Reducing Diff Overhead in Software DSM Systems using RDMA Operations in InfiniBand

Ranjit Noronha and Dhabaleswar K. Panda Department of Computer Science and Engineering The Ohio State University

Outline

Introduction and Motivation

- Software DSM
- Modern computer networks
- Design and Implementation
 - Diff creation and Issues
 - Protocol Examples
 - Design Challenges
- Experiments
 - Application characteristics
 - Results
- Conclusions and Future Work

Software DSM

- Software DSM (SDSM)
 - HLRC/VIA (Rutgers), TreadMarks (Rice)
- Depends on user and software layer
- Depends on communication protocols provided by the system such as TCP, UDP, etc.
- Degraded performance because of false sharing and high overhead of communication
- Has scaling problems

HLRC

HLRC/VIA (Rutgers)

- Home Based Lazy Release Consistency Model
- Page Based DSM System
- Internal basic operations
 - Page
 - Diff
 - Lock

HLRC Programming Example

•Initial value of X = 0

•B is home node for page P containing X

Modern Interconnects

- InfiniBand, Myrinet, Quadrics
- Low Latency (InfiniBand 4.8 μs)
- High Bandwidth (InfiniBand 4X upto 10 Gbps)
- Programmable NIC
- User Level Protocols (VAPI, GM, Elan-4)
- Can deliver performance close to that of the underlying hardware
- RDMA Write/Read, Atomic Operations, Service Levels, Multicast

SDSM and Modern Networks

- DSM applications are communication intensive
- Latency critical (request messages)
- Bandwidth intensive (response messages)
- InfiniBand is a high-bandwidth/low-latency network
- Can InfiniBand be exploited to deliver better performance ?

HLRC and InfiniBand

Software DSM Requirements

R. Noronha and D. K. Panda Designing High Performance DSM Systems using InfiniBand Features. DSM Workshop, in conjunction with 4th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 04), April, 2004

Outline

- Introduction and Motivation
 - Software DSM
 - Modern computer networks
- Design and Implementation
 - Diff creation and Issues
 - Protocol Examples
 - Design Challenges
- Experiments
 - Application characteristics
 - Results
- Conclusions and Future Work

Diffing in HLRC

- Each page assigned a home node
- Execution divided into intervals
- Updates sent at the end of intervals in the form of diffs to the home node
- Create a run-length encoding of the dirty page and its clean copy
- Diffs sent to home node

Diff Issues

- Diffs can be fairly large
- Send diffs together
 - improve bandwidth
- Breakdown diffs
 - Earlier update
- Which approach is best ?

Terminology

- Default diff protocol
 - Called ORIG
 - Sends an individual diff, then waits for an ACK
- Protocol with packing/pipelining
 - Called PIPE
 - Can "pack" several diffs together
 - Multiple outstanding unacked diffs

ORIG protocol

- Node A arrives at a synchronization point
- Must send all diffs to home node
- For each page modified
 - Compare to twin and create a run-length encoding
 - Send to home node B
 - Home node applies diff and sends ACK to node A
 - Source continues with computing the next diff

PIPE protocol

- Node A arrives at a synchronization point
 - Starts computing diffs by comparing dirty pages to their clean copies
 - Creates and copies run-length encoding into a buffer X of predefined length
 - Continues to create diffs and copy them into buffer X until it is full
 - Sends this to the home node B
 - If there are additional buffers available, use them without waiting for an ACK from B
- Node B applies the diffs and sends an ACK back for the corresponding buffer

Design Challenges

Network Primitives

Pipeline Depth

Packed Diff Size

Network Primitives

- RDMA
 - No need to post a receive descriptor
 - Can write directly into destination processes memory
- Send/Receive
 - Need a posted descriptor
- RDMA v/s Send/Receive
 - RDMA shows better performance over InfiniBand

