
DDSS: A Low-Overhead Distributed Data Sharing

Substrate for Cluster-Based Data-Centers over Modern

Interconnects

K. Vaidyanathan, S. Narravula and D. K. Panda

Network Based Computing Laboratory (NBCL)

The Ohio State University

Presentation Outline

• Introduction and Motivation

• Proposed DDSS Framework

• Experimental Results

• Conclusions and Future Work

Introduction and Motivation

WANWAN

Clients

Web-server
(Apache)

Database
Server

(MySQL)

Storage

• Internet growth
– Number of Users, Type of Service, Amount of data
– E-Commerce, online-banking, stocks, airline reservations

• Data-centers enable such services
– Process data and reply to queries
– Need for services like caching, resource adaptation for performance,

scalability

Proxy
Server

Caching,
load

balancing

Application
Server (PHP)

CGI, PHP

Multi-Tier
Data-Centers

High-Performance Networks

• InfiniBand, 10 GigE
– High Bandwidth
– Low Latency

• Provides rich features
– RDMA semantics, Atomic operations, Protocol offload

• OpenFabrics stack
– Single interface for InfiniBand, iWARP/10 GigE, etc

• Targeted for Multi-Tier Data-Centers
• Can the data-center processes coordinate

better?

Information-Sharing is common
• Applications typically employ their own

– Data placement and management protocols
– Synchronization protocols

• Data-Center services
– Active Resource Adaptation

• Maintain Server state
information

• Locking requirements
– Caching

• Coherency & Consistency
requirements

– Resource Monitoring (IBM
Websphere)

• Load information shared
across several servers

– Critical decisions based on
shared information

Proxy
Module M1
(S1, S2

S3, S4 load)

Proxy
Module M2

(S1, S2
S3, S4 load)

Proxy
Module M3

(S1, S2
S3, S4 load)

Load of
Server S1

Load of
Server S2

Load of
Server S3

Load of
Server S4

Resource Monitoring Service

Problems with Existing
approaches

• Ad-hoc messaging protocols for exchanging data
• May have high overheads
• Performance may depend on the system load
• May not use the advanced features
• May not be scalable

Objective

• Can we design a load resilient substrate
(DDSS) for data-center applications and
services utilizing advanced features such
as RDMA, remote atomic operations?

Presentation Outline

• Introduction and Motivation

• Proposed DDSS Framework

• Experimental Results

• Conclusions and Future Work

Distributed Data Sharing
Mechanism

Shared Data

Data-Center
Application

Resource
Adaptation
Services

Load
Balancing
Services

Data-Center
Application

Resource
Monitoring
Services

Resource
Monitoring
Services

Get

Get load

Get load

Put

Put load

Put load

Lock Data

Provide an effective mechanism to share data across the data-center

Proposed DDSS Framework

InfiniBand 10 GigE High-Speed Interconnects

Protocol
Offload

RDMA Atomic Multicast

�P� Ma�a�e�e��

�o��e���o�
M���

Me�ory
M���

 a�a
M���

!a"��
Lo�#"

�o$ere��y,
�o�"�"�e��y
Ma���e�a��e

Data-Center
Applications

Data-Center
Services

High-Speed
Networks

Advanced
Network
Features

Distributed
Data-Sharing

Substrate
Components

Proposed Framework Contd…

• Data Management
– Local vs Remote, for load

balancing

• Basic Locking
– Through atomic operations

(IBA)

• Coherency and
Consistency Maintenance
– Strict, Write/Read, Null, Delta,

Version
– Use of RDMA and atomic

operations

�P� Ma�a�e�e��

�o��e���o�
M���

Me�ory
M���

 a�a
M���

!a"��
Lo�#"

�o$ere��y,
�o�"�"�e��y
Ma���e�a��e

Protocol
Offload

RDMAAtomic

Proposed Framework Contd…

• Connection Management
– Takes care of connection-setup and

teardown for nodes participating in
DDSS

• Memory Management
– Allocates a pool of memory for

DDSS on each node
– Manages allocation, release

operations

• IPC Management
– Access for multiple threads
– Message Queues

 a�a%�e��er
&''l��a��o�"

(
Serv��e"

Module

IPC

OpenFabrics
Stack

Other
Applications

Other
Modules

TCP/IP
Stack

DDSS Interface

DDSS Interface
• allocate_ss(…)
• release_ss(…)
• get(…)
• put(…)
• acquire_lock_ss(…)
• release_lock_ss(…)
• …

Key = allocate_ss(1024,
NONCOHERENT_SS, 5000);

put(key, data, 10);
compute();
get(key,data, 10);
release_ss(key);

Key = allocate_ss(1024,
WRITE_COHERENT_SS, 5000);

acquire_lock_ss(key);

put(key, data, 10);
release_lock_ss(key);

compute();
get(key,data, 10);
release_ss(key);

Presentation Outline

• Introduction and Motivation

• Proposed Framework

• Experimental Results

• Conclusions and Future Work

Experimental Testbed

• InfiniBand
– Cluster with dual Intel Xeon 3.4 GHz, 1GB memory
– MT25128 Mellanox HCA

• iWARP/GigE
– Cluster with Intel dual Xeon 3.0 GHz, 512 MB

memory
– Ammasso 1100 Gigabit Ethernet NIC

• OpenFabrics stack
– IB, Ammasso (iWARP)

