
Architecture for Caching Responses
with Multiple Dynamic
Dependencies in Multi-Tier Data-
Centers over InfiniBand

S. Narravula, P. Balaji, K. Vaidyanathan,
H.-W. Jin and D. K. Panda

The Ohio State University

Presentation Outline

� Introduction/Motivation

� Design and Implementation

� Experimental Results

� Conclusions

Introduction
� Fast Internet Growth

� Number of Users
� Amount of data
� Types of services

� Several uses
� E-Commerce, Online Banking, Online Auctions, etc

� Web Server Scalability
� Multi-Tier Data-Centers
� Caching – An Important Technique

Presentation Outline
� Introduction/Motivation

� Multi-Tier Data-Centers

� Active Caches

� Design and Implementation

� Experimental Results

� Conclusions

A Typical Multi-Tier Data-Center

Database
Servers

Clients

Application
Servers

Web
Servers

Proxy Nodes

Tier 0

Tier 1

Tier 2

Apache

PHP

WAN

SAN

InfiniBand
� High Performance

� Low latency
� High Bandwidth

� Open Industry Standard
� Provides rich features

� RDMA, Remote Atomic operations, etc

� Targeted for Data-Centers
� Transport Layers

� VAPI
� IPoIB

Presentation Outline
� Introduction/Motivation

� Multi-Tier Data-Centers

� Active Caches

� Design and Implementation

� Experimental Results

� Conclusions

Caching
� Can avoid re-fetching of

content
� Beneficial if requests

repeat
� Important for scalability
� Static content caching

� Well studied in the past
� Widely used

Front-End
Tiers

Back-End
Tiers

Number of
Requests
Decrease

Active Caching
� Dynamic Data

� Stock Quotes, Scores, Personalized Content, etc
� Complexity of content

� Simple caching methods not suited
� Issues

� Consistency
� Coherency

Proxy Node
Cache

Back-End
Data

User Request

Update

Cache Coherency

� Refers to the average staleness of the
document served from cache

� Strong or immediate (Strong Coherency)
� Required for certain kinds of data

� Cache Disabling

� Client Polling

Basic Client Polling *
Front-End Back-End

Request

Cache Hit

Cache Miss

Response

Version Read

* SAN04: Supporting Strong Cache Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. Narravula, et. Al.

Multiple Object Dependencies
� Cache documents contain multiple objects
� A Many-to-Many mapping

� Single Cache document can contain Multiple Objects
� Single Object can be a part of multiple Documents

� Complexity!!

Cache
Documents Objects

Client Polling
Front-End Back-End

Request

Cache Hit

Cache Miss

Response

Version Read
Single Check

Possible

Single Lookup counter essential for correct and efficient design

Objective

� To design an architecture that very

efficiently supports strong cache

coherency with multiple dynamic

dependencies on InfiniBand

Presentation Outline

� Introduction/Motivation

� Design and Implementation

� Experimental Results

� Conclusions

Basic System Architecture
Server Node

Mod

Server Node

Mod

Server Node

Mod

Server Node

Mod

Cooperation

Cache Lookup Counter maintained on the Application Servers

Proxy
Servers

Application
Servers

Basic Design
� Home Node based Client Polling

� Cache Documents assigned home nodes

� Proxy Server Modules
� Client polling functionality

� Application Server Modules
� Support “Version Reads” for client polling
� Handle updates

Many-to-Many Mappings
� Mapping of updates to dynamic objects
� Mapping of dynamic objects with Lookup

counters
� Efficiency

� Factor of dependency

UpdatesObjectsLookup
counters

Mapping of updates

� Non-Trivial solution
� Three possibilities

� Database schema, constraints and dependencies
are known

� Per query dependencies are known
� No dependency information known

Mapping Schemes
� Dependency Lists

� Home node based
� Complete dependency lists

� Invalidate All
� Single Lookup Counter for a given class of

queries
� Low application server overheads

Handling Updates

Database
Server

Ack (Atomic)

Application
Server

Application
Server

Application
Server

Update Notification

VAPI Send
Local

Search and
Coherent
Invalidate

HTTP
Request

HTTP
Response

DB Query (TCP)

