
MPI Alltoall Personalized Exchange on GPGPU
Clusters: Design Alternatives and Benefits

Ashish Kumar Singh, Sreeram Potluri, Hao Wang,

Krishna Kandalla, Sayantan Sur, and Dhabaleswar K. Panda

Network-Based Computing Laboratory

Department of Computer Science and Engineering

The Ohio State University, USA

PPAC 2011

Outline

• Introduction

• Problem Statement

• Design Considerations

• Our Solution

• Performance Evaluation

• Conclusion and Future Work

2

PPAC 2011

InfiniBand Clusters in TOP500

3

• Percentage share of InfiniBand is steadily increasing

• 41% of systems in TOP500 using InfiniBand (June ’11)

• 61% of systems in TOP100 using InfiniBand (June ‘11)

PPAC 2011

GPGPUs and Infiniband
• GPGPUs are becoming an integral part of high performance

system architectures

• 3 of the 5 fastest supercomputers in the world use GPGPUs

with Infiniband

– TOP500 list features Tianhe-1A at #2, Nebulae at # 4 and Tsubame

at # 5.

• Programming:

– CUDA or OpenCL on GPGPUs

– MPI on the whole system

• Manage memory issue

– Prof. Van de Geijn just mentioned memory management is an issue,

and the data granularity is important

4

PPAC 2011

Data Movement in GPU Clusters

• Data movement in InfiniBand clusters with GPUs

Main

Memory
GPU

IB
Adapter

GPU
IB

Adapter

Main

Memory

PCI-E Hub PCI-E Hub

PCI-E PCI-E

IB Network

PCI-E PCI-E

5

– MPI: Source rank  Destination process

– CUDA: Main memory  Device memory [at destination

process]

– CUDA: Device memory  Main memory [at source process]

PPAC 2011

MVAPICH/MVAPICH2 Software
• High Performance MPI Library for IB and HSE

– MVAPICH (MPI-1) and MVAPICH2 (MPI-2.2)

– Used by more than 1,710 organizations in 63 countries

– More than 78,000 downloads from OSU site directly

– Empowering many TOP500 clusters

• 5th ranked 73,278-core cluster (Tsubame 2.0) at Tokyo Institute of

Technology

• 7th ranked 111,104-core cluster (Pleiades) at NASA

• 17th ranked 62,976-core cluster (Ranger) at TACC

– Available with software stacks of many IB, HSE and server vendors

including Open Fabrics Enterprise Distribution (OFED) and Linux

Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

6

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

PPAC 2011

MVAPICH2-GPU: GPU-GPU using MPI
• Is it possible to optimize GPU-GPU communication with MPI?

– H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, D. K. Panda, “MVAPICH2-

GPU: Optimized GPU to GPU Communication for InfiniBand Clusters”,

ISC’11, June, 2011

– Support GPU to remote GPU communication using MPI

– P2P and One-sided were improved

– Collectives can directly get benefits from p2p improvement

7

• How to handle non-contiguous data in GPU device memory?
– H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur, D. K. Panda,

“Optimized Non-contiguous MPI Datatype Communication for GPU Clusters:

Design, Implementation and Evaluation with MVAPICH2”, Cluster’11, Sep.,

2011 (Thursday, TP6-A,1:30 PM)

– Support GPU-GPU non-contiguous data communication (P2P) using MPI

– Vector datatype and SHOC benchmark are optimized

• How to optimize collectives with different algorithms?
– In this paper, MPI_Alltoall on GPGPUs cluster is optimized

PPAC 2011

MPI_Alltoall
• Many scientific applications spend much execution time

in MPI_Alltoall:

– P3DFFT, CPMD

• Heavy communication in MPI_Alltoall

– O(N2) communication for N processes

• Different MPI_Alltoall algorithms:

– Related with message size, process number, etc.

• What will happen if the data is in GPU device memory?