Experimental Results Outline

• Microbenchmarks
– Performance of put() and get() operations

• Distributed Applications
– Distributed STORM
– Checkpointing Application

• Data-Center Services
– Active Resource Adaptation

– Active Caching

Microbenchmarks

• performance of put() and get() operation for small
messages is less than 65 usecs for all coherence
models

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 1 6 2 5 6 4 0 9 6 6 5 5 3 6

M e s s a g e S i z e (b y t e s)

L
at

en
cy

 (
u

se
cs

)

N u l l
R e a d
W r i t e
S t r i c t
V e r s i o n
D e l t a

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 1 6 2 5 6 4 0 9 6 6 5 5 3 6

M e s s a g e S i z e (b y t e s)

L
at

en
cy

 (
u

se
cs

)

N u l l
R e a d
W r i t e
S t r i c t
V e r s i o n
D e l t a

put() performance get() performance

Distributed STORM

• Select data of interest
and transfer from storage
to compute nodes

• Same dataset is
processed by multiple
STORM applications

� this shared dataset is
placed in DDSS

• STORM using DDSS
shows close to
19% improvement

0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0

Q u e r y
E x e c u t i o n

T i m e
(u s e c s)

1 K 5 K 1 0 K 1 0 0 K

R e c o r d s

S T O R M S T O R M -D D S S

CR Coordination

• Checkpoint at random
time

• Simulates restart from a
consistent checkpoint

• Checkpoint uses DDSS
for maintaining
checkpoint information,
locks, versions, etc

• Check-pointing
applications using DDSS
are highly scalable

0
50

100
150
200
250
300
350

2 3 4 5 6 7 8 9 10 11 12

Number of cl ients

T
im

e
(u

se
cs

)
Avg Sync Time Avg Total Time

Active Resource Adaptation

• Monitors the load of
different websites

• If a website is loaded,
shift under-utilized
servers to loaded
websites

• Software Overhead
of DDSS is
< 2%

0

5 0

1 0 0

1 5 0

5 1 0 2 0 4 0 6 0 8 0

L o a d (%)

T
im

e
(u

se
cs

)

0
5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0

R e c o n f i g u r a t i o n T i m e s o f t w a r e -o v e r h e a d
N o o f R e c o n f i g u r a t i o n s

Active Caching

• Supports Strong
Coherency for cached
dynamic data

• Checks the back-end
for current version
using RDMA

• Active cache using
DDSS is load-resilient

0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

1 2 4 8 1 6 3 2

N u m b e r o f C o m p u t e /C o m m u n i c a t i o n
T h r e a d s

T
im

e
(u

se
cs

)

V e r s i o n C h e c k - D D S S V e r s i o n C h e c k - T C P

Conclusions & Future Work

• Proposed a distributed data sharing substrate
• Using DDSS, data-center applications and

services, with very little modification, can get
significant benefits in performance and
scalability

• Implemented over OpenFabrics – applicable
across InfiniBand, iWARP-capable adapters

• Future work on Fault-tolerance, support for
large file sizes, advanced resource
management schemes.

Acknowledgements

Our research is supported by the following organizations

• Current Funding support by

• Current Equipment support by

Web Pointers

Group Homepage: http://nowlab.cse.ohio-state.edu

Emails: {vaidyana, narravul, panda}@cse.ohio-state.edu

NBC-LAB

Backup Slides

High-Performance Networks in Data-Centers

• InfiniBand, iWARP-capable adapters
– Offer several features like RDMA, atomic operations (IB), iWARP

(Ammasso, 10 GigE)

Cluster-Based Data-Center
Environment

(InfiniBand, iWARP-capable
Ammasso, 10 GigE)

Wide
Area

Network

Distributed Data-Center Environment

iWARP
Cluster

iWARP
Cluster

iWARP
Cluster

Active Resource Adaptation
Design

Server
Website A

Load
Balancer

Server
Website B

Not Loaded Loaded

Load Query
Load Query

Successful Atomic (Lock)

Successful Atomic
(Update Counter)

Reconfigure Node

Successful Atomic (Unlock)

Load Shared Load Shared

RDMA
RDMA

P. Balaji, K. Vaidyanathan, S. Narravula and D.K. Panda “Exploiting
Remote Memory Operations to Design Efficient Reconfiguration for
Shared Data-Centers over InfiniBand” presented at RAIT 2004

RDMA based Client Polling
Design

Front-End Back-End

Request

Cache Hit

Cache Miss

Response

Version Read

Response

S. Narravla, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, .. /u and D.K.
Panda “Supporting Strong Coherency for Active Caches in Multi-Tier Data-

Centers over InfiniBand” presented at SAN 2004

Microbenchmarks

• performance of put() and get() operation is less
than 50 usecs

0

1 0

2 0

3 0

4 0

5 0

6 0

1 5 9

N u m b e r o f C l i e n t s

L
at

en
cy

 (
u

se
cs

)

N u l l
R e a d
W r i t e
S t r i c t
V e r s i o n
D e l t a

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

0 .1 0 .8

L o c k C o n t e n t i o n (%)

L
at

en
cy

 (
u

se
cs

)

N u l l
R e a d
W r i t e
S t r i c t
V e r s i o n
D e l t a

