
Design and Implementation of 
MPICH2 over InfiniBand with 

RDMA Support

J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, 
D. Ashton, D. Buntinas, W. Gropp, B. Toonen

Computer Science and Engineering, The Ohio State University

Ohio Supercomputer Center

Mathematics and Computer Science Division, Argonne National Laboratory



Presentation Outline

• Introduction and Motivation
• Background

– InfiniBand
– MPICH2
– MPICH2 RDMA Channel Interface

• Design and Optimization
– Basic Design and Optimization
– Zero Copy Design
– Performance Comparison

• Conclusion



Introduction

• InfiniBand is becoming popular for parallel 
computing
– High performance
– Many novel feature such as RDMA

• MPI is the de facto standard of writing 
parallel applications
– MPICH from Argonne is one of the most 

popular MPI implementation
– MPICH2 is the next generation of MPICH



Motivation

• Optimizing MPICH2 using InfiniBand 
RDMA operations
– Focus on MPI-1 functions

• Taking advantage of the new RDMA 
channel interface in MPICH2
– RDMA channel is a very simple interface
– But, can it achieve high performance?



Presentation Outline

• Introduction and Motivation
• Background

– InfiniBand
– MPICH2
– MPICH2 RDMA Channel Interface

• Design and Optimization
– Basic Design and Optimization
– Zero Copy Design
– Performance Comparison

• Conclusion



InfiniBand Overview

• Industry standard interconnect
• High performance

– Low latency
– High bandwidth

• Many novel feature
– RDMA
– Multicast, atomic operation, QoS, etc



InfiniBand RDMA 
• Sender directly 

accesses receiver’s 
memory

• Transparent to 
receiver side software

• Better performance 
than send/receive in 
current InfiniBand 
hardware

HCA

IB Fabric

Registered 
User-level Buffer

HCA

RDMA Descriptor

RDMA Model 

Registered 
User-level Buffer



MPICH2 Overview
• Successor of MPICH
• Supports both MPI-1 and MPI-2

– We focus on MPI-1 functions in this paper
• Completely new design

– Performance
– Flexibility
– Portability

• Porting can be done at different levels
– ADI3
– CH3
– RDMA Channel Interface



MPICH2 Implementation 
Structure

• We focus on implementing RDMA Channel 
Interface over InfiniBand

MPICH2MPICH2

ADI3ADI3

CH3CH3 Multi-MethodMulti-Method

Socket
Channel
Socket

Channel
SHMEM
Channel

SHMEM
Channel RDMA

Channel
RDMA

Channel

InfiniBandInfiniBand Sys V
Shared Memory

Sys V
Shared Memory SHMEMSHMEM



RDMA Channel Interface

• Very simple interface
– Three functions for process 

management, initialization and 
finalization

– Two functions for communication
• Put
• Get



Put and Get Functions
• A logically shared 

FIFO channel between 
sender and receiver

• Put writes into the 
channel

• Get reads from the 
channel

• Both functions accept 
a list of buffers

• Building blocks for all 
other communication

FIFO
Put Get

Put/Get Operations

Buffers

Buffer Pointers



Example Implementation of Put and 
Get with Globally Shared Memory

• Buffer pool, head 
and tail pointers in 
shared memory

• Put: Write data and 
advance head 
pointer

• Get: Read data and 
advance tail pointer

Get

Put

Tail Pointer

Head Pointer

Data

Empty



Presentation Outline

• Introduction and Motivation
• Background

– InfiniBand
– MPICH2
– MPICH2 RDMA Channel Interface

• Design and Optimization
– Basic Design and Optimization
– Zero Copy Design
– Performance Comparison

• Conclusion



Basic Design

• Based on the design for globally shared 
memory

• Buffer pool at the receiver
– Sender uses RDMA write
– Receiver uses local memory read

• Keep two copies of head and tail pointers
– Use RDMA write to make them consistent