8

PPAC 2011

Outline

• Introduction

• Problem Statement

• Design Considerations

• Our Solution

• Performance Evaluation

• Conclusion and Future Work

9

PPAC 2011

Problem Statement

• High start-up overheads in accessing small and medium

data inside GPU device memory:

– Start-up time: the time to move the data from GPU device memory

to host main memory, and vice versa

10

• Hard to optimize GPU-GPU Alltoall communication at the

application level:

– CUDA and MPI expertise is required for efficient data movement

– Existing Alltoall optimizations are implemented in MPI library

– Optimizations are dependent on hardware characteristics, like latency

PPAC 2011

Outline

• Introduction

• Problem Statement

• Design Considerations

• Our Solution

• Performance Evaluation

• Conclusion and Future Work

11

PPAC 2011

Alltoall Algorithms

• Hypercube algorithm (Bruck’s) proposed by Bruck et. al, for

small messages

– requires (logN) steps, for N processes

– additional data movement in the local memroy

12

• Scattered destination (SD) algorithm for medium messages

– a linear implementation of Alltoall personalized exchange operation

– uses non-blocking send/recv to overlap data transfer on network

• Pair-wise exchange (PE) algorithm for large messages

– network contention (SD) becomes the bottleneck, switch to PE

– uses blocking send/recv; in any step, a process communicates with

only one source and one destination

PPAC 2011

Design Considerations

13

 MPI_Alltoall

P2P Comm.

P2P Comm.

P2P Comm.

P2P Comm.

DMA: data

movement

from

device to

host

RDMA:

Data

transfer to

remote

node over

network

DMA: data

movement

from host

to device

N2

Our ISC’11 work

optimized this

Our current work optimizes this

PPAC 2011

Design Considerations

• Message size

– not enough to consider data movement in local memory (Bruck’s)

– Start-up overhead must be considered

• Network transfer

– not enough to overlap different p2p transfer on networks (SD)

– data movement between device and host (DMA) can be

overlapped with data transfer (RDMA) in each peer on networks

• Network contention

– blocking send/recv (in PE) will harm the overlapping (DMA and

RDMA)

– possible to overlap DMA and RDMA on multiple channels until the

network contention dominates the performance again

 14

PPAC 2011

Start-up Overhead

0

10

20

30

40

50

60

70

80

90

4 16 64 256 1K 4K 16K 64K 256K

T
im

e
 (

u
s

)

Message Size (bytes)

Device to Host

Host to Device

MPI P2P Latency

15

• Data movement cost (GPU and host) remains constant until a threshold

• 16 KB is the threshold in our cluster

• compared with MPI p2p latency, start-up cost dominates GPU-GPU

performance at small and medium datasize

PPAC 2011

Outline

• Introduction

• Problem Statement

• Design Considerations

• Our Solution

• Performance Evaluation

• Conclusion and Future Work

16

PPAC 2011

No MPI Level Optimization

• No MPI level optimization:

– can be implemented at user level

– doesn’t requires any changes in MPI

library

• Reduce programming productivity:

– adds extra burden on programmer to

manage data movement and

corresponding buffers

– hard to overlap DMA and RDMA to

hide memory transfer latency since

MPI_Alltoall() is blocking

17

cudaMemcpy() + MPI_Alltoall() + cudaMemcpy()

PPAC 2011

Point-to-Point Based

• Basic way to enable collectives

for GPU memory

– for each p2p channel, moves the

data between device and host, and

uses send/recv interfaces

– handle GPU-to-GPU transfer with

Send/Recv interfaces

• High start-up overhead to move

data between device and host

(for small and medium data)

18

MPI_Alltoall()

PPAC 2011

Static Staging
• Reduce the number of DMA

operations:

– merge all ranks’ data to one

package, and move between

device and host

• Compared with no MPI level

method, only MPI_Alltoall

needed

– similar performance

– better programming productivity

• Problem:

– aggressively merge all ranks’

data into one large package

maybe increase the latency 19

MPI_Alltoall()

