Exploiting Remote Memory Operations to Design Efficient Reconfiguration for Shared Data-Centers over InfiniBand

P, Balaji, K. Vaidyanathan, S. Narravula, K. Savitha, H. –W. Jin

D. K. Panda Network Based Computing Laboratory The Ohio State University

COTS Clusters

- Advent of High Performance Networks
 - Ex: InfiniBand, Myrinet, Quadrics, 10-Gigabit Ethernet
 - High Performance Protocols: VAPI / IBAL, GM, EMP
 - Provide applications direct and protected access to the network
- Commodity-Off-the-Shelf (COTS) Clusters
 - Enabled through High Performance Networks
 - Built of commodity components
 - High Performance-to-Cost Ratio

InfiniBand Architecture Overview

- Industry Standard
- Interconnect for connecting compute and I/O nodes
- Provides High Performance
 - Low latency of lesser than 4us
 - Over 935MBps uni-directional bandwidth
 - Offloaded Transport Layer; Zero-Copy data-transfer
 - Provides one-sided communication (RDMA, Remote Atomics)
- Becoming increasingly popular

Cluster-based Data-Centers

- Increasing adoption of Internet
 - Primary means of electronic interaction
 - Highly Scalable and Available Web-Servers: Critical !
- Utilizing Clusters for Data-Center environments?
 - Studied and Proposed by the Industry and Research communities

(Courtesy CSP Architecture Design)

- Nodes are logically partitioned
 - Interact depending on the query
 - Provide services requested
 - Services provided are related
 - Fragmentation of resources

Shared Multi-Tier Data-Centers

Hosting several unrelated services on a single clustered data-center

Issues in Shared Data-Centers

- Hosting several unrelated services on a single data-center
 - Ex: A single data-center hosting multiple websites
 - Currently used by several ISPs and Web Service Providers (IBM, HP)
 - Allows differentiation in resources provided for each service
 - Fragmentation is a big concern!
- Over-provisioning of nodes for each service
 - Nodes provided to each service based on the worst-case estimates
 - Widely used approach
 - Leads to severe under-utilization of resources

Dynamic Reconfigurability

Nodes reconfigure themselves to highly loaded websites at run-time

Objective

- Under Utilization of resources needs to be curbed
- Dynamically Configuring nodes allotted to each service
 - Widely studied approach for Clusters
 - Interesting Challenges in the Data-Center Environment
 - Highly loaded back-end servers
 - Compatibility with existing applications (Apache, MySQL, etc)
- Can the advanced features provided by InfiniBand help?

Presentation Roadmap

Shared Data-Centers Overview

- Clients request services using high level protocols such as HTTP
- Requests are distributed to the nodes using load-balancers
 - Load Balancers expose a single IP address to the clients
 - Maintain a list of several internal IP addresses to forward the requests
- Several solutions for load-balancers
 - Hardware Load-Balancers
 - Software Load-Balancers
 - Cluster-based load-balancers

Cluster-based Load Balancers

- Hardware Load-Balancers
 - Commonly used in several environments
 - In-flexible and cannot be tuned to the data-center requirements
- Software Load-Balancers
 - Easy to modify and tune to the data-center requirements
 - Potential bottlenecks for highly loaded data-center environments
- Cluster-based load-balancers
 - Proposed by several researchers as an additional *Edge Tier* [shah01]
 - Provides intelligent services such as load-balancing, caching, etc
 - Use an additional hardware load-balancer or DNS aliasing to get requests

[shah01]: CSP: A Novel System Architecture for Scalable Internet and Communication Services. H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine, R. S. Madukkarumukumana and G. J. Regnier. In USITS 2001.

