Adaptive Connection Management for Scalable MPI over InfiniBand

Weikuan Yu, Qi Gao, Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science & Engineering
The Ohio State University
Introduction

• Clusters for high performance computing are heading for Tens of Thousands nodes.

• InfiniBand: an open industrial standard for high speed interconnect.
 – Used by many large clusters in Top 500 list.

• MPI: the de facto standard for writing parallel programs

• Challenges and issues in scalability and manageability for MPI over InfiniBand become increasingly critical
InfiniBand Transportation Services

• InfiniBand supports 4 types of transport services

<table>
<thead>
<tr>
<th>Reliable Connection (RC)</th>
<th>Unreliable Connection (UC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliable Datagram (RD)</td>
<td>Unreliable Datagram (UD)</td>
</tr>
</tbody>
</table>

• MPI assumes all processes are logically connected

• To setup RC between each pair of processes:
 – RC connection: ~80KB; associated buffers: ~200KB
 – Connection-oriented model: \(n-1 \) connections on each process for fully-connected \(n \) processes

• For 10,000-node clusters, on each process:
 – 9,999 RC connections: ~780 MB
 – Buffers for these connections: ~1950 MB
Requirements for Connections for MPI Applications

• How many peers does one MPI process communicate with?
 – J. S. Vetter et. al, in *IPDPS 02*
 • sPPM: average 5.67 for a 96-process job.
 • Sweep3D: average 3.58 for a 96-process job.
 • SMG2000: average 64.33 for a 96-process job.
 – J. Wu et. al, in *Cluster 02*
 • CG: average 5.78 for a 32-process job.
 • BT: average 9.83 for a 36-process job.
 • MG: 31 for a 32-process job.

• *On-demand connection management* had been proposed to reduce the number of connections.
Motivation for More Sophisticated Connection Management for MPI

- Process Management
- Memory Scalability
- Performance
- Fault Tolerance
Outline

• Introduction & Motivation
• Problem Statement
• Adaptive Connection Management
• Evaluation Framework
• Experimental Results
• Conclusion and Future Work
Problem Statement

• What are the issues involved in Connection Management?

• What are the possible schemes to manage connections?

• What are the effects of these schemes on resource usage, performance, etc.?
Outline

• Introduction & Motivation
• Problem Statement
• Adaptive Connection Management
• Evaluation Framework
• Experimental Results
• Conclusion and Future Work
Adaptive Connection Management Model

- MPI should use different InfiniBand transport services according to the different requirements from applications.
 - For infrequent communications, connectionless model is used.
 - pt2pt connections are setup only when the processes communicate very frequently.
Design Alternatives

• InfiniBand transport services
 – Pt2pt connected - Reliable Connection (RC)
 – Connectionless - Unreliable Datagram (UD)

• Mechanisms for connection establishment
 – UD-based 3-way handshake
 – InfiniBand Communication Management (IBCM)

• Connection management models
 – Any pt2pt connections are setup dynamically
 – Some pt2pt connections are setup in initialization time
Studied Schemes

UD-FD
- UD-based setup
- Fully dynamic

UD-PS
- UD-based setup
- Partial static

CM-FD
- IBCM-based setup
- Fully dynamic

Actually, $2 \times \log N - 1$ connections per process are setup to cover the need for collective algorithms.
Working Scenario

Process A
Message Passing Interface
Adaptive Connection Management
Existing Services
Establishment Mechanisms
Statistic

UD
RC
UD

Process B
Message Passing Interface
Adaptive Connection Management
Existing Services
Establishment Mechanisms
Statistic

UD
RC
UD

InfiniBand Fabric
Outline

• Introduction & Motivation
• Problem Statement
• Adaptive Connection Management
• Evaluation Framework
• Experimental Results
• Conclusion and Future Work
OSU MPI over InfiniBand

- High Performance Implementations
 - MPI-1 (MVAPICH)
 - MPI-2 (MVAPICH2)
- Open Source (BSD licensing)
- Has enabled a large number of production IB clusters all over the world to take advantage of IB
 - Largest being Sandia Thunderbird Cluster (4000 node with 8000 processors)
- Have been directly downloaded and used by more than 345 organizations worldwide (in 30 countries)
 - Time tested and stable code base with novel features
- Available in software stack distributions of many vendors
- Available in the OpenIB/gen2 stack
- More details at http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
Evaluation Framework