DB Response

Presentation Outline
� Introduction/Motivation

� Design and Implementation

� Experimental Results

� Conclusions

Experimental Test-bed

� Cluster 1: Eight Dual 3.0 GHz Xeon processor nodes with 64-bit
133MHz PCI-X interface, 512KB L2-Cache and 533 MHz Front
Side Bus

� Cluster 2: Eight Dual 2.4 GHz Xeon processor nodes with 64-bit
133MHz PCI-X interface, 512KB L2-Cache and 400 MHz Front
Side Bus

� Mellanox InfiniHost MT23108 Dual Port 4x HCAs

� MT43132 eight 4x port Switch

� Mellanox Golden CD 0.5.0

Experimental Outline

� Basic Data-Center Performance
� Cache Misses in Active Caching
� Impact of Cache Size
� Impact of Varying Dependencies
� Impact of Load in Backend Servers

� Traces Used

� Traces 1-5 with increasing update rate

� Trace 6: Zipf like trace

Basic Data-Center Performance
Data-Center Throughput

0

5000

10000

15000

20000

Trace 2 Trace 3 Trace 4 Trace 5

Traces with Increasing Update Rate

T
P

S

No Cache Invalidate All Dependency Lists

• Maintaining Dependency Lists perform significantly well for all traces

Data-Center Response Time

0

1

2

3

4

5

6

Trace 2 Trace 3 Trace 4 Trace 5

Traces with Increasing Update Rate

R
es

p
o

n
se

 T
im

e
(m

s)

No Cache Invalidate All Dependency Lists

Cache Misses in Active Caching

• Cache misses for Invalidate All increases drastically with increasing
update rates

Cache Misses

0

20

40

60

80

100

120

Trace 2 Trace 3 Trace 4 Trace 5

Traces with Increasing Update Rate

C
ac

h
e

M
is

s
%

No Cache Invalidate All Dependency Lists

Impact of Cache Size

• Maintaining Dependency Lists perform significantly well for all traces
• Possible to cache a select few and still extract performance

Throughput Vs Cache Size

0

5000

10000

15000

20000

25000

100% 50% 10% 5% 1% 0.10% 0%

Relative Cache Size

T
P

S

Impact of Varying Dependencies

• Throughput drops significantly with increase in the average number of
dependencies per cache file

Effect of Varying Dependencies

0
2000
4000
6000
8000

10000
12000
14000
16000

x 2x 4x 8x 16x 32x 64x

Factor of Dependencies

T
P

S

Impact of Load in Backend Servers

• Our design can sustain high performance even under high loaded
conditions with a factor of improvement close to 22

Effect of Load

0
2000
4000
6000
8000

10000
12000
14000
16000

0 1 2 4 8 16 32 64

Compute Threads

T
P

S

No Cache Dependency List

Conclusions
� An architecture for supporting Strong Cache

Coherence with multiple dynamic
dependencies

� Efficiently handle multiple dynamic
dependencies
� Supporting RDMA-based Client polling

� Resilient to load on back-end servers

Web Pointers

http://nowlab.cis.ohio-state.edu/

E-mail: {narravul, balaji, vaidyana, jinhy, panda}
@cse.ohio-state.edu

NBC home page

Back-up Slides

Cache Consistency
� Non-decreasing views of system state
� Updates seen by all or none

User Requests

Proxy Nodes

Back-End Nodes

Update

Performance

• Receiver side CPU utilization is very low
• Leveraging the benefits of One sided communication

Throughput (RDMA Read)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1K 4K 16K 64K 256K

Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

5

10

15

20

25

Send CPU Recv CPU

Throughput (Poll) Throughput (Event)

RDMA based Client Polling *

• The VAPI module can sustain performance even with heavy load on the
back-end servers

DataCenter: Throughput

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

(T
P

S
)

No Cache IPoIB VAPI

* SAN04: Supporting Strong Cache Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. Narravula, et. Al.

Mechanism
� Cache Hit:

� Back-end Version Check
� If version current, use cache
� Invalidate data for failed version check
� Use of RDMA-Read

� Cache Miss
� Get data to cache
� Initialize local versions

Other Implementation Details
� Requests to read and update are mutually

excluded at the back-end module to avoid
simultaneous readers and writers accessing
the same data.

� Minimal changes to existing application
software

