
Multi-Threaded UPC Runtime for GPU to
GPU communication over InfiniBand

Miao	 Luo,	 Hao	 Wang,	 	

&	 D.	 K.	 Panda	

Network-‐Based	 Compu2ng	 Laboratory	
Department	 of	 Computer	 Science	 and	 Engineering	

The	 Ohio	 State	 University,	 USA	

PGAS 2012

Outline

•  Introduction
• Motivation
•  Proposed Designs
•  Performance Evaluations
• Conclusion & Future Work

2

PGAS 2012

Outline

•  Introduction
• Motivation
•  Proposed Designs
•  Performance Evaluations
• Conclusion & Future Work

3

PGAS 2012

Introduction

•  Unified Parallel C (UPC)
– One of the most popular PGAS programming languages
– High-productivity and better applicability on hierarchical

architectures
–  Irregular parallelism

•  Graphics Processing Units (GPUs) Clusters:
– High peak performance
– Cost-efficiency
– OpenCL / CUDA
– High performance interconnects (i.e. InfiniBand)

•  UPC (PGAS) + CUDA (GPU)?
4

PGAS 2012

Outline

•  Introduction
• Motivation
•  Proposed Designs
•  Performance Evaluations
• Conclusion & Future Work

5

PGAS 2012

Motivation

6

UPC Thread 0:
cudaMalloc(&device_buffer);
tmp_send_buffer = upc_all_alloc(...);
…
cudaMemcpy(tmp_send_buffer,
device_buffer,...);
upc_barrier;
upc_memput();
upc_barrier;

UPC Thread 1:
cudaMalloc(&deviceBuffer);
temp_recv_buffer = upc_all_alloc(...);
…
upc_barrier;
upc_barrier;
cudaMemcpy(deviceBuffer,
tmp_recv_buffer, ...);

PGAS 2012

Motivation

7

UPC Thread 0:
cudaMalloc(&device_buffer);
tmp_send_buffer = upc_all_alloc(...);
…
cudaMemcpy(tmp_send_buffer,
device_buffer,...);
upc_barrier;
upc_memput();
upc_barrier;

UPC Thread 1:
cudaMalloc(&deviceBuffer);
temp_recv_buffer = upc_all_alloc(...);
…
upc_barrier;
upc_barrier;
cudaMemcpy(deviceBuffer,
tmp_recv_buffer, ...);

•  Complicated CUDA functions & temporary host buffer

•  Explicit synchronizations

•  Involvement of remote UPC thread: poor latency when remote is busy …

Make sure remote
temporary buffer

can be overwritten

Make sure data
already arrived

PGAS 2012

Motivation

8

UPC Thread 0:
cudaMalloc(&device_buffer);
tmp_send_buffer = upc_all_alloc(...);
…
cudaMemcpy(tmp_send_buffer,
device_buffer,...);
upc_barrier;
upc_memput();
upc_barrier;

UPC Thread 1:
cudaMalloc(&deviceBuffer);
temp_recv_buffer = upc_all_alloc(...);
…
upc_barrier;
upc_barrier;
cudaMemcpy(deviceBuffer,
tmp_recv_buffer, ...);

•  Can both device and host memory be part of shared space and be accessed
by the same UPC thread at the same time through UPC standard APIs?
•  How to provide efficient GPU to GPU communication based on RDMA
features?
•  How to ensure low-latency non-uniform data access while the destination is
busy?

PGAS 2012

Outline

•  Introduction
• Motivation
•  Proposed Designs
•  Performance Evaluations
• Conclusion & Future Work

9

PGAS 2012

GPU Global Address Space with
Host and Device Memory

10

..
upc_on_device();
/* allocated on device shared segment */
upc_all_alloc(THREADS, N*sizeof(int));
…

Host Memory

Private

Shared

Host Memory

Device Memory Device Memory

Private

Shared

Private

Shared

Private

Shared

shared space
on host memory

shared space
on device memory

N N

N N

upc_off_device();
/* allocated on host shared segment */
upc_all_alloc(THREADS, N*sizeof(int));
…

•  Extended APIs:
–  upc_on_device/upc_off_device

•  Return true device memory through Unified
Virtual Addressing (UVA)

PGAS 2012

Design for Remote Memory
Operation

•  After device memory becomes part of the global shared
space:
–  Accessible through standard UPC APIs
–  Data movement and communication over network both hidden

inside runtime

•  Goal: same or better performance compared to existing
UPC/CUDA device to device memory access operations

11

PGAS 2012

Design for Remote Memory
Operation

12

cudaMemcpy
RDMA_WRITE

cudaMemcpy

Device
Memory

Device
Memory

Host
Memory

Host
Memory

upc_memput for small and medium message through RDMA Fastpath
design

PGAS 2012

Design for Remote Memory
Operation

13

cudaMemcpy

RDMA_WRITE
cudaMemcpy

Device
Memory

Device
Memory

Host
Memory

Host
Memory

upc_memget for small and medium message through RDMA Fastpath
design

memget_upc_ack

PGAS 2012

Design for Remote Memory
Operation

14

cudaMemcpy

RDMA_READ

cudaMemcpy

Device
Memory

Device
Memory

Host
Memory

Host
Memory

upc_memput for large message

memput_upc_ack

Malloc &
pin-down

Registration Cache
Free-delayed buffer

PGAS 2012

Design for Remote Memory
Operation

15

cudaMemcpy

RDMA_READ

cudaMemcpy

Device
Memory

Device
Memory

Host
Memory

Host
Memory

upc_memput for large message

memput_upc_ack

Malloc &
pin-down

Overlapping of data movement and network
communication

cudaMemcpy

cudaMemcpy

PGAS 2012

Design for Remote Memory
Operation

16

cudaMemcpy

RDMA_WRITE
cudaMemcpy

Device
Memory

Device
Memory

Host
Memory

Host
Memory

upc_memget for large message

memget_upc_ack

Malloc &
pin-down

Malloc &
pin-down

memget_upc_reply

PGAS 2012

Helper Thread for Improved
Asynchronous Access

•  Remote UPC threads are busy?
•  Helper threads managed by user?

