verbs interface



MPI-2

• MPI-2 Standard: An extension to MPI-1
• Among the new features of MPI-2:

– One Sided Communication (Or Remote 
Memory Access, RMA)

– Dynamic Process Management
– Parallel I/O

• MPICH-2: MPI-2 implementation from ANL



MVAPICH2
• MPICH-2 is highly modulated and is layered 

structure
• MVAPICH2 is an open-source MPI-2 

implementation over InfiniBand at RDMA 
channel level
– http://nowlab.cis.ohio-state.edu/projects/mpi-iba/index.html
– Latest release is MVAPICH2-0.6.0
– Incorporates Most of the concepts presented in this 

paper
• MVAPICH2-0.6.0 and MVAPICH-0.9.4 (MPI-1 

version) are currently being used by more than 
190 organizations (in 26 countries)



One Sided Operations
• Window: Must be created before RMA happen:

– Definition: Process memory made accessible by 
remote processes.

– All RMA operations access memory in window 
• Supported Communication (RMA) Calls:

– MPI_Put, MPI_Get, MPI_Accumulate
• Synchronization Schemes:

– Active Synchronization
– Passive Synchronization: lock and unlock
– Win fence



Active One Sided Synchronization
• Win_post and Win_wait

start and end a window 
exposure epoch

Window 
access 
epoch

post

wait

Window 
exposure 
epoch

complete

start

ORIGIN 
PROCESS

TARGET 
PROCESS

put

get

• Win_start and win_complete
start and end a window 
access epoch

• RMAs can only issue during 
access epoch

• RMAs can only take effect at 
remote side during exposure 
epoch



One Sided in MVAPICH-2
• Point-to-Point based:

– Implement RMA operations 
based on p2p operationsADI3ADI3

CH3CH3

RDMA
Channel
RDMA

Channel

InfiniBandInfiniBand

MPI-2MPI-2

CH3’CH3’

• Direct One Sided:
– Extend CH3 layer
– Map One sided operations 

directly to VAPI calls:
• MPI_Put RDMA write
• MPI_Get RDMA read

– Generally achieve better 
performance



Outline

• Background
– InfiniBand, MPI2 and MVAPICH2

• Motivation
• Design and Implementation
• Performance Evaluation
• Conclusion and Future Work



From MPI-2 Standard

• The implementation can delay communication 
operations until the synchronization calls occur, 
for efficiency

• It is erroneous to have concurrent conflicting
accesses to the same memory location in a 
window; if a location is updated by a put or 
accumulate operation, then this location cannot 
be accessed by a load or another RMA 
operation until the updating operation has 
completed at the target. 



Motivation

• We interpret last slide as: we have the 
freedom to schedule RMA operations

• Current design does not make full use of 
this

• Can such scheduling be performed?
• Does such scheduling benefit?

– Better overlap: utilize bidirectional bandwidth
– Higher network bandwidth utilization



Outline

• Background
• Motivation
• Design and Implementation

– Re-ordering Schemes
– Aggregation Schemes

• Performance Evaluation
• Conclusion and Future Work



Re-ordering Approaches

Re-order the actual issuing of RMA 
operations to utilize network more 
efficiently:

• Interleaving
– Interleave put and get operations

• Prioritizing
– Give priority to get operations



Interleaving

User Program

MPI_Win_start

MPI_Get (1)

MPI_Get (2)

MPI_Put (3)

MPI_Put (4)

MPI_Win_Complete

VAPI Level Communication Pattern

(1)RDMA Read

(3)RDMA write

(2)RDMA Read

(4)RDMA write

(1)RDMA Read

(3)RDMA write

(2)RDMA Read

(4)RDMA write



Prioritizing

User Program

MPI_Win_start

MPI_Put (1)

MPI_Get (2)

MPI_Win_Complete

VAPI Level Communication Pattern

(2)RDMA Read

(1)RDMA write

Synchronization

(2)RDMA Read

(1)RDMA write

Synchronization



Aggregation

• Combine several RMA operations to amortize 
the overhead of initializing and completing the 
operation:
– RMA Operation + Synchronization
– RMA Operation + RMA Operation

• Origin side aggregates the operations (data 
and operations) and target side does scatter

• Only point-to-point scheme can utilize
• Aggregating small size operations is more 

beneficial



Aggregation of RMA Operation & 
Synchronization

User Program

MPI_Win_start

MPI_Put (1)

MPI_Put (2)

MPI_Win_Complete

VAPI Level Communication Pattern

(1)RDMA write

Synchronization

(2)RDMA write

(2)RDMA write

(1) Put operation + 
Synchronization



Aggregation of RMA Operations

User Program

MPI_Win_start

MPI_Put (2)

