
Architecture for Caching Responses 
with Multiple Dynamic 
Dependencies in Multi-Tier Data-
Centers over InfiniBand

S. Narravula, P. Balaji, K. Vaidyanathan,     
H.-W. Jin and D. K. Panda

The Ohio State University



Presentation Outline

� Introduction/Motivation

� Design and Implementation

� Experimental Results

� Conclusions



Introduction
� Fast Internet Growth

� Number of Users
� Amount of data
� Types of services

� Several uses
� E-Commerce, Online Banking, Online Auctions, etc

� Web Server Scalability
� Multi-Tier Data-Centers
� Caching – An Important Technique
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A Typical Multi-Tier Data-Center
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InfiniBand
� High Performance

� Low latency
� High Bandwidth

� Open Industry Standard
� Provides rich features

� RDMA, Remote Atomic operations, etc

� Targeted for Data-Centers
� Transport Layers

� VAPI
� IPoIB
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Caching 
� Can avoid re-fetching of 

content 
� Beneficial if requests 

repeat
� Important for scalability
� Static content caching

� Well studied in the past
� Widely used
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Active Caching
� Dynamic Data

� Stock Quotes, Scores, Personalized Content, etc
� Complexity of content

� Simple caching methods not suited
� Issues

� Consistency
� Coherency
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Cache Coherency

� Refers to the average staleness of the 
document served from cache

� Strong or immediate (Strong Coherency)
� Required for certain kinds of data

� Cache Disabling

� Client Polling



Basic Client Polling *
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* SAN04: Supporting Strong Cache Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. Narravula, et. Al.



Multiple Object Dependencies
� Cache documents contain multiple objects
� A Many-to-Many mapping

� Single Cache document can contain Multiple Objects
� Single Object can be a part of multiple Documents

� Complexity!!

Cache 
Documents Objects



Client Polling
Front-End Back-End

Request

Cache Hit

Cache Miss

Response

Version Read
Single Check

Possible

Single Lookup counter essential for correct and efficient design



Objective

� To design an architecture that very 

efficiently supports strong cache 

coherency with multiple dynamic 

dependencies on InfiniBand
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Basic System Architecture
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Basic Design
� Home Node based Client Polling

� Cache Documents assigned home nodes

� Proxy Server Modules
� Client polling functionality

� Application Server Modules
� Support “Version Reads” for client polling
� Handle updates



Many-to-Many Mappings
� Mapping of updates to dynamic objects
� Mapping of dynamic objects with Lookup 

counters
� Efficiency

� Factor of dependency

UpdatesObjectsLookup
counters



Mapping of updates

� Non-Trivial solution
� Three possibilities

� Database schema, constraints and dependencies 
are known

� Per query dependencies are known
� No dependency information known



Mapping Schemes
� Dependency Lists

� Home node based
� Complete dependency lists

� Invalidate All
� Single Lookup Counter for a given class of 

queries
� Low application server overheads



Handling Updates
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Experimental Test-bed

� Cluster 1: Eight Dual 3.0 GHz Xeon processor nodes with 64-bit 
133MHz PCI-X interface, 512KB L2-Cache and 533 MHz Front 
Side Bus

� Cluster 2: Eight Dual 2.4 GHz Xeon processor nodes with 64-bit 
133MHz PCI-X interface, 512KB L2-Cache and 400 MHz Front 
Side Bus

� Mellanox InfiniHost MT23108 Dual Port 4x HCAs

� MT43132 eight 4x port Switch

� Mellanox Golden CD 0.5.0



Experimental Outline

� Basic Data-Center Performance
� Cache Misses in Active Caching 
� Impact of Cache Size
� Impact of Varying Dependencies
� Impact of Load in Backend Servers

� Traces Used

� Traces 1-5 with increasing update rate

� Trace 6: Zipf like trace



Basic Data-Center Performance
Data-Center Throughput
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• Maintaining Dependency Lists perform significantly well for all traces
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Cache Misses in Active Caching

• Cache misses for Invalidate All increases drastically with increasing
update rates

Cache Misses
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Impact of Cache Size

• Maintaining Dependency Lists perform significantly well for all traces
• Possible to cache a select few and still extract performance

Throughput Vs Cache Size

0

5000

10000

15000

20000

25000

100% 50% 10% 5% 1% 0.10% 0%

Relative Cache Size

T
P

S



Impact of Varying Dependencies

• Throughput drops significantly with increase in the average number of
dependencies per cache file 

Effect of Varying Dependencies
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Impact of Load in Backend Servers

• Our design can sustain high performance even under high loaded
conditions with a factor of improvement close to 22

Effect of Load
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Conclusions
� An architecture for supporting Strong Cache 

Coherence with multiple dynamic 
dependencies

� Efficiently handle multiple dynamic 
dependencies
� Supporting RDMA-based Client polling

� Resilient to load on back-end servers



Web Pointers

http://nowlab.cis.ohio-state.edu/

E-mail: {narravul, balaji, vaidyana, jinhy, panda}
@cse.ohio-state.edu

NBC home page



Back-up Slides



Cache Consistency
� Non-decreasing views of system state
� Updates seen by all or none

User Requests
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Update



Performance

• Receiver side CPU utilization is very low
• Leveraging the benefits of One sided communication 

Throughput (RDMA Read)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1K 4K 16K 64K 256K

Message Size (bytes)

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

0

5

10

15

20

25

Send CPU Recv CPU

Throughput (Poll) Throughput (Event)



RDMA based Client Polling *

• The VAPI module can sustain performance even with heavy load on the
back-end servers

DataCenter: Throughput 
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* SAN04: Supporting Strong Cache Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. Narravula, et. Al.



Mechanism
� Cache Hit:

� Back-end Version Check
� If version current, use cache
� Invalidate data for failed version check
� Use of RDMA-Read

� Cache Miss
� Get data to cache
� Initialize local versions



Other Implementation Details
� Requests to read and update are mutually 

excluded at the back-end module to avoid 
simultaneous readers and writers accessing 
the same data.

� Minimal changes to existing application 
software


