NETWORK-BASED
COMPUTING
LABORATORY

s

MPI Alltoall Personalized Exchange on GI?;GPU**
Clusters: Design Alternatives and Bene"f.._,__i_ts

"
.\"\.

Ashish Kumar Singh, Sreeram Potluri, Hao Wang,
Krishna Kandalla, Sayantan Sur, and Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University, USA

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* |Introduction

* Problem Statement

* Design Considerations

« Our Solution

* Performance Evaluation

» Conclusion and Future Work

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Systems

OHIO
SIATE

InfiniBand Clusters in TOP500

Interconnect Family Share Over Time
1993-2010

Interconnect Family Share Over Time
1993-2010

500

400

300

200

100

N/A
Gigabit Ethernet
M Crossbar
¥ SP Switch
M Myrinet
B Infiniband
M Cray Interconnect
M Proprietary
M Fat Tree
M Quadrics
B Others

umq—msohma\o-—mmvmuhmmo-—
OO OO D DDDDODDOD -
GO OO DDDODOOoODDD D
e A A A A S NN NN N NN N
e, T, e, e e e e S S e S e e e e e e e e
OO OO WW0OYO0O W00 000w o
ODO0D0O0D0DDO00D0DDDDO0O0D0DD 0D O

TOP500 Releases

Performance Share

N/A
Gigabit Ethernet
M Crossbar
M SP Switch
B Myrinet
M Infiniband
M Cray Interconnect
M Proprietary
W Fat Tree
M Quadrics
M Cthers

Mg DO~ SN WD OM~SDOND
o DD OO OO0 D A
O O DD O OO OO0DO0O OO0 O
e A A A A A NN NN NN NN NN
T e T e e ma Mma mo me e e e e e e el e el e
[t te R Te R ta I te Vo e Dt o B o Bt R ta Yo B ta i o Yo RRValhi= o s Jate]
OO0 0D00D0D00 D000 0000000

TOP500 Releases

Percentage share of InfiniBand is steadily increasing
41% of systems in TOP500 using InfiniBand (June '11)
61% of systems in TOP100 using InfiniBand (June ‘“11)

GPGPUs and Infiniband

« GPGPUs are becoming an integral part of high performance
system architectures

« 3 of the 5 fastest supercomputers in the world use GPGPUs
with Infiniband

— TOPS500 list features Tianhe-1A at #2, Nebulae at # 4 and Tsubame
at #b.

* Programming:
— CUDA or OpenCL on GPGPUs
— MPI on the whole system

« Manage memory issue

— Prof. Van de Geijn just mentioned memory management is an issue,
and the data granularity is important

4

OHIO
 ————Cw

NETWORK-BASED
COMPUTING
LABORATORY

Data Movement in GPU Clusters

Main IB IB Main
Memory Adapter Adapter Memory

IB Network

« Data movement in InfiniBand clusters with GPUs

— CUDA: Device memory = Main memory [at source process]

— MPI: Source rank = Destination process

— CUDA: Main memory = Device memory [at destination
process]

OHIO
SIATE

LABORATORY

MVAPICH/MVAPICH2 Software

« High Performance MPI Library for IB and HSE
— MVAPICH (MPI-1) and MVAPICH2 (MPI-2.2)

NETWORK-BASED
COMPUTING

— Used by more than 1,710 organizations in 63 countries
— More than 78,000 downloads from OSU site directly
— Empowering many TOP500 clusters

« 5" ranked 73,278-core cluster (Tsubame 2.0) at Tokyo Institute of
Technology

« 7" ranked 111,104-core cluster (Pleiades) at NASA
« 17t ranked 62,976-core cluster (Ranger) at TACC

— Available with software stacks of many IB, HSE and server vendors

including Open Fabrics Enterprise Distribution (OFED) and Linux
Distros (RedHat and SUSE)

— http://mvapich.cse.ohio-state.edu 6

OHIO
 ————Cw

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

MVAPICH2-GPU: GPU-GPU using MPI

 Is it possible to optimize GPU-GPU communication with MPI?

— Support GPU to remote GPU communication using MPI
— P2P and One-sided were improved
— Collectives can directly get benefits from p2p improvement

« How to handle non-contiguous data in GPU device memory?

(Thursday, TP6-A,1:30 PM)
— Support GPU-GPU non-contiguous data communication (P2P) using MPI
— Vector datatype and SHOC benchmark are optimized

« How to optimize collectives with different algorithms?

v

OHIO
 ————Cw

NETWORK-BASED
COMPUTING
LABORATORY

« Many scientific applications spend much execution time
In MPI_Alltoall:
— P3DFFT, CPMD

 Heavy communication in MPI1_Alltoall
— O(N?) communication for N processes

 Different MPI_Alltoall algorithms:
— Related with message size, process number, etc.

What will happen if the data is in GPU device memory?