Pipeline Depth

- Number of packed diffs that may be sent before waiting for an ACK
- Longer pipeline
 - network lightly loaded
 - Shorter Pipeline
 - Network heavily loaded
- Practically depth=2 best
 - Can achieve sufficient overlap

Packed Diff Size

- Larger
 - Updates delayed
 - better bandwidth utilization
- Smaller
 - Updates earlier
 - Lower bandwidth utilization

Outline

- Introduction and Motivation
 - Software DSM
 - Modern computer networks
- Design and Implementation
 - Diff creation and Issues
 - Protocol Examples
 - Design Challenges
- Experiments
 - Application characteristics
 - Results
- Conclusions and Future Work

Experimental Setup

- HLRC/ VIA (Rutgers) modified to work with VAPI
- InfiniScale MTS2400 24 port switch
- Mellanox InfiniHost MT23108 DualPort 4X HCA's
- 16 node cluster
- 8 SuperMicro SUPER P4DL6
 - Dual Pentium Xeon 2.4 GHz
 - 512 MB memory
 - 133 MHz PCI-X bus
- 8 SuperMicro SUPER X5DL8-GG
 - I GB memory
 - 133 MHz PCI-X bus
- Linux 2.4.22 kernel

Applications

- 4 applications were evaluated (SPLASH-2)
 - Barnes
 - Integer Sort (IS)
 - Non-contiguous LU decomposition (LU)
 - Non-contiguous Ocean simulation (Ocean)
- Different communication patterns
- Communication intensive

Application Characteristics

- Barnes
 - N-body simulation using the hierarchical Barnes-HUT method
 - Sharing pattern irregular and true
- IS
 - Bucket Sort
 - Global array contains buckets
- LU
 - Factors a dense matrix into the product of a lower and upper triangular matrix
 - Exploits blocking for temporal locality on individual sub-matrices
- Ocean
 - Simulates large scale ocean movements based on eddy and boundary currents
 - Uses locks for synchronization

Diff Distribution

• LU and Ocean send a large number of diffs

•IS sends diffs of the order of 4K

Diff Size

Interval Distribution

 Each interval marks a synchronization point like a lock or barrier

• Ocean has the highest number of intervals

 Barnes and IS send a large number of diffs every interval

Diff Characteristics Summary

Barnes

- Few Small diffs
- Large diff burst size
- IS
 - Send few large diffs
 - Large diff burst size
- LU and Ocean
 - Large number of diffs
 - Small diffs
 - Smaller diff burst size

Diff Traffic Characteristics

- Average diff traffic per node generated by the application
- IS has the largest diff traffic

Overall Traffic Characteristics

• LU has considerable traffic in the network

Application Execution Time

35% reduction in execution time for LU

Remaining Bottlenecks

• Barrier wait time 45% for Barnes

Outline

- Introduction and Motivation
 - Software DSM
 - Modern computer networks
- Design and Implementation
 - Diff creation and Issues
 - Protocol Examples
 - Design Challenges
- Experiments
 - Application characteristics
 - Results
- Conclusions and Future Work

Conclusions

- Explored reducing diff overhead
- Diff packing and pipelining implemented
- Different applications evaluated
- Reduction in execution time upto 35%
- All applications benefited

Future Work

- Read diffs using RDMA Read
 - Node computes the diffs
 - Diff is stored
 - Other nodes read it on demand
- Investigate wait times
 - Efficient barrier
 - Effect of sequential phases

http://nowlab.cis.ohio-state.edu/

E-mail: {noronha, panda} @cse.ohio-state.edu

Backup Slides

Application Characteristics

				l
Application	Barnes	IS	LU	Ocean
Average Diff Traffic (MegaBytes)	1.83	29.55	10.9	9.16
Average number of Diffs	6060	7680	15114	14327.56
Average Diff Size (bytes)	317	4034	756.21	670.38
Average Number of Intervals	13	17	129	937
Average number of Diffs per interval	466.15	451.76	117.16	15.29
Average traffic including Diff Traffic (MegaBytes)	48	94.24	964.62	157.77