RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits

Sayantan Sur Hyun-Wook Jin Lei Chai D. K. Panda

Network Based Computing Lab,
The Ohio State University
Presentation Outline

- Introduction and Motivation
- Problem Statement
- Detailed Design Description
- Design Evaluation Framework
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work
Introduction

• MPI is a popular parallel programming model
• Offers several point-to-point communication semantics
 – Non-blocking (MPI_Isend, MPI_Irecv …)
 – Blocking (MPI_Send, MPI_Recv …)
 – Synchronous (MPI_Ssend, MPI_Isend …)
• Non-blocking point-to-point communication is hugely popular among application writers
Why are Non-Blocking Semantics Popular?

• Sending and receiving processes can progress independently without blocking
• Enables “Computation/Communication” overlap

• Several other parallel programming models feature non-blocking semantics
 – PGAS {UPC, HPF}
 – ARMCI
Message Passing Protocols

- MPI utilizes two major types of protocols
 - Eager
 - Used for small messages (buffered)
 - Rendezvous
 - Used for large messages (un-buffered)
 - Reduces memory requirement by MPI library

Eager Protocol
- Send

Rendezvous Protocol
- RNDZ_START
- RNDZ_REPLY
- DATA
- FIN
Is Overlap Always Possible?

/* Compute Large Array */
MPI_Isend(array);
long_compute();
MPI_Wait(send_req);

MPI_Irecv(array);
long_compute();
MPI_Wait(recv_req);
How can InfiniBand help?

- InfiniBand is an industry standard HPC interconnect
- Very good performance with many features
 - Minimum Latency: \(~2\text{us}\), Peak Bandwidth: \(~1500\text{MB/s}\)
 - One sided RDMA (Remote DMA), Atomic operations
 - Hardware multicast, Quality of Service …

- RDMA is a powerful mechanism
 - Zero copy (network can directly DMA from user buffers)
 - No remote side involvement
 - Both Write and Read semantics are supported

- Need to design Rendezvous Protocol which leverages all the novel features for InfiniBand in order to achieve Computation/Communication overlap
Presentation Outline

- Introduction and Motivation
- Problem Statement
- Detailed Design Description
- Design Evaluation Framework
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work
Problem Statement

- Can we design a Rendezvous protocol which can achieve full overlap of computation and communication?
- Can this new protocol reduce the communication time experienced by end applications?
Presentation Outline

- Introduction and Motivation
- Problem Statement
- Detailed Design Description
- Design Evaluation Framework
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work
Design Overview

• Design a new RDMA Read based Rendezvous protocol
 – Minimize control messages

• Trigger “automatic” progress with interrupts
 – Interrupts are costly (~2 times round-trip latency)
 – Reduce interrupts using
 • Selective Interrupts
 • Interrupt suppression
 • Dynamic Interrupt Requests

• Hybrid Communication Progress
 – Maintain polling nature (where possible) of MPI progress to allow low latency
Rendezvous Protocol: Design Alternatives

- MPI specification states that receiver may post a buffer larger than actual message
- Only sender knows the actual size of the message and can make the optimal decision on the protocol to be used:
 - Eager (buffered) if message is small
 - Rendezvous (un buffered) if message is large
- The Rendezvous protocol must be initiated by sender
RDMA Write Vs. RDMA Read

- RDMA Read based protocol need less control messages
- Sender can embed its buffer information with RNDZ_START message
RDMA Read with Interrupt

- Interrupt triggers communication progress
- This enables overlap of computation and communication on receiver side
- Need to reduce overhead caused by Interrupts
Interrupt Reduction Techniques

• Selective Interrupts
 – Only RNDZ_START messages cause interrupts

• Interrupt Suppression
 – Interrupt handler once awake, handles as many RNDZ_START messages it can find
 – Back-to-back messages don’t cause interrupts

• Dynamic Interrupt Requests
 – Interrupts enabled only when large receives are posted
 – Unexpected RNDZ_START messages don’t cause interrupts
Hybrid Communication Progress

- Progress engine has an impact on MPI performance
- Hybrid progress engine allows two progress threads to simultaneously execute
- In event of no “progress critical” events, no extra interrupts are generated
- Progress engine was re-designed to be thread safe
Presentation Outline

- Introduction and Motivation
- Problem Statement
- Detailed Design Description
- Design Evaluation Framework
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work
OSU MPI over InfiniBand