8

OHIO
 ————Cw

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* Problem Statement

* Design Considerations

* Our Solution

* Performance Evaluation

* Conclusion and Future Work

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Problem Statement

« High start-up overheads in accessing small and medium
data inside GPU device memory:

— Start-up time: the time to move the data from GPU device memory
to host main memory, and vice versa

« Hard to optimize GPU-GPU Alltoall communication at the
application level:

— CUDA and MPI expertise is required for efficient data movement
— Existing Alltoall optimizations are implemented in MPI library

— Optimizations are dependent on hardware characteristics, like latency
10

OHIO
 ————Cw

NETWORK-BASED
COMPUTING
LABORATORY

Outline

* Design Considerations

* Our Solution

* Performance Evaluation

* Conclusion and Future Work

11

OHIO
SIATE

Alltoall Algorithms

« Hypercube algorithm (Bruck’s) proposed by Bruck et. al, for
small messages
— requires (logN) steps, for N processes
— additional data movement in the local memroy

« Scattered destination (SD) algorithm for medium messages
— a linear implementation of Alltoall personalized exchange operation
— uses non-blocking send/recv to overlap data transfer on network

« Pair-wise exchange (PE) algorithm for large messages
— network contention (SD) becomes the bottleneck, switch to PE

— uses blocking send/recv; in any step, a process communicates with

only one source and one destination
12

OHIO
 ————Cw

NETWORK-BASED
COMPUTING
LABORATORY

Design Considerations

Our current work optimizes this

Our ISC’11 work
optimized this

_——————’

NETWORK-BASED
COMPUTING
LABORATORY

Design Considerations

 Message size
— not enough to consider data movement in local memory (Bruck’s)
— Start-up overhead must be considered

 Network transfer

— not enough to overlap different p2p transfer on networks (SD)

— data movement between device and host (DMA) can be
overlapped with data transfer (RDMA) in each peer on networks

 Network contention

— blocking send/recv (in PE) will harm the overlapping (DMA and
RDMA)

— possible to overlap DMA and RDMA on multiple channels until the
network contention dominates the performance again

14

OHIO
 ————Cw

Start-up Overhead

90

80 — . . a N f
——Device to Host /

28 -=-Host to Device /
2., | ~MPIP2P Latency /
£ 40
=30

20 B—————a—a———

10 M/

O 4 $ $ F T [[[[[[[[[[[|
4 16 64 256 1K 4K 16K 64K 256K

Message Size (bytes)

« Data movement cost (GPU and host) remains constant until a threshold
« 16 KB is the threshold in our cluster

« compared with MPI p2p latency, start-up cost dominates GPU-GPU
performance at small and medium datasize

15

OHIO
SIATE

e [R
COMPUTING
LABORATORY
[]
Outline

 Qur Solution
 Performance Evaluation
 Conclusion and Future Work

16

OHIO
SIATE

No MPI Level Optimization

cudaMemcpy() + MPI_Alltoall() + cudaMemcpy()

Sender Process e No MPI level Optimization:

[yttt it L}
] _ Process0 N — can be implemented at user level

s GPU Device Host Main ¢ _ _

i Memory Memory 4 — doesn’t requires any changes in MPI

E For all ranks > E From rank 1. Iibrary

! 'E'E&iﬁ]%ﬁi?f"

, 4 Fromrank2

: _i.fromrank3 : .

! {femmankz o Reduce programming productivity:
]

i E — adds extra burden on programmer to

E dToranki manage data movement and

! -__-LTP.".H_".k.%_-E corresponding buffers

: ____: Torank3 S

; { To rank 4 g — hard to overlap DMA and RDMA to

E b hide memory transfer latency since

] from allranks [+10-eR MPI1_Alltoall() is blocking

- :

N S I

NETWORK-BASED
COMPUTING
LABORATORY

Point-to-Point Based

MPI_Alltoall()
Sender Process

« Basic way to enable collectives

-I

' Process 0 E

L GPU Device Host Main | for GPU memory

E Memory Memory E — for each p2p channel, moves the

E For rank 1 : data between device and host, and
j "4---%5&0.@}5_-;5_1 uses send/recv interfaces

; Forrank2 ™" i::ram — handle GPU-to-GPU transfer with
E k3 ﬁ-—-—:?é-}-;-'-’-i:‘fi; Send/Recv interfaces

= i

impluw .+ High start-up overhead to move
Y DESLLICU I b data between device and host
> i (for small and medium data)
- SN B

18

OHIO
 ————Cw

Static Staging

P * Reduce the number of DMA
r--------e- Soommomooone ', operations:
]
} GPU Device Host Main ¢ — merge all ranks’ data to one
{hemen Memory 4 package, and move between
E Forallranks | & L o d device and host
0 VN Eromrank s]
E %;z,':::n:; « Compared with no MPI level
5 ok method, only MPI_Alltoall
| P needed
! To rank 1 A
E ::E:TE’:@:"K?:E — similar performance
: _._4Jorank3__ S — better programming productivity
' ___Torank4 'D
; " * Problem:
' 0 i : ,
E Fromallranks __|— J:rM—"—a all — aggressively merge all ranks
T ____3 data into one large package

maybe increase the latency 19

OHIO
 ————Cw

—
Dynamic Staging

MPI_Alltoall()