Put in Basic Design

• Put:
– Determine available buffer space
– Copy data to pre-registered buffer
– Write data using RDMA write
– Adjust local head pointer
– Adjust remote head pointer using RDMA 

write



Get in Basic Design

• Get:
– Determine available new data
– Copy data to user buffer
– Adjust local tail pointer
– Adjust remote tail pointer using RDMA 

write



Optimizing the Basic Design

• Piggybacking Pointer Updates
– Combine data and remote head pointer 

update at the sender side
– Update remote tail pointer lazily at the 

receiver side
• Pipelining large messages

– Divide large message into chunks
– Overlap copy with RDMA operation



Experimental Testbed

• 8 SuperMicro SUPER P4DL6 nodes 
(2.4 GHz Xeon, 400MHz FSB, 512K 
L2 cache)

• Mellanox InfiniHost MT23108 4X 
HCAs (A1 silicon), PCI-X 64bit 
133MHz

• Mellanox InfiniScale MT43132 switch



Latency of Basic Design 
with Optimization

• Latency for Basic Design: 18.6 us 
• With optimization: 7.4 us

0
10

20
30

40
50

60
70

80
90

100

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Size (Bytes)

Ti
m

e 
(M

ic
ro

se
c) Basic Design

With Optimization



Bandwidth of Basic Design 
with Optimization

• Bandwidth for Basic Design: 230 MB/s
• With optimization: 520 MB/s

0

100

200

300

400

500

600

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

Size (Bytes)

B
W

 (M
B

/s
)

Basic Design
With Optimization



Impact of Pipelining Chunk 
Size on Bandwidth

• Chunk sizes around 16K give best performance

0

100

200

300

400

500

600

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48

57
6

Size (Bytes)

B
W

 (M
B

/s
)

64K
32K
16K
8K
4K
2K



Zero Copy Design
• Small messages are 

handling similar to 
basic design with 
optimization

• Large messages 
– Shared buffer pool 

used only for 
control messages

– Data transfer using 
RDMA Read

– No extra copies

Control Packet

Control Packet

RDMA Read

Put Start

Put Done

Get Start

Get Done



Bandwidth of Zero Copy 
Design

• Bandwidth for Basic Design with optimization: 520 MB/s
• Zero Copy: 857 MB/s

0

100

200

300

400

500

600

700

800

900

4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44
10

48
57

6

Size (Bytes)

B
W

 (M
B

/s
)

Basic with
Optimization
Zero Copy



Comparing RDMA Channel with 
CH3 (Latency and Bandwidth)

• Comparing with another implementation done at CH3 level
– Also does zero copy for large messages using RDMA Write

• RDMA Channel design with Zero Copy does very close to the 
CH3 level design

• Difference in bandwidth is due to the performance 
difference of RDMA write and RDMA read in InfiniBand

0

20

40

60

80

100

120

4 8 16 32 64
128
256
512
1024
2048
4096
8192
16384
32768
65536

Size (Bytes)

Ti
m

e 
(M

ic
ro

se
c) Zero Copy

CH3

0
100
200
300
400
500
600
700
800
900

1000

4 16 64

256
1024
4096
16384
65536
262144
104857

6

Size (Bytes)
B

W
 (M

B
/s

)

Zero Copy
CH3



Comparing RDMA Channel with 
CH3 (NAS Benchmarks)

• RDMA Channel zero copy design perform 
comparably to CH3 design

NAS Class A 4 Processes

0

200

400

600

800

1000

1200

1400

IS MG LU CG SP BT

M
op

s 
To

ta
l

Basic with Optimization
RDMA Channel Zero Copy
CH3

NAS Class B 8 Processes

0

500

1000

1500

2000

2500

IS MG LU CG

M
op

s 
To

ta
l

Basic with Optimization
RDMA Channel Zero Copy
CH3



Conclusions

• We presented a study of using RDMA to 
implement MPICH2 over InfiniBand

• We focus on RDMA Channel Interface in 
MPICH2
– Design, optimization and evaluation

• We show that RDMA Channel provides a 
simple yet powerful interface 
– We achieved 7.6 microsec latency and 857 

MB/s bandwidth



MVAPICH2 Software Release

• Based on MPICH2 RDMA Channel 
Interface
– Zero copy design

• Open source software
• Currently used by many organizations



Web Pointers

http://www.cis.ohio-state.edu/~panda/
http://nowlab.cis.ohio-state.edu/

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/

NBC home page

MVAPICH2 home page


