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Introduction

• InfiniBand is becoming popular for parallel 
computing
– High performance
– Many novel feature such as RDMA

• MPI is the de facto standard of writing 
parallel applications
– MPICH from Argonne is one of the most 

popular MPI implementation
– MPICH2 is the next generation of MPICH



Motivation

• Optimizing MPICH2 using InfiniBand 
RDMA operations
– Focus on MPI-1 functions

• Taking advantage of the new RDMA 
channel interface in MPICH2
– RDMA channel is a very simple interface
– But, can it achieve high performance?
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InfiniBand Overview

• Industry standard interconnect
• High performance

– Low latency
– High bandwidth

• Many novel feature
– RDMA
– Multicast, atomic operation, QoS, etc



InfiniBand RDMA 
• Sender directly 

accesses receiver’s 
memory

• Transparent to 
receiver side software

• Better performance 
than send/receive in 
current InfiniBand 
hardware
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MPICH2 Overview
• Successor of MPICH
• Supports both MPI-1 and MPI-2

– We focus on MPI-1 functions in this paper
• Completely new design

– Performance
– Flexibility
– Portability

• Porting can be done at different levels
– ADI3
– CH3
– RDMA Channel Interface



MPICH2 Implementation 
Structure

• We focus on implementing RDMA Channel 
Interface over InfiniBand
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RDMA Channel Interface

• Very simple interface
– Three functions for process 

management, initialization and 
finalization

– Two functions for communication
• Put
• Get



Put and Get Functions
• A logically shared 

FIFO channel between 
sender and receiver

• Put writes into the 
channel

• Get reads from the 
channel

• Both functions accept 
a list of buffers

• Building blocks for all 
other communication

FIFO
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Example Implementation of Put and 
Get with Globally Shared Memory

• Buffer pool, head 
and tail pointers in 
shared memory

• Put: Write data and 
advance head 
pointer

• Get: Read data and 
advance tail pointer

Get

Put
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Head Pointer
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Basic Design

• Based on the design for globally shared 
memory

• Buffer pool at the receiver
– Sender uses RDMA write
– Receiver uses local memory read

• Keep two copies of head and tail pointers
– Use RDMA write to make them consistent



Put in Basic Design

• Put:
– Determine available buffer space
– Copy data to pre-registered buffer
– Write data using RDMA write
– Adjust local head pointer
– Adjust remote head pointer using RDMA 

write



Get in Basic Design

• Get:
– Determine available new data
– Copy data to user buffer
– Adjust local tail pointer
– Adjust remote tail pointer using RDMA 

write



Optimizing the Basic Design

• Piggybacking Pointer Updates
– Combine data and remote head pointer 

update at the sender side
– Update remote tail pointer lazily at the 

receiver side
• Pipelining large messages

– Divide large message into chunks
– Overlap copy with RDMA operation



Experimental Testbed

• 8 SuperMicro SUPER P4DL6 nodes 
(2.4 GHz Xeon, 400MHz FSB, 512K 
L2 cache)

• Mellanox InfiniHost MT23108 4X 
HCAs (A1 silicon), PCI-X 64bit 
133MHz

• Mellanox InfiniScale MT43132 switch



Latency of Basic Design 
with Optimization

• Latency for Basic Design: 18.6 us 
• With optimization: 7.4 us
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Bandwidth of Basic Design 
with Optimization

• Bandwidth for Basic Design: 230 MB/s
• With optimization: 520 MB/s
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Impact of Pipelining Chunk 
Size on Bandwidth

• Chunk sizes around 16K give best performance
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Zero Copy Design
• Small messages are 

handling similar to 
basic design with 
optimization

• Large messages 
– Shared buffer pool 

used only for 
control messages

– Data transfer using 
RDMA Read

– No extra copies
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Bandwidth of Zero Copy 
Design

• Bandwidth for Basic Design with optimization: 520 MB/s
• Zero Copy: 857 MB/s
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Comparing RDMA Channel with 
CH3 (Latency and Bandwidth)

• Comparing with another implementation done at CH3 level
– Also does zero copy for large messages using RDMA Write

• RDMA Channel design with Zero Copy does very close to the 
CH3 level design

• Difference in bandwidth is due to the performance 
difference of RDMA write and RDMA read in InfiniBand
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Comparing RDMA Channel with 
CH3 (NAS Benchmarks)

• RDMA Channel zero copy design perform 
comparably to CH3 design
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Conclusions

• We presented a study of using RDMA to 
implement MPICH2 over InfiniBand

• We focus on RDMA Channel Interface in 
MPICH2
– Design, optimization and evaluation

• We show that RDMA Channel provides a 
simple yet powerful interface 
– We achieved 7.6 microsec latency and 857 

MB/s bandwidth



MVAPICH2 Software Release

• Based on MPICH2 RDMA Channel 
Interface
– Zero copy design

• Open source software
• Currently used by many organizations



Web Pointers

http://www.cis.ohio-state.edu/~panda/
http://nowlab.cis.ohio-state.edu/

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/

NBC home page

MVAPICH2 home page


