Design and Implementation of Key Proposed MPI-3 One-Sided Communication Semantics on InfiniBand

Sreeram Potluri, Sayantan Sur, Devendar Bureddy and Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering
The Ohio State University, USA
Introduction

• Reduced synchronization overheads, simultaneous use of powerful system resources - key on modern clusters
• Better support through one-sided communication in MPI-2
• Optimized implementation in MVAPICH2
• Limitations in semantics – hindered its wider acceptance
• RMA working group proposed several extensions as part of the MPI-3 effort
• Efficient implementation is crucial – to highlight their performance benefits, encourage their wide-spread use
• Can the new semantics be implemented with high performance in MVAPICH2?
Overview

MPI-3 One Sided Communication

Synchronization
- Lock_all, Unlock_all
- Win_flush, Win_flush_local, Win_flush_all, Win_flush_local_all
- Win_sync

Communication
- Get_accumulate
- Rput, Rget, Raccumulate, Rget_accumulate
- Fetch_and_op, Compare_and_swap

Window Creation
- Win_allocate
- Win_create_dynamic, Win_attach, Win_detach

Separate and Unified Windows

Accumulate Ordering

Undefined Conflicting Accesses
Flush Operations

- Local and remote completions bundled in MPI-2 one-sided communication model
- Handled using synchronization operations, requires closure of an epoch
- Overhead in scenarios that require only local completions
- Considerable overhead on networks like IB - semantics and cost of local and remote completions are different
 - RDMA Reads and Atomic Ops: CQ event means both local and remote completions
 - RDMA Writes: CQ event only means local completion. Remote completion requires a follow up Send/Recv exchange or an atomic operation.
- Flush operations allow for more efficient check for completions
Flush Operations

- Local completion of Put is efficient using flush
- Completion does not require closure of the epoch

8-core Intel Westmere Nodes connected with InfiniBand QDR IB
Request Based Operations

- Current semantics provide bulk synchronization
- Lack of a way to request completion of individual operations, without closing an epoch
- Does not serve well for fine grained computation and communication overlap
- Request based operations (MPI_Rput, MPI_Rget, and others) return an MPI Request, can be polled for completion
- Added GCP(Get-Compute-Put) Benchmarks in the OSU suite to highlight their benefits
Request Based Operations

GCP Benchmark

- **No Overlap**

  ```
  MPI_Win_lock
  for i in 1, N
      MPI_Get (i-th Block)
  end for
  MPI_Win_unlock

  Compute (N Blocks)

  MPI_Win_lock
  for i in 1, N
      MPI_Put (i-th Block)
  end for
  MPI_Win_unlock
  ```

- **Overlap using Lock-Unlock**

  ```
  MPI_Win_lock
  for i in 1, N
      MPI_Get (i-th Block)
  end for
  MPI_Win_unlock

  Compute (N Blocks)

  MPI_Win_lock
  for i in 1, N
      MPI_Put (i-th Block)
  end for
  MPI_Win_unlock

  MPI_Win_lock
  for i in 1, N
      Compute (i-th Block)
      MPI_Rget (i-th Block)
  end for
  MPI_Wait_any (get requests)
  while a get request j completes
      Compute (j-th Block)
      MPI_Rput (j-th Block)
      MPI_Wait_any (get requests)
  end while
  MPI_Wait_all (put requests)
  MPI_Win_unlock
  ```

- **Overlap using Request Ops**

  ```
  MPI_Win_lock
  for i in 1, N
      MPI_Rget (i-th Block)
  end for

  Compute (N Blocks)

  MPI_Win_lock
  for i in 1, N
      Compute (i-th Block)
      MPI_Rput (i-th Block)
  end for
  MPI_Win_unlock
  ```

Network-Based Computing Laboratory

Ohio State

EuroMPI 2011
Request Based Operations

- Request based operations provide superior overlap

8-core Intel Westmere Nodes connected with InfiniBand QDR IB
Dynamic Windows

- Creation of a window is collective on communicator
- A process can attach or detach memory to the window dynamically
- User has to manage exchange and correct use of address information
- MPI Implementations on IB have to manage dynamic exchange of key information to use RDMA
- MVAPICH2 uses a pull model – request-for-info sent when the first operation is issued on a region, information is cached
- Request is piggy-backed onto the first data packet for small and medium message sizes
Dynamic Windows

- Dynamic windows can provide performance similar to static windows
- Key exchange overhead is amortized

8-core Intel Westmere Nodes connected with InfiniBand QDR IB
Conclusion and Future Work

• First implementation of features from the proposed one-sided communication semantics for MPI-3
• Highlighted their benefits
• Working towards a complete implementation of the proposed MPI-3 one-sided communication standard
• Modifying application benchmarks to show how real-world applications can benefit from the proposed extensions
Thank You!

{potluri, surs, bureddy, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page

http://mvapich.cse.ohio-state.edu/