Designing Next Generation Clusters:
Evaluation of InfiniBand DDR/QDR on Intel Computing Platforms

Hari Subramoni, Matthew Koop and
Dhabaleswar. K. Panda

Computer Science & Engineering Department
The Ohio State University

HotI '09
Outline

• Introduction
• Problem Statement
• Approach
• Performance Evaluation and Results
• Conclusions and Future Work
Introduction

• Commodity clusters are becoming more popular for High Performance Computing (HPC) Systems
• Modern clusters are being designed with multi-core processors
• Introduces multi-level communication
 • Intra-node (intra-socket, inter-socket)
 • Inter-node
Factors Affecting the Communication Performance

- Cache Hierarchies
- Memory Architecture
- Inter Processor Connections
- Memory controllers
- MPI Library Design

- Interconnect Speed
- Network Performance
- Network Topology
- Network Congestion
- MPI Library Design

HotI '09
Additional Factors Affecting the Overall Application Performance

- Communication characteristics
- Message distribution
- Mapping of processes into cores/nodes
 - Block vs. cyclic
- Traditionally, intra-node communication performance has been better than inter-node communication performance
 - Most applications use `block’ distributions
- Are such practices still valid on modern clusters?
Intel Nehalem Processor

- First true quad core processor with L3 cache sharing
- 45 nm manufacturing process
- Uses QuickPath Interconnect Technology
- HyperThreading allows execution of multiple threads per core in a seamless manner
- Turbo boost technology allows automatic overclocking of processors
- Integrated memory controller supporting multiple memory channels gives very high memory bandwidth
- Has impact on Intra-node Communication Performance
InfiniBand Architecture

• An industry standard for low latency, high bandwidth, System Area Networks

• Multiple features
 – Two communication types
 • Channel Semantics
 • Memory Semantics (RDMA mechanism)
 – Multiple virtual lanes
 – Quality of Service (QoS) support

• Double Data Rate (DDR) with 20 Gbps bandwidth has been there

• Quad Data Rate (QDR) with 40 Gbps bandwidth is available recently

• Has impact on Inter-node communication performance

Hotl '09
Outline

- Introduction
- Problem Statement
- Approach
- Performance Evaluation and Results
- Conclusions and Future Work
Problem Statement

• What are the intra-node and inter-node communication performance of Nehalem-based clusters with InfiniBand DDR and QDR?

• How do these communication performance compare with previous generation Intel processors (Clovertown and Harpertown) with similar InfiniBand DDR and QDR?

• With rapid advances in processor and networking technologies, are the relative performance between intra-node and inter-node changing?

• How such changes can be characterized?

• Can such characterization be used to analyze application performance across different systems?

Hotl '09
Outline

• Introduction
• Problem Statement
• Approach
• Performance Evaluation and Results
• Conclusions and Future Work
Two Angles

• Absolute Performance of Intra-node and Inter-node communication
 – Different combinations of Intel processor platforms and InfiniBand (DDR and QDR)

• Characterization of Relative Performance between Intra-node and Inter-node communication
 – Use such characterization to analyze application-level performance
Communication Balance Ratio

• Applications have different communication characteristics
 – Latency sensitive
 – Bandwidth (uni-directional) sensitive
 – Bandwidth (bi-directional) sensitive

• Introduce a set of metrics Communication Balance Ratio (CBR)
 – CBR-Latency = Latency_Intra / Latency_Inter
 – CBR-Bandwidth = Bandwidth_Intra / Bandwidth_Inter
 – CBR-Bi-BW = Bi-BW_Intra / Bi_BW_Inter
 – CBR-Multi-BW = Multi-BW_Intra / Multi-BW_Inter

• $\text{CBR-}x=1 \Rightarrow \text{Cluster is Balanced wrt metric } x$
 • Applications sensitive to metric x can be mapped anywhere in the cluster without any significant impact on overall performance
Outline

• Introduction
• Problem Statement
• Approach
• Performance Evaluation and Results
• Conclusions and Future Work
Experimental Testbed

• Three different compute platforms
 – Intel Clovertown
 • Intel Xeon E5345 Dual quad-core processors operating at 2.33 GHz
 • 6GB RAM, 4MB cache
 • PCIe 1.1 interface
 – Intel Harpertown
 • Dual quad-core processors operating at 2.83 GHz
 • 8GB RAM, 6MB cache
 • PCIe 2.0 interface
 – Intel Nehalem
 • Intel Xeon E5530 Dual quad-core processors operating at 2.40 GHz
 • 12GB RAM, 8MB cache
 • PCIe 2.0 interface

Hotl '09
Experimental Testbed (Cont)

- Two different InfiniBand Host Channel Adapters
 - Dual port ConnectX DDR adapter
 - Dual port ConnectX QDR adapter
- Two different InfiniBand Switches
 - Flextronics 144 port DDR switch
 - Mellanox 24 port QDR switch
- Five different platform-interconnect combinations
 - NH-QDR – Intel Nehalem machines using ConnectX QDR HCA’s
 - NH-DDR – Intel Nehalem machines using ConnectX DDR HCA’s
 - HT-QDR – Intel Harpertown machines using ConnectX QDR HCA’s
 - HT-DDR – Intel Harpertown machines using ConnectX DDR HCA’s
 - CT-DDR – Intel Clovertown machines using ConnectX DDR HCA’s
- Open Fabrics Enterprise Distribution (OFED) 1.4.1 drivers
- Red Hat Enterprise Linux 4U4
- MPI Stack used – MVAPICH2-1.2p1