• Implemented based on MVAPICH version 0.9.5
• Will be released from MVAPICH version 0.9.8 onwards
• Test-bed:
 – Cluster A: 8 nodes, Dual Intel Xeon 2.4GHz processors, 1GB DRAM, PCI-X bus.
 – Cluster B: 8 nodes, Dual Intel Xeon 3.0GHz processors, 2GB DRAM, PCI-X bus.
 – Mellanox InfiniHost MT23108 HCA adapters through Mellanox InfiniScale 24 port switch MTS 2400

• Experiments:
 – Number of pt2pt connections
 – Startup memory usage
 – Initialization time
 – Performance impact on applications
Outline

• Introduction & Motivation
• Problem Statement
• Adaptive Connection Management
• Evaluation Framework
• Experimental Results
• Conclusion and Future Work
Average Number of pt2pt Connections for NAS Benchmarks

<table>
<thead>
<tr>
<th></th>
<th>SP</th>
<th>BT</th>
<th>MG</th>
<th>LU</th>
<th>IS</th>
<th>CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>On-Demand*</td>
<td>8</td>
<td>8</td>
<td>15</td>
<td>/</td>
<td>15</td>
<td>4.75</td>
</tr>
<tr>
<td>UD-PS</td>
<td>9.5</td>
<td>9.5</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>7.8</td>
</tr>
<tr>
<td>UD-FD/CM-FD</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>3.6</td>
<td>15</td>
<td>2.7</td>
</tr>
</tbody>
</table>

16-Process Test

<table>
<thead>
<tr>
<th></th>
<th>MG</th>
<th>LU</th>
<th>IS</th>
<th>CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>On-Demand*</td>
<td>31</td>
<td>/</td>
<td>31</td>
<td>5.78</td>
</tr>
<tr>
<td>UD-PS</td>
<td>9.5</td>
<td>9</td>
<td>31</td>
<td>9.8</td>
</tr>
<tr>
<td>UD-FD/CM-FD</td>
<td>7</td>
<td>4.1</td>
<td>31</td>
<td>3.8</td>
</tr>
</tbody>
</table>

32-Process Test

In fully dynamic scheme, the number of pt2pt connections is further reduced from the On-Demand scheme.

* On-Demand numbers are from paper written by J. Wu et. al. for Cluster’02
Startup Memory Usage

- Total memory usage of each MPI process
- Measured by \textit{pmap} after MPI\textsubscript{Init}()

For UD-PS, the startup memory usage increases logarithmically.

For UD-FD and CM-FD, the startup memory usage does not increase.
Initialization Time

- Time for MPI_Init() of a 32-Process Job

New schemes reduce the initialization time for MPI jobs
Performance of NAS Benchmarks

- Execution Time for NAS Benchmarks.
- BT, SP on 16 processes
- IS, CG, MG, LU on 32 processes.

New schemes have almost same performance with much less resources.
Outline

- Introduction & Motivation
- Problem Statement
- Adaptive Connection Management
- Evaluation Framework
- Experimental Results
- Conclusion and Future Work
Conclusion and Future Work

• Studied the issues and design alternatives of connection management for MPI over InfiniBand
• Proposed an Adaptive Connection Management model with multiple schemes
• Experimental results show
 – Number of pt2pt connections is further reduced
 – Deliver almost same performance with much less resource usage

• Future work
 – Incorporate to MVAPICH release from version 0.9.8 onwards
 – Study more applications on larger clusters
 – Develop more sophisticated schemes
 – Support dynamic process management and fault tolerance
Acknowledgements

Our research is supported by the following organizations

• Current Funding support by

 - Office of Science
 - Mellanox Technologies
 - Cisco Systems
 - Intel
 - Linux
 - NetApp
 - Sun

• Current Equipment support by

 - Mellanox Technologies
 - AMD
 - Sun
 - IBM
 - Microway
 - PathScale
 - SilverStorm
Web Pointers

http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/