Evaluating the Impact of RDMA on Storage I/O over InfiniBand

J Liu, DK Panda and M Banikazemi†

Computer and Information Science
The Ohio State University

†IBM T J Watson Research Center
Presentation Outline

• Introduction/Motivation
• RDMA Assisted iSCSI Overview
• Design and Implementation
• Performance Evaluation
• Conclusion
InfiniBand Overview

- Industry standard
- Interconnect for connecting processing nodes and I/O nodes
- High performance
 - Less than 5us latency
 - Over 840MB/s unidirectional Bandwidth
- InfiniBand clusters are becoming increasingly popular
Storage for InfiniBand Clusters

- Local storage
- Network storage
 - Network Attached Storage (NAS)
 - Storage Area Networks (SANs)
SAN for InfiniBand Clusters

- Fibre Channel (FC)
- SCSI RDMA Protocol (SRP)
- Internet SCSI (iSCSI)
FC and SRP

- **Fibre Channel (FC)**
 - Good performance
 - Requires new hardware (HBAs, switches)
 - Requires separate management infrastructure
- **SCSI RDMA Protocol (SRP)**
 - InfiniBand native protocol
 - No new hardware required
 - Requires implementation from scratch
 - Requires new management infrastructure
iSCSI

• Uses TCP/IP as the underlying transport layer
 - No additional hardware for hosts (InfiniBand supports IPoIB)
 - Relative less software development effort
 (Existing management infrastructure in TCP/IP can be reused)

• Performance may be an issue
 - High overhead in the TCP/IP stack
iSCSI Data Transfer: Read

- All communication through TCP/IP
- Multiple data packets may be necessary
- Flow control for data packets may be necessary
iSCSI Data Transfer: Write

- All communication through TCP/IP
- Multiple data packets may be necessary
- Flow control for data packets may be necessary
Problems with iSCSI

- Limited Performance because
 - Protocol overhead in TCP/IP
 - Interrupts are generated for each network packet
 - Extra copies when sending and receiving data
Improving iSCSI Performance

• Eliminating receiver side copies in the TCP/IP stack
• Direct data placement in HBA
 - Special hardware
 - Low compatibility
• iSCSI extension for RDMA
 - Special hardware (RNICs)
 - Standard interface (RDMA over IP)
• Using RDMA over InfiniBand
 - RDMA assisted iSCSI
Presentation Outline

- Introduction/Motivation
- RDMA Assisted iSCSI
- Design and Implementation
- Performance Evaluation
- Conclusion
RDMA Assisted iSCSI
Overview

• Combining IPoIB and RDMA over InfiniBand in iSCSI
 - iSCSI control PDUs go through TCP/IP
 - iSCSI data transfers use RDMA
 - IPoIB for compatibility
 - RDMA over InfiniBand for performance

• Reusing existing infrastructure
 - Reusing many existing IP based protocols
 - No additional hardware needed for hosts
iSCSI Data Transfer with RDMA: Read

- Requests carry buffer information (address, length, tags ...)
- All control transfer through TCP/IP
- All data transfer through InfiniBand RDMA
- No need for multiple data packets
- No flow control for data packets necessary
iSCSI Data Transfer with RDMA: Write

- Requests carry buffer information
- All control transfer through TCP/IP
- All data transfer through InfiniBand RDMA
- No need for multiple data packets
- No flow control for data packets necessary
Advantages of Using RDMA

- Improved performance
 - Much less protocol overhead (TCP/IP bypassed for data transfer)
 - No data copies in the protocol
 - Reduced number of interrupts at the client
Presentation Outline

- Introduction/Motivation
- RDMA Assisted iSCSI
- Design and Implementation
- Performance Evaluation
- Conclusion
Design Issues

- Memory Registration
- Session Management
- Reliability and Security
Memory Registration

• Memory needs to be registered before it can be used for RDMA in InfiniBand

• Memory registration cost is high
 - Targets can usually pre-registered all the memory to avoid the cost
 - More difficult for hosts (clients) because they do not have total control over the memory buffers
Techniques to Improve Memory Registration

• Memory Registration Cache (MRC)
 - Maintains a “cache” of registered buffer and de-register buffer in a lazy manner
 - Depends on buffer reuse
 - May not be effective for storage buffers

• Fast Memory Registration (FMR)
 - Divide registration into two steps (preparation and mapping)
 - Only mapping appears in the critical path
 - Supported in some InfiniBand implementations

• Zero-Cost Kernel Memory Registration (ZKMR)
 - Map physical memory to virtual address space in kernel and pre-register the mapped virtual address space
 - Do “virtual” to “mapped” address translation during communication (very fast)
 - Some limitations
Session Management

- Use TCP/IP exclusively for LOGIN phase
 - Reusing existing bootstrapping and target discovering protocols
- LOGIN phase negotiate the use of InfiniBand RDMA
 - Fall back on the original iSCSI if RDMA cannot be used
Reliability and Security

- **Reliability**
 - TCP/IP checksum may be insufficient for some applications
 - iSCSI supports CRC
 - No need to use CRC in RDMA assisted iSCSI because InfiniBand has end-to-end CRC

- **Security**
 - RDMA assisted iSCSI can take advantage of existing authentication protocols
 - However, IPSec cannot be used directly
Implementation

- Linux 2.4.18
- Based on Intel v18 iSCSI implementation
- InfiniBand Access Layer and IPoIB
- Ram disk based target implementation
- Kernel SCSI driver at the client
Presentation Outline

- Introduction/Motivation
- RDMA Assisted iSCSI
- Design and Implementation
- Performance Evaluation
- Conclusion
Experimental Testbed

- SuperMicro SUPER P4DL6 nodes (2.4 GHz Xeon, 400MHz FSB, 512K L2 cache)
- Mellanox InfiniHost MT23108 4X HCAs (A1 silicon), PCIX 66bit 133MHz
- Mellanox InfiniScale MT43132 switch
Buffered I/O used
RDMA can improve peak bandwidth from 97MB/s to over 400MB/s
16KB block size performs best
Impact of Read Ahead

- Prefetching has greater impact on the performance of RDMA assisted iSCSI
- RAW I/O used instead of buffered I/O
- RDMA improves performance for large block sizes
- RDMA reduces CPU utilization for large block sizes
Impact of Buffer Registration

- Registration cost significantly degrades performance
- RDMA is beneficial only when registration cost can be avoided/reduced
Conclusion

• RDMA assisted iSCSI over InfiniBand
 - Evaluating the use of RDMA in storage protocols
 • RDMA can significantly improve storage communication performance
 • Provide useful insight for other protocols such as iSER and SRP
 - A practical storage solution for InfiniBand clusters