Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda *Network Based Computing Lab, The Ohio State University*

- Introduction and Motivation
- Problem Statement and Approach Used
- Overview of ConnectX Architecture
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work

Introduction

- InfiniBand is a popular interconnect used for High-Performance Computing
- The advent of *Multi-core computing* is changing overall system architecture and performance parameters
- Trend: increasing cores / network-interface
 - Older systems had 2-4 processors and 1 network card
 - Most current systems have 8-cores and 1 network card
 - Number of cores will increase as per Moore's Law!
- Next generation of network-interfaces may need to be redesigned to improve performance on Multi-core platforms!

InfiniBand Overview

- InfiniBand is an emerging HPC interconnect

 Industry Standard; Open Source software
- Very good performance with many features
 - Minimum Latency: ~1.2us, Peak Bandwidth: ~1500MB/s
 - RDMA, Atomic Operations, Shared Receive Queue
 - Hardware multicast, Quality of Service ...
- Several generations of InfiniBand hardware
 - Third Generation: InfiniHost III
 - Fourth Generation: ConnectX
- Several transport mechanisms are supported
 - Reliable Connection (RC)
 - Unreliable Datagram (UD)
 - Scalable Reliable Connection (SRC) (New)
 - Initial API discussion has started

Increasing Communication

 The amount of communication handled per network interface is increasing exponentially, as Moore's law allows for more CPU cores to be fabricated

- Introduction and Motivation
- Problem Statement and Approach Used
- Overview of ConnectX Architecture
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work

Problem Statement

- Can network-interfaces be designed to offer greater levels of performance for Multi-core system architecture?
- Can we experimentally ascertain performance improvements offered by next generation ConnectX architecture?

Approach Used

- Micro-benchmarks
 - Design suitable experiments to study the performance at the lowest network-level
 - RDMA Write/Read Latency
 - RDMA Write bandwidth
 - Multi-pair performance
- Application level Benchmarks
 - Communication specific benchmark HALO
 - Molecular dynamics simulation benchmark LAMMPS

- Introduction and Motivation
- Problem Statement and Approach Used
- Overview of ConnectX Architecture
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work

ConnectX Overview

ConnectX Architecture, courtesy Mellanox

- Fourth Generation Silicon
 - DDR (Double Data Rate)
 - PCI-Express Gen1
 - QDR (Quad Data Rate)
 - PCI-Express Gen2
- Flexibility to configure each individual port to either InfiniBand or 10G
- Hardware support for Virtualization
- Quality of Service
- Stateless Offloads
- In this presentation, we focus on the InfiniBand device

Performance improvements in ConnectX

- Designed to improve the processing rate of incoming packets
- Scheduling done in hardware with no firmware involvement in critical path
- Improved WQE processing capabilities
 - Difference b/w RDMA and Send/Receive: 0.2us
 - For earlier generation InfiniHost III it was: 1.15us
- Use of PIO for very small message sizes
 - "Inline" allows data to be encapsulated in the WR
 - PIO mode allows entire WR to be sent to the HCA without any DMA operations

PIO vs DMA

- In DMA mode, the processor writes a smaller command over I/O bus and HCA arranges for DMA transfer
 - Lower CPU usage
 - More I/O bus transactions
- In PIO mode, the processor writes data over I/O bus to a HCA command buffer
 - Increased CPU usage
 - Less I/O bus transactions
- For small messages, CPU usage is negligible, while number of transactions can be significantly reduced

I/O Bus Transcations for DMA and PIO modes

- Introduction and Motivation
- Problem Statement and Approach Used
- Overview of ConnectX Architecture
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work

Experimental Platform

- Four node Intel Bensley platform
- Dual Intel Clovertown 2.33 GHz Quad Core
- 4 GB main memory (FBDIMM)
- 3 x8 PCI-Express slots
 - ConnectX DDR HCAs (MT25408)
 - Firmware 2.0.139
 - Expected similar performance with current FW
 - InfiniHost III DDR HCAs (MT25218)
 - Firmware version 5.2.0
- OpenFabrics Gen2 stack (OFED-1.2)
- Linux kernel 2.6.20-rc5
- Two identical MTS2400 switches