Hotl '09
MVAPICH / MVAPICH2 Software

- High Performance MPI Library for IB and 10GE
 - MVAPICH (MPI-1) and MVAPICH2 (MPI-2)
 - Used by more than 960 organizations in 51 countries
 - More than 32,000 downloads from OSU site directly
 - Empowering many TOP500 clusters
 - 8th ranked 62,976-core cluster (Ranger) at TACC
 - Available with software stacks of many IB, 10GE and server vendors including Open Fabrics Enterprise Distribution (OFED)
 - Also supports uDAPL device to work with any network supporting uDAPL
 - http://mvapich.cse.ohio-state.edu/

Hotl '09
List of Benchmarks

- OSU Microbenchmarks (OMB)
 - Version 3.1.1
 - http://mvapich.cse.ohio-state.edu/benchmarks/

- Intel Collective Microbenchmarks (IMB)
 - Version 3.2

- HPC Challenge Benchmark (HPCC)
 - Version 1.3.1

- NAS Parallel Benchmarks (NPB)
 - Version 3.3
 - http://www.nas.nasa.gov/
Performance Results

• Absolute Performance
 – Inter-node latency and bandwidth
 – Intra-node latency and bandwidth
 – Collective All-to-all
 – HPCC
 – NAS

• Communication Balance Ratio
 – CBR-Latency
 – CBR-Bandwidth (uni-directional)
 – CBR-Bandwidth (bi-directional)
 – CBR-Bandwidth (multi-pair)

• Impact of CBR on Application Performance
Microbenchmark Level Evaluation
– Inter-Node Latency

- Harpertown systems deliver best small message latency
- Up to 10% improvement in large message latency for NH-QDR over HT-QDR

Hotl '09
Nehalem systems offer a peak uni-directional bandwidth of 3029 MBps and bi-directional bandwidth of 5236 MBps.

NH-QDR gives up to 18% improvement in uni-directional bandwidth over HT-QDR.

Hotl '09
Intra-Node Latency

- Intra-Socket small message latency of 0.35 us
- Nehalem systems give up to 40% improvement in Intra-Node latency for various message sizes

Hotl '09
Intra-Node Bandwidth

- Intra-Socket bandwidth (**7474 MBps**) and bidirectional bandwidth (**6826 MBps**) show the high memory bandwidth of Nehalem systems.
- Drop in performance at large message size due to cache collisions.

Hotl '09
Intra-Node MultiPair Bandwidth

- Different send/recv buffers are used to negate the caching effect
- Nehalem systems show superior memory bandwidth with different send/recv buffers

HotI '09
Collective Performance
Alltoall Latency (32-cores)

• A 43% to 55% improvement by using QDR HCA over a DDR HCA
• Harpertown numbers not shown due to unavailability of more number of nodes

Hotl '09
Application Level Evaluation – HPCC

- Baseline numbers are taken on CT-DDR
- NH-DDR shows a 13% improvement in performance over Harpertown and Clovertown systems
- NH-QDR shows a 38% improvement in performance over NH-DDR systems

HotI '09
Application Level Evaluation – HPCC (Cont)

- Up to 190% improvement in Naturally Ordered Ring bandwidth for NH-QDR
- Up to 130% improvement in Randomly Ordered Ring bandwidth for NH-QDR

Hotl '09
Performance of NAS Benchmarks

Class B – 32 processes

Class C – 32 processes

- Numbers normalized to NH-DDR
- NH-QDR shows clear benefits over NH-DDR for multiple applications

HotI '09
CBR-Latency

- Useful for Latency bound applications
- Harpertown more balanced for applications using small to medium sized messages
- HT-DDR more balanced for applications using large messages followed by NH-QDR

Hotl '09
• Useful for Bandwidth bound applications
• Nehalem systems more balanced for applications using small to medium sized messages
• Harpertown systems more balanced for applications using large messages
CBR-Bidirectional Bandwidth

- Useful for Applications using frequent bidirectional communication pattern
- Nehalem systems balanced for applications using small to medium sized messages in bidirectional communication pattern
- NH-QDR balanced for all message sizes

Hotl ’09
CBR-Multipair Bandwidth

- Useful for Communication intensive applications
- NH-QDR balanced for applications using mainly small to medium sized messages
- Harpertown balanced for applications using mainly large messages

HotI '09
Impact of CBR on Applications (NAS)

- NH-QDR is more balanced than NH-DDR especially for medium to large messages
 - Process mapping should have less impact with NH-QDR than NH-DDR for applications using medium to large messages
- We compare NPB performance for block and cyclic process mapping
- Numbers normalized to NH-DDR-Cyclic
- NH-QDR has very similar performance for both block and cyclic mapping for multiple applications
- CG & FT uses a lot of large messages, hence show difference
- MG is not communication intensive
- LU uses small messages where CBR for NH-QDR and NH-DDR is similar
Outline

• Introduction
• Problem Statement
• Approach
• Performance Evaluation and Results
• Conclusions and Future Work
Conclusions & Future Work

• Studied absolute communication performance of various Intel computing platforms with InfiniBand DDR and QDR
• Proposed a set of metrics related to Communication Balance Ratio (CBR)
• Evaluated these metrics for various computing platforms and InfiniBand DDR and QDR
• Nehalem systems with InfiniBand QDR give the best absolute performance for latency and bandwidth in most cases
• Nehalem based systems alter the CBR metrics
• Nehalem systems with InfiniBand QDR interconnects also offer best communication balance in most cases
• Plan to perform larger scale evaluations and study impact of these systems on the performance of end applications
Thank you!

{subramon, koop, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory
http://mvapich.cse.ohio-state.edu/

Hotl '09