
Implementing Efficient and
Scalable Flow Control Schemes

in MPI over InfiniBand

Jiuxing Liu and Dhabaleswar K. Panda

Computer Science and Engineering
The Ohio State University

Presentation Outline

• Introduction and overview
• Flow control design alternatives
• Performance Evaluation
• Conclusion

Introduction

• InfiniBand is becoming popular for
high performance computing

• Flow control is an important issue in
implementing MPI over InfiniBand
– Performance
– Scalability

InfiniBand Communication
Model

• Different transport services
– Focus on Reliable Connection (RC) in this paper

• Queue-pair based communication model
• Communication requests posted to send or

receive queues
• Communication memory must be registered
• Completion detected through Completion

Queue (CQ)

InfiniBand Send/Recv and
RDMA Operations

User-level Buffer

Registered Buffer

HCA

IB Fabric

User-level Buffer

Registered Buffer

HCA

Send Descriptor Receive Descriptor

Send/Recv Model

User-level Buffer

Registered Buffer

HCA

IB Fabric

Registered
User-level Buffer

HCA

Send Descriptor

RDMA Model

•For Send/Recv, a send operation must be matched with a
pre-posted receive (which specifies a receive buffer)

End-to-End Flow Control
Mechanism in InfiniBand

• Implemented at the hardware level
• When there is no recv buffer posted

for an incoming send packet
– Receiver sends RNR NAK
– Sender retries

MPI Communication Protocols

Send

Receive

Eager Data

Eager Protocol Rendezvous Protocol

Rendezvous Start

Rendezvous Reply

Rendezvous Data

Rendezvous Finish

Send

Receive

Expected and Unexpected
Messages in MPI Protocols

• Expected Messages:
– Rendezvous Reply
– Rendezvous Data
– Rendezvous Finish

• Unexpected Message:
– Eager Data
– Rendezvous Start

Why Flow Control is Necessary

• Unexpected messages need resources
(CPU time, buffer space, etc)

• MPI itself does not limit the number
of unexpected messages
– Receiver may not be able to keep up
– Resources may not be enough

• Flow control (in the MPI
implementation) is needed to avoid
the above problems

• Send/Recv operations used for Eager
protocol and control messages in
Rendezvous protocol
– Can also exploit RDMA (not used in this

paper)
• RDMA used for Rendezvous Data
• Unexpected messages are from

Send/Recv

InfiniBand Operations used
for Protocol Messages

Presentation Outline

• Introduction and overview
• Flow control design alternatives
• Performance Evaluation
• Conclusion

Flow Control Design Outline

• Common issues
• Hardware based
• User-level static
• User-level dynamic

Flow Control Design Objectives

• Need to be effective
– Preventing the receiver from being

overwhelmed
• Need to be efficient

– Very little run time overhead
– No unnecessary stall of communication
– Efficient buffer usage

• How many buffers for each connection

Classification of Flow Control
Schemes

• Hardware based vs. User-level
– Hardware based schemes exploit InfiniBand

end-to-end flow control
– User-level schemes implements flow control in

MPI implementation
• Static vs. Dynamic

– Static schemes use a fixed number of buffers
for each connection

– Dynamic schemes can adjust the number of
buffers during execution

Hardware-Based Flow Control

• No flow control in MPI
• Rely on InfiniBand end-to-end flow

control
• Implemented entirely in hardware and

transparent to MPI

Advantages and Disadvantages of
the Hardware-Based Scheme

• Advantages
– Almost no run-time overhead at the MPI layer during

normal communication
– Flow control mechanism makes progress independent of

application
• Disadvantages

– Very little flexibility
– The hardware flow control scheme may not be the best

for all communication patterns
– Separation of buffer management and flow control

• No information to MPI to adjust its behavior
• Difficult to implement dynamic schemes

User-Level Static Schemes

• Flow control handled in MPI
implementation

• Fixed number of buffers for each
connection

• Credit-based scheme
– Piggybacking
– Explicit credit messages

Problems of the User-Level
Static Scheme

• More overhead at the MPI layer (for
credit management)

• Flow control progress depends on
application

• Buffer usage is not optimal, may result in:
– Wasted buffer for some connections
– Unnecessary communication stall for other

connections

User-Level Dynamic Schemes

• Similar to the user-level static
schemes

• Start with only a few buffers for
each connection

• Use a feedback based control
mechanism to adjust the number of
buffers based on communication
pattern

User-Level Dynamic Scheme
Design Issues

• How to provide information feedback
– When no credit, sender will put a message into a

“backlog”
– Message will be sent when more credits are available
– Tag messages to indicate if they have gone through the

backlog
• How to respond to feedback

– Increase the number of buffers for the connection if a
receiver gets a message that has gone through the
backlog

– Linear or exponential increase

Presentation Outline

• Introduction and overview
• Flow control design alternatives
• Performance Evaluation
• Conclusion

Experimental Testbed

• 8 SuperMicro SUPER P4DL6 nodes
(2.4 GHz Xeon, 400MHz FSB, 512K
L2 cache)