Sender Process

NETWORK-BASED
COMPUTING
LABORATORY

F

» Group data
— group data based on a threshold
— use non-blocking function to

-l

Process 0
GPU Device Host Main
Memory Memory
Initiate copy of
| dawblocks <
—————— >
—————— I
’ Test for copy
completions
lLoop{ =
Copy back data from }—
completed recv

From all peers

move data between device and
host
*» Pipeline
— overlap DMA data movement
between host and device and
RDMA transfer on network
» Hard to implement at user
level

-

To ranks for which
opy has completed

Test for recv
ompletion

[a]

— MPI_Alltoall is a blocking function
— hardware latency dependent

e [R
COMPUTING
LABORATORY
[]
Outline

 Performance Evaluation
 Conclusion and Future Work

21

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Performance Evaluation

« Experimental environment
— NVIDIA Tesla C2050
— Mellanox QDR InfiniBand HCA MT26428
— Intel Westmere processor with 12 GB main memory
— MVAPICH2 1.6, CUDA Toolkit 4.0

« OSU Micro-Benchmarks
— The source and destination addresses are in GPU device memory

* Run one process per node with one GPU card (8 nodes)

22

OHIO
 ————Cw

NETWORK-BASED
R, o G g
Alltoall Latency Performance (small)

600
*—.\. —g—0—"
—— .
500

i —
—=o—No MPI | evel Optimization

=-Point-to-Point Based Bruck's

———— A—k A

Time (us)
w
o
o

200 == Point-to-Point Based SD
=< Static Staging Bruck's
100 = Static Staging SD
 — % e el IV ——
0 T T T T T T : | : |
! 4 16 64 256 1K

Message Size
« High start-up overhead in P2P Based algorithms
« Static Staging method can overcome high start-up overhead
— performs only slightly better than No MPI Level implementation

 We didn’t group small data size to enable pipeline between DMA

and RDMA 23
OHIO
SIAIE

e [R
LABORATORY
Alltoall Latency Performance (medium)

700

——No MPI Level Optimization

600 . _—
-#-Point-to-Point Based SD /./

500 ——Static Staging SD

—<Dynamic Stagings[)/l/ + 10.4%
Stag e

AN
o
o

1

Time (us)

RN W
o o o
o O o

4K 8K 16K 32K 64K
Message Size
 P2P Based SD lost performance because of multiple times data

movement between device and host

» Without pipeline design, No MPI Level Optimization method can’t
hide DMA data movement latency with RDMA data transfer

* Up to 10.4% improvement from Dynamic Staging SD over No MPI
Level Optimization method 24

OHIO

SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Alltoall Latency Performance (large)

16000
14000 =o—No MPI Level Optimization p i
-#-Point-to-Point Based SD /
12000 : :
—+—Point-to-Point Based PE / ~ 46%
“» 10000 i i
\g/ Dynamic Staging SD / / 6%
o 8000 -
&
i= 6000
4000
2000
0 1 T T T 1
128K 256K 512K 1M 2M
Message Size
P2P Based

— Pipeline is enabled for each P2P channel (ISC’11); better than No MPI Level Optimization
Dynamic Staging
— not only overlap DMA and RDMA for each channel, but also for different channels

— up to 46% improvement for Dynamic Staging SD over No MPI Level Optimization
— up to 26% improvement for Dynamic Staging SD over P2P Based method SD

25

OHIO
SIATE

Staging Benefit

= No MPI Level Optimization
® Static Staging SD

480 -
470 -
460 -

450

B 440

S 430 -

€420

=410 -
400 -
390

= Dynamic Staging SD

64K
- Static staging Message Size (Bytes)
— Move data for all ranks in one package can'’t get better performance
beyond a threshold
« Dynamic Staging
— group data for in a threshold size package (128KB) e

510 verlap DMA and RDMA for all channels
dm—

e [R
COMPUTING
LABORATORY
[]
Outline

 Conclusion and Future Work

27

OHIO
SIATE

Conclusion and Future Work

« MPI_Alltoall optimizations on GPU clusters (MVAPICH2-GPU)

— support GPU to GPU alltoall communication with MPI_Alltoall; improve the
programming productivity

— resolve high start-up overhead between device and host for small and
medium datasize

— Improve alltoall performance through Dynamic Staging method

— get up to 46% latency improvement of Dynamic Staging compared with No
MPI Level Optimization method

 Future work

— Integrate this design into MVAPICH2 future releases
— improve applications’ performance (3DFFT and CPMD)
— Investigate other collectives performance with MVAPICH2-GPU

28

OHIO
 ————Cw

OHIO
SIATE

NETWORK-BASED
COMPUTING
LABORATORY

Thank You!

{singhas, potluri, wangh, kandalla, surs, panda}@cse.ohio-state.edu

$25¢d G,

\2
%

MVAPICH

t
Ne Woz,

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

29

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

