LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster

H.-W. Jin, S. Sur, L. Chai, and D. K. Panda

Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University {jinhy,surs,chail,panda}@cse.ohio-state.edu

Contents

- Introduction
- Existing Intra-Node Communication Mechanisms
- Our Approach: LiMIC
- Design and Implementation Issues
- Performance Evaluation
- Conclusions and Future Work

Introduction

- Cluster of Workstations
 - Symmetric multi-processor (SMP) nodes
 - commonly 2 to 8 processors
 - up to 256 processors (e.g., NASA Columbia)
 - High-speed interconnects
 - InfiniBand, Myrinet, Quadrics, etc.
- Message Passing Interface (MPI)
 - De facto standard for writing parallel applications

Intra-Node Communication

Contents

- Introduction
- Existing Intra-Node Communication Mechanisms
- Our Approach: LiMIC
- Design and Implementation Issues
- Performance Evaluation
- Conclusions and Future Work

Switch-Level Loopback

NIC-Level Loopback

User-Space Shared Memory

Contents

- Introduction
- Existing Intra-Node Communication Mechanisms
- Our Approach: LiMIC
- Design and Implementation Issues
- Performance Evaluation
- Conclusions and Future Work

Kernel-Based Memory Mapping

Node 0

OHIO SIATE Node n

Our Approach: LiMIC

(Linux Kernel Module for MPI Intra-Node Communication)

Contents

- Introduction
- Existing Intra-Node Communication Mechanisms
- Our Approach: LiMIC
- Design and Implementation Issues
- Performance Evaluation
- Conclusions and Future Work

Design and Implementation Issues

- Kernel Module Based Design
- Portable and MPI Friendly Interface
- Memory Mapping Mechanism
- Copy Mechanism
- MPI Message Matching

Kernel Module Based Design

- Linux Run-Time Loadable Kernel Module
 - No kernel modification
 - Portable across major versions
- LiMIC Kernel Module Can Be Either:
 - An independent module with device driver
 - Or extensions of device driver

Portable and MPI Friendly Interface

- Independent Interface on:
 - Communication library
 - MPI implementation
- Interfaces
 - LiMIC_Isend (dest, tag, context_id, buf, len, req)
 - LiMIC_Irecv (src, tag, context_id, buf, len, req)
 - LiMIC_Wait (src/dest, req)
 - Etc.
- Interfaces trap into the kernel internally by calling ioctl() system call

Memory Mapping Mechanism

Copy Mechanism

- Design Alternatives:
 - Copy on function calls of receiver
 - receiver dependent progress
 - Copy on wait function call
 - memory pin-down on both sender and receiver
 - Copy on send and receive calls
 - better progress
 - less resource usage
 - not prone to skew between processes

MPI Message Matching

- MPI_Init
 - Exchange node information for every processes
- Message Matching Based on Source
 - Source in the same node
 - Source in a different node
 - Source in the same node and MPI_ANY_TAG
 - MPI_ANY_SOURCE and MPI_ANY_TAG
 - receive request is posted in the MPI queue
 - progress engine calls LiMIC_Iprobe
 - If message matches with request, calls LiMIC_Irecv

MVAPICH: MPI over InfiniBand

- http://nowlab.cis.ohio-state.edu/projects/mpi-iba/
- Powering Supercomputers in the TOP 500 List
 - 7th, 1100-node dual Apple Xserve 2.3 GHz cluster at Virginia Tech
 - 98th, 288-node dual Opteron 2.2 GHz cluster at United Institute of Informatics Problems (Belarus)
- Being Used by More than 220 Organizations World-Wide
- Latest Release
 - MVAPICH (MPI-1): 0.9.5
 - MVAPICH2 (MPI-2): 0.6.0

Contents

- Introduction
- Existing Intra-Node Communication Mechanisms
- Our Approach: LiMIC
- Design and Implementation Issues
- Performance Evaluation
- Conclusions and Future Work

Performance Evaluation

- Experimental System
 - Cluster A
 - 8 nodes with dual Intel Xeon 3.0GHz processor and 512KB L2 cache
 - Cluster B
 - 8 nodes with dual Intel Xeon 2.4GHz processor and 512KB L2 cache
- Experimental Results
 - Microbenchmarks: Latency and Bandwidth
 - Cost Breakdown
 - HPCC Effective Bandwidth
 - NAS Integer Sort

Latency

- For Small Messages, User Space Shared Memory is Better than Others
- For Medium and Large Messages, LiMIC is Better than Others
 - For 128KB, the latency of LiMIC is 71% less than that of User Space Shared Memory

Bandwidth

- For Small Messages, User Space Shared Memory is Better than Others
- For Medium and Large Messages, LiMIC is Better than Others
 - For 128KB, the bandwidth of LiMIC is 313% higher than that of User Space Shared Memory
 - The peak bandwidth is 3929 MillionBytes/Sec

OHIO SIATE

Threshold

- MVAPICH-0.9.4
 - User-space shared memory
 - Message Size <= 256KB
 - NIC-level loopback
 - Message Size > 256KB
- MVAPICH-LiMIC
 - User-space shared memory
 - Message Size <= 4KB
 - LiMIC
 - Message Size > 4KB

L. Chai, S. Sur, H. -W. Jin, and D. K. Panda, "Analysis of Design Considerations for Optimizing Multi-Channel MPI over InfiniBand," Workshop on Communication Architecture on Clusters (CAC 05) in conjunction with IPDPS 2005, 2005.

LiMIC Cost Breakdown

100%

- For small messages, the kernel trap overhead is dominant
- For large messages, the copy overhead is dominant

- For small messages, the kernel trap overhead is dominant
- For large messages, the page descriptor mapping overhead is dominant

HPCC Effective Bandwidth

(MB/s)

Cluster	Config.	MVAPICH-0.9.4	MVAPICH-LiMIC	Improv.
А	2x1	152	244	61%
	2x2	317	378	19%
	2x4	619	694	12%
	2x8	1222	1373	12%
В	2x1	139	183	31%
	2x2	282	308	9%
	2x4	545	572	5%
	2x8	1052	1108	5%
A&B	2x16	2114	2223	5%

• The improvement percentage remains constant as the number of processes is increased

NAS Integer Sort

• MVAPICH-LiMIC achieves 10%, 8%, and 5% improvement of execution time running Classes A, B, and C on 2x8, respectively

OHIO STATE

Contents

- Introduction
- Existing Intra-Node Communication Mechanisms
- Our Approach: LiMIC
- Design and Implementation Issues
- Performance Evaluation
- Conclusions and Future Work

Conclusions

- LiMIC
 - High performance MPI intra-node communication
 - MPI friendly interface
 - Independent on proprietary communication libraries
- Performance Results
 - Improvement of latency and bandwidth up to 71% and 313%
 - Improvement of effective bandwidth up to 12% on an 8-node cluster
 - 10% Improvement of NAS IS Class A on an 8-node cluster

Future Work

- Zero-Copy Intra-Node Communication – Copy-on-write
- Blocking Support
 - Message driven process scheduling
- Linux Kernel Version 2.6
 - NUMA architecture

Acknowledgements

Our research is supported by the following organizations:

• Current Funding support by

• Current Equipment donations by

Thank You

{ jinhy, surs, chail, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory http://nowlab.cis.ohio-state.edu/