MPI_Put (4)

MPI_Win_Complete

VAPI Level Communication Pattern

(1)RDMA write

Synchronization

(2)RDMA write
(2)RDMA write

(1)(3)(4) Put operation 
+ Synchronization

MPI_Put (1)

MPI_Put (3)
(3)RDMA write

(4)RDMA write



Outline

• Background
• Motivation
• Design and Implementation

– Re-ordering Schemes
– Aggregation Schemes

• Performance Evaluation
• Conclusion and Future Work



Performance Evaluation

• Test bed:
– EM64T Cluster with PCI-Express HCAs

• Dual 3.4 GHz Xeon Processors
• 512 MB memory

– IA32 Cluster with PCI-X HCAs
• Dual 3.0 GHz Xeon Processors
• 2GB memory

– Both clusters connected by InfiniScale MTS2400 
switch



Impact of Interleaving on 
Throughput

EM64T with PCI-Express

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 4 16 64
256 1k 4k
16k 64k
256k 1M 4M

Message Size (Bytes)

T
hr

ou
gh

pu
t (

M
ill

io
nB

yt
es

/s)

no scheduling
scheduling

IA32 with PCI-X

0
100
200
300
400
500
600
700
800
900

1000

1 4 16 64 25
6 1k 4k 16
k

64
k

25
6k 1M 4M

Message Size (Bytes)
T

hr
ou

gh
pu

t
(M

ill
io

nB
yt

es
/s) no scheduling

scheduling

•Test: 16 MPI_Put followed by 16 MPI_Get during one access epoch

•Throughput test shows up to 76% (980 MB/s 1788 MB/s) improvement 
by scheduling on PCI-Express System and 8% on PCI-X system. 



Impact of Prioritizing on Latency

EM64T with PCI-Express

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

4k 8k
16k 32k 64k
128k
256k
512k 1M 2M 4M

Message Size (Bytes)

L
at

en
cy

 (u
s)

no scheduling
scheduling

IA32 with PCI-X

0

2000

4000

6000

8000

10000

12000

14000

4k 8k
16k 32k 64k
128k
256k
512k 1M 2M 4M

Message Size (Bytes)
L

at
en

cy
 (u

s)

no scheduling
scheduling

•One MPI_Put followed by one MPI_Get during one access epoch

•Improvement up to 40% (8661 ms 5.144 ms) on PCI-Express system 
and 20% on PCI-X system



Impact of Aggregation on 
MPI_Put Latency

EM64T with PCI-Express

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 12
8

25
6

51
2 1k 2k 4k 8k 16
k

Message Size (Bytes)

L
at

en
cy

 (u
s)

Direct One Sided
Aggregation

IA32 with PCI-X

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64 12
8

25
6

51
2 1k 2k 4k 8k 16
k

Message Size (Bytes)
L

at
en

cy
 (u

s)

Direct One Sided
Aggregation

•One MPI_Put + synchronization during one access epoch

•For small message, MPI_Put latency significantly reduces: 44% (12.6us
7.0us) for PCI-Express system and 38% (14.4us 8.8us) for PCI-X system



Impact of Aggregation on 
MPI_Get Latency

EM64T with PCI-Express

0

10

20

30

40

50

60

1 4 16 64

256 1k 4k

16k

Message Size (Bytes)

L
at

en
cy

 (u
s)

Direct One Sided
Aggregation

IA32 with PCI-X

0

10

20

30

40

50

60

70

80

90

1 4 16 64

256 1k 4k

16k

Message Size (Bytes)
L

at
en

cy
 (u

s)

Direct One Sided
Aggregation

•One MPI_Get + synchronization during one access epoch

•Same trends for MPI_Get latency. 42% (26.1us 15.4us) for PCI-Express 
system and 42% (32.2us 18.6us) for PCI-X system



Conclusions
• Different scheduling and aggregation schemes 

can improve the performance of MPI-2 one 
sided communication.

• With re-ordering scheme, we observe an 
improvement in the throughput up to 76%, 
latency up to 40% for certain scenarios. 

• With aggregation scheme, we observe an 
improvement of 44% and 42% for MPI_Put and 
MPI_Get latency on PCI-Express platform.

• Similar trends were observed for PCI-X platform.



Future Work

• Extend our implementation of our aggregation 
scheme for combining multiple RMA operations. 

• Explore more optimized scheduling schemes.
• Merge the different schemes into one framework 

which can adaptively choose based on the 
communication pattern.

• Separate thread implementation
• Application level study



Web Pointers

Group Homepage: http://nowlab.cis.ohio-state.edu

Emails: {huanwei, santhana, jinhy, panda}@cse.ohio-state.edu

NBC-LAB


