
Designing Truly One-Sided MPI-2 RMA
Intra-node Communication on Multi-core

Systems

Ping Lai Sayantan Sur Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University, USA

Introduction

•  Scientific Applications
–  Earthquake Simulation, Weather

prediction, computational fluid
dynamics etc.

–  Use HPC systems to push
boundaries of our understanding of
nature

•  Consume millions of hours
on supercomputers world
wide

•  Most applications use MPI
parallel programming model

2

Shakeout Earthquake Simulation
Visualization credits: Amit Chourasia,
Visualization Services, SDSC
Simulation credits: Kim Olsen et. al. SCEC,
Yifeng Cui et. al., SDSC

3

Commodity Multi-core Processors
Single Core Dual Core Quad Core Eight Core Twelve Core Many Core Era

Year 2000 - 2003 Year 2003 - 2010 Future?

•  Communications inside the node (intra-node)
becoming increasingly important

•  Going forward, we need to deal with several issues:
–  Communication and computation overlap
–  Synchronization overheads
–  Cache misses (dependence on scarce memory bandwidth)

4

The promise of MPI-2 RMA

•  MPI-2 RMA model holds much promise for multi-core
•  Communication and computation overlap

– Non-blocking data moving primitives – Put, Get, Accumulate
•  Synchronization overheads

–  Two different synchronization methods – Active, Passive
–  Active synchronization can use sub-groups
–  Passive synchronization can help irregular patterns

•  Cache misses
– MPI Implementations can strive to reduce message copies

and to the extent possible reduce cache misses

5

Outline

•  Introduction

•  Problem Statement

•  Proposed Design

•  Experimental Results & Analysis

•  Conclusions & Future Work

6

The state of current MPI-2
implementations and Applications

•  Scientific applications tend to evolve slowly
•  Slow to adopt MPI-2
•  Since not many scientific applications do not use

RMA, implementers do not focus on it
– RMA for intra-node implemented on top of two-sided

•  Portability
•  Speed of development

•  Two-sided implementations do not provide promised
benefits of RMA model
–  As a result application developers tend not to use it

•  Deadlock!

7

Intra-node One-sided Communication

Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

Core 6 Core 7

Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

Core 6 Core 7

COPY SRC DST SRC DST

•  User-level shared memory techniques lead to two copies
•  One copy methods

–  Kernel based (LiMIC2, KNEM)
–  On-board DMA engines, such as Intel I/OAT

8

Problem Statement

•  Can we design “true” one-sided support for MPI-2
RMA operations?
–  Can it improve communication and computation overlap?

–  Can it reduce synchronization overheads?

–  Can it reduce cache misses?

•  Can real applications benefit from this true one-
sided operations?

9

Outline

•  Introduction

•  Problem Statement

•  Proposed Design

•  Experimental Results & Analysis

•  Conclusions & Future Work

10

Basic Approaches for Intra-node
Communication

•  Shared memory approach
–  Communicating processes share a buffer
–  Two copies : sender copy-in; receiver copy-out

– Good for small messages

•  Kernel assisted direct-copy approach
–  Kernel directly copies the data from src to dst

–  One copy, but has kernel overhead

–  Publicly available modules
•  Purely using kernel-assisted copy : LiMIC2

•  Using both kernel-assisted and I/OAT-assisted copy: KNEM

11

Design Goals
Origin process Target process

start

put

get

complete

post

wait

user program user program MPI lib MPI lib

access
epoch

exposure
epoch

•  Realize true one-sided synchronization and data transfer

•  Design using MVAPICH2 code base

12

One-Sided Synchronization Design

•  Pair-wise shared memory for “post” and “complete”
–  Bit vectors

•  Shared memory read and write for communication

•  No send/recv operations needed

13

One-Sided Data Transfer Design

•  Step 1: get information about the own window

•  Step 2: exchange window information among intra-node
processes

•  Step 3: direct copy as needed – use kernel or I/OAT

14

Design Issues and Solutions

•  Lock buffer pages during the copy
– Use get_user_pages
–  Both src and dst buffers are locked for I/OAT

–  Only target window is locked for basic kernel module

•  Locking cost is high
–  Enhancement: cache the locked window pages

•  I/OAT completion notification
–  I/OAT returns cookie for user to poll completion

–  Frequent polling is not good

–  Only poll before origin writes “complete” to target

MVAPICH2 and MVAPICH2-LiMIC2
•  MVAPICH2

–  High-performance, scalable, and fault-tolerant MPI library for InfiniBand/
 10GigE/iWARP and other RDMA enabled interconnects
–  Developed by Network-Based Computing Laboratory, OSU
–  Being used by more than 1,150 organizations world wide, including many of

the top 500 supercomputers (Nov’ 09 ranking)
•  5th ranked NUDT Tianhe –71,680-core system
•  9th ranked Ranger system at Texas Advanced Computing Center (TACC)

–  Current release versions use two-sided based approach for intra-node RMA
communication

–  Proposed design will be incorporated in MVAPICH2

•  MVAPICH2-LiMIC2
–  LiMIC2 is used for two-sided large message intra-node communication
–  Developed by Hyun-Wook Jin at Konkuk University, Korea

http://sslab.konkuk.ac.kr/
15

http://mvapich.cse.ohio-state.edu/

16

Outline

•  Introduction

•  Problem Statement

•  Proposed Design

•  Experimental Results & Analysis

•  Conclusions & Future Work

17

Experimental Setup
•  Multi-core Test bed

–  Type A
•  Intel Clovertown, support I/OAT

•  Dual-socket quad-core Xeon E5345 processors (2.33 GHz)

•  Each pair of cores share L2 cache

•  Inter-socket, intra-socket, shared cache intra-node communication

–  Type B
•  Intel Nehalem

•  Dual-socket quad-core Xeon E5530 processors (2.40 GHz)