- High Performance Implementations
 - MPI-1 (MVAPICH)
 - MPI-2 (MVAPICH2)
- Open Source (BSD licensing)
- Has enabled a large number of production IB clusters all over the world to take advantage of IB
 - Largest being Sandia Thunderbird Cluster (4000 node with 8000 processors)
- Have been directly downloaded and used by more than 335 organizations worldwide (in 33 countries)
 - Time tested and stable code base with novel features
- Available in software stack distributions of many vendors
- Available in the OpenIB/gen2 stack
- More details at
 http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
Evaluation Framework

- Proposed designs were incorporated in MVAPICH 0.9.5
 - RDMA Write (RDMA-W)
 - RDMA Read (RDMA-R)
 - RDMA Read with Interrupt (RDMA-RI)
- RDMA-R protocol is available from version 0.9.6
- RDMA-RI protocol will be available from version 0.9.8
Presentation Outline

- Introduction and Motivation
- Problem Statement
- Detailed Design Description
- Design Evaluation Framework
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work
Experimental Evaluation

- Micro-benchmark tests
 - Computation/Communication overlap performance
 - Communication progress performance
 - Measured with time stamps from overlap test

- Evaluation platforms
 - Cluster A: 8 Dual 3.0 GHz SMP; 2GB RAM; PCI-X
 - Cluster B: 32 Dual 2.6 GHz SMP; 2GB RAM; PCI-X

- Mellanox InfiniBand adapters (MT23108)
- Mellanox 144 port InfiniBand switch (MTS14400)
Micro-benchmark Tests

- Sender Overlap:

 \[\text{MPI}_{\text{Send}}(\text{array});\]
 \[\text{compute}();\]
 \[\text{MPI}_{\text{Wait}}(\text{send_req});\]

- Receiver Overlap:

 \[\text{MPI}_{\text{Send}}(\text{array});\]
 \[\text{compute}();\]
 \[\text{MPI}_{\text{Wait}}(\text{recv_req});\]

- Computation/Communication ratio is: \(\frac{W}{T}\)
Computation/Communication Overlap Performance

- **Sender Overlap:**
 - RDMA-W has poor overlap due to inability to discover the RNDZ_REPLY message till computation is over
 - RDMA-R and RDMA-RI achieve nearly complete overlap
- **Receiver Overlap:**
 - RDMA-W and RDMA-R have poor overlap due to their inability to discover the rendezvous control (RNDZ_REPLY and RNDZ_START) messages respectively
 - RDMA-RI achieves nearly complete overlap
Communication Progress Performance

- Time stamps are taken during sender/receiver overlap tests when application enters compute/communication phase and from within MPI library when application enters MPI_Wait
- The RDMA-RI can achieve 50% faster communication in both sender and receiver overlap tests
Presentation Outline

- Introduction and Motivation
- Problem Statement
- Detailed Design Description
- Design Evaluation Framework
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work
Application level Evaluation

- Two well known applications
 - High Performance Linpack (HPL)
 - NAS Scalar Pentadiagonal (SP)
- Predominantly use MPI_Isend/Irecv
- Time spent in MPI library is profiled using mpiP (a lightweight MPI profiling tool)
- This wait time can be effectively utilized by application to compute rather than just waiting for network operations to complete
Application Level Results

- Wait time for HPL
 - Reduced by ~30% for 32 processes by RDMA-R and RDMA-RI
- Wait time for NAS SP
 - Reduced by ~28% for 36 processes by RDMA-R and RDMA-RI
Presentation Outline

- Introduction and Motivation
- Problem Statement
- Detailed Design Description
- Design Evaluation Framework
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work
Conclusions and Future Work

- New designs can achieve **nearly complete overlap** of computation/communication
- Communication progress can be sped up by **50%**
- Application (HPL, NAS SP) wait times reduced by **30%** and **28%** respectively
- Unique study of Rendezvous Protocol and its effect on Computation/Communication overlap using RDMA
- Future Work
 - More exhaustive application oriented study on larger scale InfiniBand cluster
Acknowledgements

Our research is supported by the following organizations

- **Current Funding support by**
 - Office of Science
 - NSF
 - Mellanox Technologies
 - Cisco Systems
 - Intel
 - Linux
 - NetApp

- **Current Equipment support by**
 - Mellanox Technologies
 - AMD
 - Sun Microsystems
 - APPR
 - IBM
 - Microway
 - PathScale
 - SilverStorm
Web Pointers

http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/