Efficient Hardware Multicast Group Management over InfiniBand

Amith R. Mamidala, Hyun-Wook Jin and Dhabaleswar K. Panda

Department of Computer Science and Engineering
Ohio State University

{mamidala, jinhy, panda}@cse.ohio-state.edu
Presentation Outline

• Background
• Problem Statement
• Detailed Design
• Performance Evaluation
• Conclusions & Future Work
Background

- **MPI Collectives**
 - take advantage of network features
- **InfiniBand (IBA)**
 - H/W M cst Support
- **Efficient and Scalable Collectives**
 - J. Liu, A. Mamidala, D.K. Panda, "Fast and Scalable MPI-Level Broadcast using InfiniBand's Hardware Multicast Support", IPDPS 04
MPI_Bcast over H/W Mcst

Application Layer

MPI Layer

Network Layer

`MPI_Bcast (root, addr, size, datatype, comm)`

Communicator Object

Multicast Group Identifier (MGID)

H/W Mcst Grp

Collection of network ports to which the processes are attached
Given Port consults Multicast Forwarding Table to determine Ports to forward the pkt
In this example: Ports 4,5
Presentation Outline

- Background
- Problem Statement
- Detailed Design
- Performance Evaluation
- Conclusions & Future Work
Limitations

• Earlier study using single communicator
 - MPI_COMM_WORLD
 - Static initialization

• Need of supporting multiple communicator
 - Fluent, etc.
 - Dynamic Process Management (MPI-2)

• Efficient mechanism for supporting multiple communicator
 - H/W Mcst Groups constructed on the fly
 - involves an external management entity
InfiniBand H/W Mcst Grp Construction

1. Grp Create
2. Grp Join
3. Forwarding Table Update

Communication via Management Datagrams (MADs)

Proc:0
Proc:1
Proc:2
Proc:3
Proc:4

4. Notification of completion ?
5. Overhead ?

IBA Multicast Mgmt Entity
Research Challenges

• **Mapping Communicators to H/W Mcst Grps**
 - No explicit mechanism defined for notifying MPI
• **Overhead of mapping**
 - High Forwarding Table Update overhead
 - Especially critical for large communicator and cluster sizes
• **Can we develop an efficient framework for mapping MPI Communicators to H/W Mcst Grps?**
Presentation Outline

• Background
• Problem Statement
• Detailed Design
• Performance Evaluation
• Conclusions & Future Work
Design Alternatives

• Propose three design alternatives:
 - Basic approach
 • Notification
 • Incurs Forwarding Table Update overhead
 - Lazy approach
 • Overlapping Notification and Forwarding Table Update
 - H/W Mcst Grp Pool approach
 • Hiding Forwarding Table Update
 • No Notification phase required
Basic Approach

Step: 1
Grp Create/Join Req.

Step: 2
Multicast Ping Message Over new H/W Mcst Grp

Step: 3
Post Acks after Receiving Ping Message

Notification
Limitation

• Notification
 - MPI_Comm_create
 - Simple to implement

• Disadvantage
 - Notification is a blocking call
 - High overhead for large communicators
 • Forwarding Table Update

• Question
 - Can we overcome the high overhead of Forwarding Table Update?
Lazy Approach

• Step 1: Same as Earlier Approach
• Step 2: Notification
 - non blocking
 - Overlapping Forwarding Table Update
• Implementation
 - Root returns immediately after posting ping msg
 - Ack posting and collection done asynchronously
 - Time stamps stored in the communicator object
 - Ptp fall back for communication
Drawbacks

- Disadvantages:
 - Utility of H/W Mcst Grp reduced
 - Like to use it as soon as possible
 - Overlapping does not solve the problem

- Question:
 - Can we avoid the high overhead of the Forwarding Table Update to make H/W Mcst Grps readily available?
H/W Mcst Grp Pool Design

Step: 1
Initial H/W Mcst Grp Pool

Step: 2
Non-participating Nodes leave H/W Mcst Grp
Grp Leave Req
Multicast Mgmt Entity

Step: 3
Grp Create/Join Reqs.
Replenishing H/W Mcst Grp Pool
Benefits

• Advantages:
 - H/W M cst Grp can be immediately used
 - Most of the job out of the critical path

• Implementation
 - Notification required for newly replenished groups
 - The size of the H/W M cst Grp Pool can be tuned for different applications
Presentation Outline

• Background
• Problem Statement
• Detailed Design
• Performance Evaluation
• Conclusions & Future Work
Experimental TestBed

• Cluster of Intel Xeon 2.66 MHz, 512 KB L2 Cache, MT23108 IBA HCAs

• OpenSM: Multicast Mgmt Entity (Subnet Manager & Subnet Administrator)
Experiments

1. Effect of different parameters such as the number of outstanding MADs and transaction timeout values of OpenSM on notification
2. Latency of Basic H/W Mcst Grp Operations
3. Effective MPI_Bcast Latency for different iteration count

Comm. sizes

1. MPI_Comm_create

2. MPI_Bcast

Iter. Count

4. Effective MPI_Bcast Latency for different computation time

Comm. sizes

1. MPI_Comm_create

2. Computation

3. MPI_Bcast

1000 Iter.
Latencies of basic Multicast Grp Set-up operations

Effect of different parameters of OpenSM on multicast testing

Latency of basic set-up operations

- Latency of issue of multicast grp set-up operations much smaller compared to setting up routing entries
Effective MPI_Bcast Latency

- Multicast Grp pool improves effective latency by a factor of as much as 2.42 for 16 nodes and 4.8 for 32 nodes compared to Basic approach.
• Multicast Grp pool improves effective latency by a factor of as much as 1.95 for 16 nodes and 1.80 for 32 nodes compared to Basic approach.
Presentation Outline

- Background
- Problem Statement
- Detailed Design
- Performance Evaluation
- Conclusions & Future Work
Conclusions & Future Work

• Design Alternatives for efficiently mapping MPI Communicators to H/W Mcst Grps
• Three designs proposed:
 – Basic, Lazy and H/W Mcst Pool
 – H/W Mcst Pool design performs best
• Evaluated performance using OpenSM
• Future work: Application Level Evaluation (Fluent, Pallas)
• Evaluation with Gen2 verbs
Acknowledgements

Our research is supported by the following organizations

• Current Funding support by

 - Office of Science
 - NSF
 - intel.
 - Mellanox Technologies
 - Sun

• Current Equipment donations by

 - Mellanox Technologies
 - intel.
 - AMD
 - Sun
 - Apple
Web Pointers

http://www.cse.ohio-state.edu/~panda/
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
Questions ?