•  Exclusive L2 cache

•  Inter-socket, intra-socket intra-node communication

–  Type C
•  AMD Barcelona

•  Quad-socket quad-core Opteron 8530 processors

•  Exclusive L2 cache

•  Inter-socket, intra-socket intra-node communication

18

Experiment Overview
•  Basic latency & bandwidth performance

•  More micro benchmarks
–  Reduced process skew effect

–  Increased communication/computation overlap

–  Improved scalability

–  Decreased cache misses

•  Application level performance

•  Legend
–  Original: current design in MVAPICH2

–  T1S-kernel: proposed design using basic kernel module

–  T1S-i/oat: proposed design using I/OAT-assisted module

–  MPICH2: two-sided based ; shared-memory based send/recv

–  OpenMPI: two-sided based; KNEM large message send/recv

19

Intra-socket Get Latency on Intel
Clovertown

small message latency (usec) medium message latency (usec) large message latency (usec)

•  T1S-kernel improves small and medium message latency up to 39%

•  T1S-i/oat design improves latency of very large messages up to 38%

•  Similar results for put latency

20

Get Bandwidth on Intel Clovertown
Inter-socket bandwidth (Mbytes/sec)

•  T1S-kernel design improves
medium message BW

•  T1S-i/oat starts gaining
benefit beyond 256 KB

•  Put has similar performance

Intra-socket bandwidth (Mbytes/sec)

Shared-cache bandwidth (Mbytes/sec)

21

Get Bandwidth on Intel Nehalem
Inter-socket bandwidth (Mbytes/sec)

•  T1S-kernel design improves medium message BW

•  Put has similar performance

Intra-socket bandwidth (Mbytes/sec)

22

Get Bandwidth on AMD Barcelona
Inter-socket bandwidth (Mbytes/sec)

•  T1S-kernel design improves medium message bandwidth

•  Put has similar performance

Intra-socket bandwidth (Mbytes/sec)

23

Reduced Process Skew

•  New designs remove dependency, more robust to process skew

Matrix size no comp 32x32 64x64 128x128 256x256

Original 3404 3780 6126 27023 194467

T1S-kernel 3365 3333 3398 3390 3572

T1S-i/oat 2291 2298 2310 2331 2389

Latency (usec) of 16 put with increasing process skew (message size = 256KB)

Target process

put
put

post

wait

Origin process

start

put

complete

…

…

16 put

computation
(matrix
multiplication)

 Measured
latency (usec)

24

Increased Communication and
Computation Overlap

•  Overlap = (Tcomm + Tcomp – Ttotal)/Tcomm

-  If Tcomp = Ttotal, overlap = 1; fully overlapped

-  If Tcomp + Tcomm = Ttotal, overlap = 0; no overlap

•  Experiment design for measuring overlap at origin

target process

put
put

post

wait

origin process

start

put

complete
…

…

16 put

Tcomm
(including
start and
complete)

computation Tcomp >= Tcomm

Ttotal

Tcomm is measured
in advance

25

Origin Side Overlap
Overlap with varying message size (Tcomp=1.2 Tcomm)

•  I/OAT based design provides close to 90% overlap
-  Offload data movement to DMA engine

-  Release the CPU for computation

Overlap with varying computation time (msg size=1MB)

26

Target Side Overlap
Overlap with varying message size (Tcomp=1.2Tcomm)

•  Similar benchmark as previous benchmark
- Insert computation at the target

•  New designs provide up to 100% overlap
-  Origin does the communication (message copy)

-  Target does the computation simultaneously

27

Reduced Synchronization Cost
Synchronization time with multiple origin processes

•  New designs decouple origin and target

- Target is more capable of handling more origin processes

Origin 0 target

start post

wait

Origin 1

complete

start

complete

sync
time

28

Decreased Cache Misses

•  Cache misses during the aggregated bandwidth test
- Seven origin processes and one target

•  T1S-i/oat has the least cache misses

•  T1S-kernel also reduces cache misses a lot

29

Application Performance
Performance with varying data sets (32 processes) Weak scaling performance (128x128x128 elements per process)

•  AWM-Olsen: stencil-based earthquake simulation application
-  Nearest-neighbor communication; performs on 3-dimensional data set

-  Modified it to use MPI-2 one-sided semantics
-  S. Potluri, P. Lai, K. Tomko, S. Sur, Y. Cui, M. Tatineni, K. Schulz,W. Barth, A. Majumdar and D. K. Panda,

“Quantifying Performance Benefits of Overlap using MPI-2 in a Seismic Modeling Application”, International
Conference on Supercomputing (ICS) 2010, Tsukuba, Japan

•  New designs show 10% improvement for larger problem sizes

30

Outline

•  Introduction

•  Problem Statement

•  Proposed Design

•  Experimental Results & Analysis

•  Conclusions & Future Work

31

Conclusions & Future Work
•  We designed and implemented truly one-sided intra-node

communication
–  one-sided synchronization

–  one-sided data transfer
•  Basic kernel-assisted approach

•  I/OAT-assisted approach

•  Evaluated the performance on three multi-core systems
(Intel Clovertown, Intel Nehalem, AMD Barcelona)
–  New designs offer better performance in terms of latency,

bandwidth, communication and computation overlap, cache misses
and application level benefits etc.

•  Future work

–  Evaluate on other platforms and do large-scale evaluations

–  Include in public MVAPICH2 release

32

 Thank You!
{laipi, surs, panda}@cse.ohio-state.edu

jinh@konkuk.ac.kr

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/
MVAPICH Web Page

http://mvapich.cse.ohio-state.edu/�
System Software Lab

http://sslab.konkuk.ac.kr �

