Adaptive Connection Management for Scalable MPI over InfiniBand

Weikuan Yu, Qi Gao, Dhabaleswar K. Panda

Network-Based Computing Laboratory Department of Computer Science & Engineering The Ohio State University

Introduction

- Clusters for high performance computing are heading for *Tens of Thousands* nodes.
- InfiniBand: an open industrial standard for high speed interconnect.
 - Used by many large clusters in Top 500 list.
- MPI: the *de facto* standard for writing parallel programs
- Challenges and issues in scalability and manageability for MPI over InfiniBand become increasingly critical

InfiniBand Transportation Services

• InfiniBand supports 4 types of transport services

Reliable Connection (RC)	Unreliable Connection (UC)
Reliable Datagram (RD)	Unreliable Datagram (UD)

- MPI assumes all processes are logically connected
- To setup RC between each pair of processes:
 - RC connection: ~80KB; associated buffers : ~200KB
 - Connection-oriented model: n-1 connections on each process for fullyconnected n processes
- For 10,000-node clusters, on each process:
 - 9,999 RC connections: ~780 MB
 - Buffers for these connections: ~1950 MB

Requirements for Connections for MPI Applications

- How many peers does one MPI process communicate with?
 - J. S. Vetter et. al, in *IPDPS* 02
 - → sPPM: average **5.67** for a **96**-process job.
 - Sweep3D: average 3.58 for a 96-process job.
 - SMG2000: average 64.33 for a 96-process job.
 - J. Wu et. al, in Cluster 02
 - → CG: average 5.78 for a 32-process job.
 - → BT: average 9.83 for a 36-process job.
 - MG: 31 for a 32-process job.
- On-demand connection management had been proposed to reduce the number of connections.

Motivation for More Sophisticated Connection Management for MPI

- Introduction & Motivation
- Problem Statement
- Adaptive Connection Management
- Evaluation Framework
- Experimental Results
- Conclusion and Future Work

Problem Statement

- What are the issues involved in Connection Management?
- What are the possible schemes to manage connections?
- What are the effects of these schemes on resource usage, performance, etc.?

- Introduction & Motivation
- Problem Statement
- Adaptive Connection Management
- Evaluation Framework
- Experimental Results
- Conclusion and Future Work

Adaptive Connection Management Model

- MPI should use different InfiniBand transport services according to the different requirements from applications.
 - For infrequent communications, connectionless model is used.
 - pt2pt connections are setup only when the processes communicate very frequently

Design Alternatives

- InfiniBand transport services
 - Pt2pt connected Reliable Connection (RC)
 - Connectionless Unreliable Datagram (UD)
- Mechanisms for connection establishment
 - UD-based 3-way handshake
 - InfiniBand Communication Management (IBCM)
- Connection management models
 - Any pt2pt connections are setup dynamically
 - Some pt2pt connections are setup in initialization time

Studied Schemes

UD-FD

UD-PS

InfiniBand

CM-FD

UD-based setup Fully dynamic UD-based setup Partial static

Actually, 2*log N -1 connections per process are setup to cover the need for collective algorithms IBCM-based setup Fully dynamic

Working Scenario

Process A

Process B

- Introduction & Motivation
- Problem Statement
- Adaptive Connection Management
- Evaluation Framework
- Experimental Results
- Conclusion and Future Work

OSU MPI over InfiniBand

- High Performance Implementations
 - MPI-1 (MVAPICH)
 - MPI-2 (MVAPICH2)
- Open Source (BSD licensing)
- Has enabled a large number of production IB clusters all over the world to take advantage of IB
 - Largest being Sandia Thunderbird Cluster (4000 node with 8000 processors)
- Have been directly downloaded and used by more than 345 organizations worldwide (in 30 countries)
 - Time tested and stable code base with novel features
- Available in software stack distributions of many vendors
- Available in the OpenIB/gen2 stack
- More details at

http://nowlab.cse.ohio-state.edu/projects/mpi-iba/

Evaluation Framework

- Implemented based on MVAPICH version 0.9.5
- Will be released from MVAPICH version 0.9.8 onwards
- Test-bed:
 - Cluster A: 8 nodes, Dual Intel Xeon 2.4GHz processors, 1GB DRAM, PCI-X bus.
 - Cluster B: 8 nodes, Dual Intel Xeon 3.0GHz processors, 2GB DRAM, PCI-X bus.
 - Mellanox InfiniHost MT23108 HCA adapters through Mellanox InfiniScale 24 port switch MTS 2400
- Experiments:
 - Number of pt2pt connections
 - Startup memory usage
 - Initialization time
 - Performance impact on applications

- Introduction & Motivation
- Problem Statement
- Adaptive Connection Management
- Evaluation Framework
- Experimental Results
- Conclusion and Future Work

Average Number of pt2pt Connections for NAS Benchmarks

	SP	BT	MG	LU	IS	CG
Original	15	15	15	15	15	15
On-Demand*	8	8	15	/	15	4.75
UD-PS	9.5	9.5	7	7	15	7.8
UD-FD/CM-FD	6	6	5	3.6	15	2.7

16-Process Test

	MG	LU	IS	CG
Original	31	31	31	31
On-Demand*	31	/	31	5.78
UD-PS	9.5	9	31	9.8
UD-FD/CM-FD	7	4.1	31	3.8

32-Process Test

In fully dynamic scheme, the number of pt2pt connections is further reduced from the Ondemand scheme

* On-Demand numbers are from paper written by J. Wu et. al. for Cluster'02

Startup Memory Usage

- Total memory usage of each MPI process
- Measured by *pmap* after MPI_Init()

For UD-PS, the startup memory usage increases logarithmically.

For UD-FD and CM-FD, the startup memory usage does not increase.

Initialization Time

Performance of NAS Benchmarks

 Execution Time for NAS Benchmarks.

NETWORK-BASED COMPUTING LABORATORY

- BT, SP on 16 processes
- IS, CG, MG, LU on 32 processes.

New schemes have almost same performance with much less resources.

RK-BASED

- Introduction & Motivation
- Problem Statement
- Adaptive Connection Management
- Evaluation Framework
- Experimental Results
- Conclusion and Future Work

Conclusion and Future Work

- Studied the issues and design alternatives of connection management for MPI over InfiniBand
- Proposed an Adaptive Connection Management model with multiple schemes
- Experimental results show
 - Number of pt2pt connections is further reduced
 - Deliver almost same performance with much less resource usage
- Future work
 - Incorporate to MVAPICH release from version 0.9.8 onwards
 - Study more applications on larger clusters
 - Develop more sophisticated schemes
 - Support dynamic process management and fault tolerance

Acknowledgements

Our research is supported by the following organizations

• Current Funding support by

vanced dusterin

PathScale.

Web Pointers

http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page http://nowlab.cse.ohio-state.edu/projects/mpi-iba/