• Mellanox InfiniHost MT23108 4X
HCAs (A1 silicon), PCI-X 66bit
133MHz

• Mellanox InfiniScale MT43132 switch

Outline of Experiments

• Microbenchmarks
– Latency
– Bandwidth

• MPI Blocking and Non-blocking Functions
• Small and large messages

• NAS Benchmarks
– Running time
– Communication characteristics related to flow

control

0

2

4

6

8

10

12

14

16

4 8 16 32 64 128 256 512 1024

Size (Bytes)

Ti
m

e
(M

ic
ro

se
c)

Hardware Level
User Level Static
User Level Dynamic

MPI Latency

In latency tests, flow control usually is not an issue because
communication is symmetric

All schemes perform the same, which means that user level
overhead is very small in this case

Blocking MPI Calls

0
0.2
0.4
0.6
0.8

1
1.2

2 6 10 14 18 22 26 30 34 38 42 46 50
Window Size

Ba
nd

w
id

th
(M

B/
s)

Hardware Level
User Level Static
User Level Dynamic

Non-Blocking MPI Calls

0
0.2
0.4
0.6
0.8

1
1.2

2 6 10 14 18 22 26 30 34 38 42 46 50

Window Size
B

an
dw

id
th

(M
B/

s)

Hardware Level
User Level Static
User Level Dynamic

MPI Bandwidth (Prepost =
100 and Size = 4 Bytes)

With enough buffers, all schemes perform comparably for small
messages

Blocking and Non-blocking MPI calls performs comparably for
small messages because message are copied and sent eagerly

Blocking MPI Calls

0

0.2

0.4

0.6

0.8

1

1.2

2 6 10 14 18 22 26 30 34 38 42 46 50
Window Size

Ba
nd

w
id

th
 (M

B
/s

)

Hardware Level
User Level Static
User Level Dynamic

Non-Blocking MPI Calls

0

0.2

0.4

0.6

0.8

1

1.2

2 6 10 14 18 22 26 30 34 38 42 46 50

Window Size
Ba

nd
w

id
th

 (M
B

/s
)

Hardware Level
User Level Static
User Level Dynamic

MPI Bandwidth (Prepost = 10
and Size = 4 Bytes)

Buffers are not enough, which triggers flow control mechanisms
user level dynamic performs the best, user level static performs

the worst

Blocking MPI Calls

380

390

400

410

420

430

440

450

460

2 6 10 14 18 22 26 30 34 38 42 46 50
Window Size

B
an

dw
id

th
 (M

B/
s)

Hardware Level
User Level Static
User Level Dynamic

Non-Blocking MPI Calls

450

500

550

600

650

700

2 6 10 14 18 22 26 30 34 38 42 46 50

Window Size
Ba

nd
w

id
th

 (M
B/

s)

Hardware Level
User Level Static
User Level Dynamic

MPI Bandwidth (Prepost = 10
and Size = 32 KB)

Large messages use Rendezvous protocol which has two-way
traffic

All schemes perform comparably
Non-blocking calls give better performance

NAS Benchmarks (Pre-post =
100)

0.1

1

10

100

IS FT LU CG MG SP BT

R
un

ni
ng

 T
im

e
(s

)

Hardware-Level
User-Level Static
User-Level Dynamic

All schemes perform comparably when given enough buffers

NAS Benchmarks (Pre-post = 1)

2%
0%

171%

2%

20%

0% 0%
2% 1%

13%

6%
2% 0% 0%0% 0% 0% 0% 0% 1% 0%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

IS FT LU CG MG SP BT

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n

Hardware-Base
User-Level Static

User-Level Dynamic

Even with very few buffers, most applications still perform well
LU performs significant worse for hardware based and user-level

static
Overall, user-level dynamic gives best performance

Explicit Credit Messages for
User-Level Static Schemes

145310SP
289130BT
15951MG
42020CG
488059002LU
1930FT
3830IS
#Total Msg#ECMApp

Piggybacking is quite effective
In LU, the number of explicit credit messages is high

Maximum Number of Buffers for
User-Level Dynamic Schemes

7SP
7BT
6MG
3CG
63LU
4FT
4IS
#BufferApp

Almost all applications only need a few (less than 8) buffers per
connection for optimal performance

LU requires more buffers

Conclusions
• Three different flow control schemes for

MPI over InfiniBand
• Evaluation in terms of overhead and buffer

efficiency
• Many applications (like those in NAS)

require a small number of buffers for each
connection

• User-Level Dynamic Scheme can achieve
both good performance and buffer
efficiency

Future Work

• More application level evaluation
• Evaluate using larger scale systems
• Integrate the schemes with our

RDMA based design for small
messages

• Exploit the recently proposed Shared
Receive Queue (SRQ) feature

Web Pointers

http://www.cis.ohio-state.edu/~panda/
http://nowlab.cis.ohio-state.edu/

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/

NBC home page

MVAPICH home page