Multi Pair RDMA Write Latency

Multi-Pair Latency on InfiniHost III

Multi-Pair Latency on ConnectX

- OpenFabrics/Gen2 level RDMA Write test with multiple pairs
- InfiniHost III latencies increase linearly with number of pairs
- ConnectX latencies are almost same regardless of pairs
- For 256 bytes, size of WQE exceeds PIO limit and DMA is used
 - Our platform doesn't execute so many PCI-E reads concurrently as issued by ConnectX firmware
- For 8 pairs, ConnectX *factor of 6 improvement* for <= 512 bytes

Multi Pair RDMA Write Latency Comparison

Multi-Pair Latency Comparison for 8-pairs

- For 256 bytes, size of WQE exceeds PIO limit and DMA is used
 - Our platform doesn't execute so many PCI-E reads concurrently as issued by ConnectX firmware
- For 8 pairs, ConnectX *factor of 6 improvement* for <= 128 bytes

Multi Pair RDMA Read Latency

Multi-Pair Read Latency on InfiniHost III

Multi-Pair Read Latency on ConnectX

- OpenFabrics/Gen2 level RDMA Read test with multiple pairs
- InfiniHost III latencies increase linearly with number of pairs
- ConnectX latencies increase by lesser increments
 - For Read, no PIO can be used for data, DMA needs to be used
 - Our chipset does not seem to issue as many concurrent reads
 - With our settings, ConnectX can issue up to <u>16 concurrent reads</u> on the bus

Multi Pair RDMA Read Latency Comparison

Multi-Pair Latency Comparison for 8-pairs

• For 8 pairs, ConnectX *factor of 3 improvement* for <= 512 bytes

Multi Pair RDMA Write Bandwidth

- OpenFabrics/Gen2 level RDMA Write bw test with multiple pairs
- InfiniHost III bandwidth decreases with number of pairs
- ConnectX bandwidth improves with number of pairs
- For ConnectX, even 1-pair can achieve closer to maximum bandwidth!
- For 8 pairs, ConnectX *factor of 10 improvement* for 256 bytes

Multi Pair RDMA Write Bandwidth Comparison

Multi-Pair Bandwidth Comparison for 8-pairs

• For 8 pairs, ConnectX factor of 10 improvement for 256 bytes

- Introduction and Motivation
- Problem Statement and Approach Used
- Overview of ConnectX Architecture
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work

MVAPICH and MVAPICH2 Software Distributions

- High Performance MPI Library for InfiniBand and iWARP Clusters
 - MVAPICH (MPI-1) and MVAPICH (MPI-2)
 - Used by more than 540 organizations in 35 countries
 - Empowering many TOP500 clusters
 - Available with software stacks of many InfiniBand, iWARP and server vendors including Open Fabrics Enterprise Distribution (OFED)
 - <u>http://mvapich.cse.ohio-state.edu</u>

Halo Communication Benchmark

- Simulates Layered Ocean model communication characteristics
- MVAPICH-0.9.9 is used to execute this benchmark
- Processes scattered in cyclic manner
- For small number of tiles {2, 64}, ConnectX performance is better by a *factor of 2 to 5*

LAMMPS Benchmark

- Molecular dynamics simulator from Sandia National Labs
- MVAPICH-0.9.9 is used to execute this benchmark
- Processes scattered in cyclic manner
- "Loop Time" is reported as per benchmark specs
- in. rhodo benchmark used
- For 16 processes, ConnectX outperforms InfiniHost III by 10%
 - This is explainable by higher bandwidths for ConnectX when all 8pairs of processes are communicating

- Introduction and Motivation
- Problem Statement and Approach Used
- Overview of ConnectX Architecture
- Micro-benchmark Level Evaluation
- Application Level Evaluation
- Conclusions and Future Work

Conclusions and Future Work

- In this work we presented
 - Network and Application level performance characteristics of ConnectX architecture
 - Outlined some of the major architectural improvements in ConnectX
 - Performance improvements for multi-core architectures are impressive
- In the future, we want to
 - Study performance on larger scale clusters
 - Leverage novel features of ConnectX such as: Scalable Reliable Connection (SRC), QoS, Reliable Multicast etc. into future MVAPICH designs

Acknowledgements

Our research is supported by the following organizations

Current Funding support by

Web Pointers

http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page http://mvapich.cse.ohio-state.edu