17

EP

EP

Busy

Busy

GPU

Kernel
Function

GPU
Device

Memory

Device Memory
Access

X

PGAS 2012

Helper Thread for Improved
Asynchronous Access

•  True runtime helper thread
–  Poll endpoints of busy UPC threads
–  Helper thread complete memory access
–  Multi-GPUs are supported by multi-endpoints

18

EP

Busy

HT

Busy

GPU

Kernel
Function

GPU
Device

Memory

Device Memory
Access

EP

PGAS 2012

United Communication Runtime
•  Designed and implemented with multi-threaded

Unified Communication Runtime (UCR):
– Support both MPI and PGAS programming models on

InfiniBand clusters
– Based on MVAPICH2 project

•  MVAPICH2-X 1.9a release:
–  http://mvapich.cse.ohio-state.edu
– OpenSHMEM support in current release
– UPC support in next release

19

PGAS 2012

Outline

•  Introduction
• Motivation
•  Proposed Designs
•  Performance Evaluations
• Conclusion & Future Work

20

PGAS 2012

Experimental Platform
•  The experiments are carried out on following

platform:
–  Four nodes, Each contains two sockets
–  Intel Xeon Quad-core Westmere CPUs operating at 2.53GHz and 12GB

of host memory
–  Each node has one Tesla C2050 GPU with 3GB DRAM
–  MT26428 QDR ConnectX HCAs (36Gbps)
–  Red Hat Linux 5.4, OFED 1.5.1, and CUDA Toolkit 4.0

•  Comparison to user level UPC/CUDA implementations

–  Naïve: explicity cudaMemcpy and cudaMalloc; temporary host buffers
–  Improved: multi-threaded UCR + our proposed designs

21

PGAS 2012

Micro-benchmark Evaluation
upc_memput latency

22

0
5

10
15
20
25
30
35
40

4 8 16 32 64 128 256 512

Ti
m

e
(u

s)

Message Size (byte)

Naïve

Improved

0
10
20
30
40
50
60
70
80
90

1K 2K 4K 8K 16K 32K 64K

Ti
m

e
(u

s)

Message Size (byte)

Naïve

Improved

0
100
200
300
400
500
600
700
800
900

64K 128K 256K 512K 1M

Ti
m

e
(u

s)

Message Size (byte)

Naïve

Improved

34% 47%

PGAS 2012

Micro-benchmark Evaluation
upc_memget

•  The local UPC thread calls upc memget operation to read a piece of 8K
byte data on the remote device memory

•  Remote UPC is busy with CUDA kernel function doing matrix multiplication
•  Kernel function is not calculating on the required data

23

0

100

200

300

400

500

600

0 50 100 150 200 250

Ti
m

e
(u

s)

Unbalanced Workload on Remote UPC Thread (N)

Naïve
Improved-no-helper
Improved-with-helper

PGAS 2012

Sample Application Evaluation

24

•  Matrix Multiplication with 4 GPU nodes
•  Communication between root node and other nodes happens before/after

computation in every iteration

0

100

200

300

400

500

600

700

N=100 N=300

Av
er

ag
e

Ti
m

e
(u

s)

Matrix Size (N x N)

UCR Communication Time
UCR Calculation Time
User Communication Time
User Calculation Time

34%

17%

PGAS 2012

Outline

•  Introduction
• Motivation
•  Proposed Designs
•  Performance Evaluations
• Conclusion & Future Work

25

PGAS 2012

Conclusion

•  Identify problems in current UPC/CUDA applications
•  A new multi-threaded UPC runtime is proposed:

–  GPU global address space
–  Design for remote memory access
–  Runtime helper thread for improved asynchronous access

•  Evaluation through micro-benchmarks and sample
benchmark:
–  47% for upc_memput
–  Helper thread micro-benchmark evaluation
–  17% ~ 34% improvement for a parallel matrix-multiplication

sample benchmark

26

PGAS 2012

Future Works

•  Adapting UPC/CUDA for irregular applications

•  Further study on the helper thread and work-stealing
based on multi-threaded UPC runtime at real
application level

27

PGAS 2012

	 Thank	 You!	
{luom,	 wangh,	 panda}@cse.ohio-‐state.edu	

Network-‐Based	 CompuFng	 Laboratory	
hJp://nowlab.cse.ohio-‐state.edu/

MVAPICH	 Web	 Page	
hJp://mvapich.cse.ohio-‐state.edu/ � 28

PGAS 2012

Matrix Multiplication

29

•  C[N][N] = A[N][N] ∗ B[N][N]
•  B is divided into 4 (the number of GPUs) matrix Bi[N][N/4] and Bi is

associated with UPC thread with thread ID i.
•  Kernel function: Ci[N][N/4] = A[N][N] ∗ Bi[N][N/4]
•  Ci will be sent to UPC thread 0