PPAC 2011

Dynamic Staging
• Group data

– group data based on a threshold

– use non-blocking function to

move data between device and

host

• Pipeline

– overlap DMA data movement

between host and device and

RDMA transfer on network

• Hard to implement at user

level

– MPI_Alltoall is a blocking function

– hardware latency dependent

20

MPI_Alltoall()

PPAC 2011

Outline

• Introduction

• Problem Statement

• Design Considerations

• Our Solution

• Performance Evaluation

• Conclusion and Future Work

21

PPAC 2011

Performance Evaluation

• Experimental environment

– NVIDIA Tesla C2050

– Mellanox QDR InfiniBand HCA MT26428

– Intel Westmere processor with 12 GB main memory

– MVAPICH2 1.6, CUDA Toolkit 4.0

• OSU Micro-Benchmarks

– The source and destination addresses are in GPU device memory

• Run one process per node with one GPU card (8 nodes)

22

PPAC 2011

Alltoall Latency Performance (small)

23

0

100

200

300

400

500

600

1 4 16 64 256 1K

T
im

e
 (

u
s
)

Message Size

No MPI Level Optimization

Point-to-Point Based Bruck's

Point-to-Point Based SD

Static Staging Bruck's

Static Staging SD

• High start-up overhead in P2P Based algorithms

• Static Staging method can overcome high start-up overhead

– performs only slightly better than No MPI Level implementation

• We didn’t group small data size to enable pipeline between DMA

and RDMA

PPAC 2011

0

100

200

300

400

500

600

700

4K 8K 16K 32K 64K

T
im

e
 (

u
s
)

Message Size

No MPI Level Optimization

Point-to-Point Based SD

Static Staging SD

Dynamic Staging SD

24

Alltoall Latency Performance (medium)

• P2P Based SD lost performance because of multiple times data

movement between device and host

• Without pipeline design, No MPI Level Optimization method can’t

hide DMA data movement latency with RDMA data transfer

• Up to 10.4% improvement from Dynamic Staging SD over No MPI

Level Optimization method

10.4%

PPAC 2011

0

2000

4000

6000

8000

10000

12000

14000

16000

128K 256K 512K 1M 2M

T
im

e
 (

u
s

)

Message Size

No MPI Level Optimization

Point-to-Point Based SD

Point-to-Point Based PE

Dynamic Staging SD

25

Alltoall Latency Performance (large)

• P2P Based

– Pipeline is enabled for each P2P channel (ISC’11); better than No MPI Level Optimization

• Dynamic Staging

– not only overlap DMA and RDMA for each channel, but also for different channels

– up to 46% improvement for Dynamic Staging SD over No MPI Level Optimization

– up to 26% improvement for Dynamic Staging SD over P2P Based method SD

46%

26%

PPAC 2011

Staging Benefit

390

400

410

420

430

440

450

460

470

480

64K

T
im

e
 (

u
s
)

Message Size (Bytes)

No MPI Level Optimization

Static Staging SD

Dynamic Staging SD

26

• Static staging

– Move data for all ranks in one package can’t get better performance

beyond a threshold

• Dynamic Staging

– group data for in a threshold size package (128KB)

– overlap DMA and RDMA for all channels

PPAC 2011

Outline

• Introduction

• Problem Statement

• Design Considerations

• Our Solution

• Performance Evaluation

• Conclusion and Future Work

27

PPAC 2011

Conclusion and Future Work
• MPI_Alltoall optimizations on GPU clusters (MVAPICH2-GPU)

– support GPU to GPU alltoall communication with MPI_Alltoall; improve the

programming productivity

– resolve high start-up overhead between device and host for small and

medium datasize

– improve alltoall performance through Dynamic Staging method

– get up to 46% latency improvement of Dynamic Staging compared with No

MPI Level Optimization method

28

• Future work
– integrate this design into MVAPICH2 future releases

– improve applications’ performance (3DFFT and CPMD)

– investigate other collectives performance with MVAPICH2-GPU

PPAC 2011

 Thank You!
{singhas, potluri, wangh, kandalla, surs, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

29

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

