Unifying UPC and MPI Runtimes: Experience with MVAPICH

Jithin Jose Miao Luo Sayantan Sur D. K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering
The Ohio State University, USA
Introduction

- UPC and PGAS concepts are gaining interest
- Exascale programming model roadmap: MPI + “X”
- Is “X” == UPC? Maybe!
- MPI has been around for many years
 - Hundreds of man years invested in scientific software
 - Cannot afford to re-implement all this in PGAS
- InfiniBand – open standard, fast, scalable
 - MPI (MVAPICH, MVAPICH2) optimized to the hilt
 - Not productive to re-implement it for PGAS
- Must allow incrementally optimizing apps with UPC
- An unified runtime will be a first step in this direction
The Need for a Unified Runtime

- Deadlock when a message is sitting in one runtime, but application calls the other runtime
- Current prescription to avoid this is to barrier in one mode (either UPC or MPI) before entering the other runtime
- Bad performance!!
Coercing UPC over MPI not Optimal

• MPI does not provide Active Messages
 – AMs critical to UPC compilation and performance
 – Simulating AMs over MPI leads to performance loss
 – Not going to be included in MPI-3

• MPI RMA model for non cache-coherent machines
 – Penalizes vast majority of cache coherent machines
 – MPI-3 considering a proposal to support both cache-coherent and non cache-coherent machines (will take time)

• MPI will not support instant teams
 – Communicators in MPI require group communication

• Path forward: unify runtimes, not programming models
Outline

• Introduction

• Problem Statement

• Proposed Design

• Experimental Results & Analysis

• Conclusions & Future Work
Problem Statement

• Can we design a communication library for UPC?
 - Scalable on large InfiniBand clusters
 - Provides equal or better performance than existing runtime

• Can this library support both MPI and UPC?
 - Individually, both with great performance
 - Simultaneously, with great performance and less memory
Outline

• Introduction
• Problem Statement
• Proposed Design
• Experimental Results & Analysis
• Conclusions & Future Work
Overall Approach

- Unified runtime provides APIs for MPI and GASNet
- **INCR** (Integrated Communication Runtime)
The INCR Interface

• Different AM APIs based on size for optimization
 – Send short AM without arguments
 – Short AM (no data payload)
 – Medium AM (bounce buffer using RDMA FP)
 – Large AM (RDMA Put, on-demand connections)

• GASNet Extended interface for efficient RMA
 – Inline put
 – Put (may be internally buffered)
 – Put bulk (send buffer will not be touched, no buffering)
 – Get (RDMA Read)
Unified Implementation

- All resources are shared between MPI and UPC
 - Connections, buffers, memory registrations
 - Schemes for establishing connections (fixed, on-demand)
 - RDMA for large AMs and for PUT, GET
Various Configurations for running UPC and MPI Applications

Pure MPI Applications
- MVAPICH - MPI Standard Interface
- MVAPICH-Aptus Runtime
- InfiniBand Network

UPC Compiler
- Pure UPC Applications
- GASNet Interface and UPC Runtime
- InfiniBand Network

GASNet Interface and UPC Runtime
- GASNet IBVerbs Runtime
- InfiniBand Network

GASNet-MPI
- GASNet Interface and UPC Runtime
- InfiniBand Network

GASNet-IBV
- Pure UPC Compiler
- GASNet Interface and UPC Runtime
- InfiniBand Network

GASNet Interface and UPC Runtime
- Pure UPC Compiler
- GASNet-MPI Runtime
- InfiniBand Network

GASNet-MPI
- GASNet Interface and UPC Runtime
- InfiniBand Network

GASNet-INCR
- GASNet Interface and UPC Runtime
- InfiniBand Network

Our Contribution
- MVAPICH-INCR Implementation
- MVAPICH-Aptus Runtime
- InfiniBand Network

Conclusion
Outline

• Introduction
• Problem Statement
• Proposed Design
• Experimental Results & Analysis
• Conclusions & Future Work
MVAPICH and MVAPICH2 Software

• MVAPICH and MVAPICH2
 - High-performance, scalable, and fault-tolerant MPI library for InfiniBand/10GigE/iWARP and RDMA over Converged Enhanced Ethernet (RoCE)
 - Developed by Network-Based Computing Laboratory, OSU
 - 45,000 direct downloads from OSU site
 - Included in InfiniBand OFED, RedHat, SuSE etc.
 - Being used by more than 1,275 organizations worldwide, including many of the top 500 supercomputers (Jun’10 ranking)
 • 6th ranked 81,920 core (Pleiades) at NASA
 • 7th ranked 71,680 core (Tianhe-1) at NUDT, China
 • 11th ranked 62,976 core (Ranger) at TACC
 • 34th ranked 18,224 core (Juno) at LLNL
 - Proposed design will be incorporated in MVAPICH2 for public release

• MVAPICH Aptus runtime
 - Designed as a hybrid of Unreliable Datagram, Shared Receive Queues, Extended Reliable Connection (XRC), RDMA Fast Path
 - Designs will be integrated into MVAPICH2
Experimental Setup

• MVAPICH version 1.1 extended to support INCR
• Berkeley GASNet version 2.10.2 (--enable-pshm)
• Experimental Testbed
 - Type 1
 • Intel Nehalem (dual socket quad core Xeon 5500 2.4GHz)
 • ConnectX QDR InfiniBand
 - Type 2
 • Intel Clovertown (dual socket quad core Xeon 2.33GHz)
 • ConnectX DDR InfiniBand
 - Type 3
 • AMD Barcelona
 • Quad-socket quad-core Opteron 8530 processors
 • ConnectX DDR InfiniBand
Microbenchmark: upc-memput

- Cluster #1 used for these experiments
- GASNet-INCR performs identically with GASNet-IBV
- Comparatively GASNet-MPI performs much worse
- Mismatch of Active Message semantics
 - Message queue processing overheads
Microbenchmark: upc_memget

- GASNet-INCR performs identically with GASNet-IBV
- Due to mismatch of AM semantics with MPI leads to worse performance
• UPC “hello world” program
• GASNet-IBV establishes all-to-all reliable connections
 • Not scalable (may be improved in future release)
• GASNet-INCR best scalability due to inherent Aptus design
• Cluster #2 used for this experiment
Evaluation using UPC NAS Benchmarks

- GASNet-INCR performs equal or better than GASNet-IBV
- 10% improvement for CG [B, 128]
- 23% improvement for MG [B, 128]
- Cluster #3 used for these experiments
Evaluation using Hybrid NAS-FT

- Modified NAS FT UPC all-to-all pattern using MPI_Alltoall
- Truly hybrid program
- 34% improvement for FT (C, 128)
- Cluster #3 used for this experiment
Conclusions and Future Work

- Integrated Communication Runtime (INCR): supports MPI and UPC simultaneously
- Promising: MPI communication not harmed and UPC communication not penalized
- No need for programmer to barrier between UPC and MPI modes, as is current practice
- Pure UPC NAS: 10% improvement CG (B, 128), 23% improvement MG (B, 128)
- MPI+UPC FT: 34% improvement for FT (C, 128)
- Public release with MVAPICH2 coming soon
Thank You!

{jose, luom, surs, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/