
CRFS: A Lightweight User-Level Filesystem

for Generic Checkpoint/Restart

Xiangyong Ouyang, Raghunath Rajachandrasekar,

Xavier Besseron, Hao Wang, Jian Huang,

Dhabaleswar K. Panda

Department of Computer Science & Engineering

The Ohio State University

• Introduction and Motivation

• Checkpoint Profiling and Analysis

• CRFS: A lightweight user-level Filesystem

• Performance Evaluation

• Conclusions and Future Work

2ICPP 2011

Outline

3ICPP 2011

Introduction

• High Performance Computing (HPC) keeps growing
in terms of scale and complexity
– Mean-time-between-failures (MTBF) is getting smaller

– Fault-Tolerance is becoming imperative

– Checkpoint/Restart is becoming increasingly important

• Checkpoint/Restart (C/R): the most widely adopted
Fault-tolerance approach
– Phase 1: build a global consistent state (suspend

communications)

– Phase 2: create a snapshot of every process, save it to a
shared parallel filesystem

– Phase 3: Resume communications and execution

• Checkpoint/Restart mechanisms incur intensive I/O
overhead
× Sheer amount of data

× Simultaneous IO streams leads to severe contentions

× Large variations of individual process completion time

• A lot of studies to tackle the I/O bottleneck

– Performed inside specific MPI stack or checkpoint library or

applications

× Not portable

× Constrained to certain MPI stacks

4ICPP 2011

Problems with Basic C/R

5ICPP 2011

Problem Statements

• What are the primary causes of intensive I/O

overhead for Checkpoint / Restart?

• How to design a portable and generic solution

with optimizations to improve C/R performance?

• Can such a portable solution benefit a wide

range of MPI stacks?

• What will be the performance benefits?

• Introduction and Motivation

• Checkpoint Profiling and Analysis

• CRFS: A lightweight user-level Filesystem

• Performance Evaluation

• Conclusions and Future Work

6ICPP 2011

Outline

• MVAPICH: MPI over InfiniBand, 10GigE/iWARP and

RDMA over Converged Enhanced Ethernet (RoCE)

– MVAPICH (MPI-1) and MVAPICH2 (MPI-2)

– Used by more than 1,650 organizations worldwide (in 63 countries)

– Empowering many TOP500 clusters (7th, 17th …)

– Available with software stacks of many IB, 10GE/iWARP and RoCE,

and server vendors including Open Fabrics Enterprise Distribution

(OFED)

– Available with Redhat and SuSE Distributions

– http://mvapich.cse.ohio-state.edu/

• Has supported Checkpoint/Restart and Process Migration for

the last several years

– Already used by many organizations

7ICPP 2011

MVAPICH/MVAPICH2 Software

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

8ICPP 2011

Checkpoint Writing Profiling (1)

• NAS Parallel Benchmark - LU.C.64

• Compute nodes: dual Quad-core Xeon,

• MVAPICH2-1.6 with Checkpoint/Restart support

• Checkpoint to ext3

• Checkpoint size: 1,472 MB, VFS write calls per node: 7800

Checkpoint Writing information [1]

Lots of

small/median writes

 Inefficient IO

[1] X. Ouyang, K. Gopalakrishnan, D. K. Panda, “Accelerating Checkpoint Operation by Node-Leve Write

Aggregation on Multicore Systems”, ICPP 2009

9ICPP 2011

Checkpoint Writing Profiling (2)

Checkpoint Write Time (LU.C.64, 64 processes on 8 nodes)

 contentions caused by concurrent writes wide variation of

completion time.

Faster process has to wait for slower counterparts

Slow down checkpoint as a while

10ICPP 2011

Optimize IO at Different Layers

Optimizations in specific MPI stacks

×Only benefit certain MPI

implementations

Optimizations in checkpoint library

×Require changes in kernel modules,

not portable

 How to get both performance

and portability at the same time?

11ICPP 2011

Our Approach

CRFS: a user-level filesystem optimized for checkpoint I/O

√ User-level design: portable

√ Optimizations inside filesystem: transparently benefit a

wide range of MPI stacks and applications

CRFS: a generic

Checkpoint/Restart

Filesystem

• Introduction and Motivation

• Checkpoint Profiling and Analysis

• CRFS: A lightweight user-level Filesystem

• Performance Evaluation

• Conclusions and Future Work

12ICPP 2011

Outline

• Based on FUSE: user-level filesystem

• Intercepts VFS write system calls

– Aggregates many writes into bigger (fewer) chunks

(better IO efficiency)

• Internal IO thread pool: asynchronously write

bigger data chunks to back-end filesystem

– Reduce IO contentions

– ext3, NFS, Luster etc.

13ICPP 2011

CRFS Design Strategies

Backend Filesystems

ext3 Lustre NFS …

VFS FUSE

14ICPP 2011

CRFS Design

MPI processes

Checkpoint

Library IO Thread

Pool

Work QueueBuffer Pool

CRFS

Design choices
 Buffer pool size

 IO thread pool

VFS Write

• Introduction and Motivation

• Checkpoint Profiling and Analysis

• CRFS: A lightweight user-level Filesystem

• Performance Evaluation

• Conclusions and Future Work

15ICPP 2011

Outline

• Environment
– Dual-socket Quad core Xeon , InfiniBand DDR, Linux 2.6.30,

FUSE-2.8.5

– NAS parallel Benchmark (NPB) 3.3, LU with class B/C/D input

– MVAPICH2-1.6rc3, OpenMPI 1.5.1, MPICH2 1.3.2p1

• With Checkpoint/Restart support

– No modifications to any MPI stacks required

– Backend Filesystem:

• Ext3, NFSv3, Lustre 1.8.3 (3 OSS, 1 MDS, o2ib transport)

• Experiments

– Single node RAW IO bandwidth

• To select proper design parameters

– Checkpoint time with 3 MPI stacks

• Evaluate CRFS performance

– CRFS scalability with varied level of IO multiplexing

– CRFS capability to reduce variation in checkpoint

completion time
16ICPP 2011

Experimental Setup

17ICPP 2011

CRFS Raw Write Bandwidth

8 processes writing concurrently on a node.

16 MB buffer pool can generate good throughput

128 KB chunk size performs well

4 IO threads yield the best performance in most cases

18ICPP 2011

Checkpoint Sizes

19ICPP 2011

Checkpoint Time (MVAPICH2)

5.5X 4.5X

1.3X

•Single NFS server cannot Handle heavy IO

•FUSE overhead manifested

• Lustre: CRFS is 5.5X / 4.5X / 1.3X faster than

native with class B/C/D inputs

•Ext3: CRFS is 2.8X / 2.2X / 1.1X faster than

native with class B/C/D inputs

20ICPP 2011

Checkpoint Time (MPICH2)

9.3 X

1.3X

11 X

• Lustre: CRFS is 11X / 9.3X / 1.3X faster than

native with class B/C/D inputs

•Ext3: CRFS is 7X / 8X / 6.9X faster than native

with class B/C/D inputs

21ICPP 2011

Checkpoint Time (OpenMPI)

11.5 X

1.4 X

• Lustre: CRFS is 11.5X / 1.4X faster than native

with class B/D inputs

•Ext3: CRFS is 5.5X / 5.2X / 1.6X faster than

native with class B/C/D inputs

22ICPP 2011

CRFS: Multiplexing Scalability

•LU.D, vary number of processes per node.

•Run with MVAPICH2-1.6

•Checkpoint to Lustre w/o CRFS

CRFS effectively reduces node-level IO multiplexing contention

Diminish checkpoint writing overhead

~30% reduction

in ckpt time

23ICPP 2011

Checkpoint Completion Time

CRFS diminishes IO contentions

Reduce the completion waiting faster resumption of execution

Wide variation of

completion timeLU.C.64

•Run with MVAPICH2

• Introduction and Motivation

• Checkpoint Profiling and Analysis

• CRFS: A lightweight user-level Filesystem

• Performance Evaluation

• Conclusions and Future Work

24ICPP 2011

Outline

• Checkpoint Writing incurs intensive IO overhead

– Sheer amount of data, contentions from concurrent writes, wide

variation of write completion

• Existing optimizations are not portable, not generic

• CRFS: a user-level filesystem

 Portable: a user-level filesystem, work with any MPI stacks

without any modifications

 High Performance: write aggregation, reduced contention,

asynchronous bulk IO

 Generic: Optimizations inside filesystem, can work with any

MPI stacks / IO intensive applications

25ICPP 2011

Conclusions

• How to optimize inter-node concurrent IO

using CRFS

• How to extend CRFS to benefit other

generic IO intensive applications

26ICPP 2011

Future Work

27ICPP 2011

Thank you!

{ouyangx, rajachan, besseron, wangh, huangjia,

panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

http://mvapich.cse.ohio-state.edu

• PLFS [1] (Parall Log Filesystem)

– deal with N-1 sceanrio, cannot handle MPI system

level checkpoint (N-N)

• Optimizations inside MPI library:

– [2]: write aggregation at MPI and BLCR library

• require modifications in kernel module, not portable

– [3]: node-level buffering of data

• specific to only one MPI stack

28ICPP 2011

Related Work

[2] X. Ouyang, K. Gopalakrishnan, and D. K. Panda, “Accelerating Checkpoint Operation by Node-Level Write

Aggregation on Multicore Systems,” ICPP 2009.

[1] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate, “PLFS: a checkpoint

filesystemfor parallel applications,” in Proc. of SC ’09, 2009.

[3] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine, “The design and implementation of checkpoint/restart process fault

tolerance for open mpi,” in 12th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems, 2007.