Presentation Roadmap

STATE

Design Issues

- Support for Existing Applications
 - Modifying existing applications: Cumbersome and Impractical
 - Utilizing *External Helper Modules* (external programs running on each node)
 - Take care of load monitoring, reconfiguration, etc.
 - Reflect changes to the data-center applications using environment settings
- Load-Balancer based vs. Server based Reconfiguration
 - Trading network traffic for CPU overhead
 - Load Balancers "convert" nodes to serve their website
- Remote Memory Operations based Design
 - Server node applications are typically very compute intensive
 - Execution of CGI scripts, business logic, database processing
 - Utilizing one-sided operations provided by InfiniBand
 - Load-balancers remotely monitor and reconfigure the system

Implementation Details

- History Aware Reconfiguration
 - Avoiding Server Thrashing by maintaining a history of the load pattern
- Reconfigurability Module Sensitivity
 - Time Interval between two consecutive checks
- Maintaining a System Wide Shared State
- Shared State with Concurrency Control
- Tackling Load-Balancing Delays

System Wide Shared State

- Nodes in the cluster need to share control information
 - Load, Current State of the node, etc.
- Sockets based Implementation has several disadvantages
 - All communication needs to be explicitly performed
 - Asynchronous requests need to be handled by the host
 - A major concern due to the high CPU overhead on the servers
- InfiniBand RDMA operations try to avoid these disadvantages
 - Load-balancers can share data on the servers using RDMA Read
 - Can update system state using RDMA Write and Atomic Operations

Shared State with Concurrency Control

- Load-balancers query the system load at regular intervals
- On detecting a high load, a reconfiguration is done
- Multiple Concurrency issues to be dealt with:
 - Multiple simultaneous transitions possible
 - Each node in the load-balancer cluster can attempt a reconfiguration
 - Multiple nodes might end up being converted on a single burst
 - Hot Spot Effects on remote nodes
 - All load-balancers might try to get load information from the same node
 - They might try to convert the same node
 - Additional Logic Required !

Locking Mechanism

- We propose a two-level hierarchical locking mechanism
 - Internal Lock for each web-site cluster
 - Only one load-balancer in a cluster can attempt a reconfiguration
 - External Lock for performing reconfiguration
 - Only one web-site can convert any given node
 - Both locks performed remotely using InfiniBand Atomic Operations

Tackling Load-Balancing Delays

- Load-Balancing Delays
 - After a reconfiguration, balancing of load might take some time
 - Locking mechanisms only ensure no simultaneous transitions
 - We need to ensure that all load-balancers are aware of reconfigurations

- Dual Counters
 - Shared Update Counter (SUC)
 - Local Update Counter (LUC)
- On reconfiguration:
 - LUC should be equal to SUC
 - All remote SUCs are incremented

NETWORK-BASED

Experimental Test-bed

- Cluster 1 with:
 - 8 SuperMicro SUPER X5DL8-GG nodes; Dual Intel Xeon 3.0 GHz processors
 - 512 KB L2 cache, 1 GB memory; PCI-X 64-bit 133 MHz
- Cluster 2 with:
 - 8 SuperMicro SUPER P4DL6 nodes; Dual Intel Xeon 2.4 GHz processors
 - 512 KB L2 cache, 512 MB memory; PCI-X 64-bit 133 MHz
- Mellanox MT23108 Dual Port 4x HCAs; MT43132 24-port switch
- Apache 2.0.50 Web and PHP servers; MySQL Database server
- Experimental Results (Outline)
 - Basic IBA Performance
 - Impact of Background Computation Threads
 - Impact of Request Burst Length
 - Node Utilizations

Basic IBA Performance

- RDMA Read operation on IBA outperforms TCP/IP (IPoIB)
 - IBA achieves about 12us latency compared to the 56us of IPoIB
 - IBA achieves about 830 MBps bandwidth compared to the 230 MBps of IPoIB
- More importantly near zero CPU requirements on the receiver side

Impact of Background Threads

- Remote memory operations are not affected AT ALL with remote server load
- Ideal for the data-center environment

STATE

Impact of Burst Length

- Rigid has 3 nodes for each website; Over-provisioning has 6 nodes for each website
- Large Burst Length allows reconfiguration of the system closer to the best case!
- •Performs comparably with the static scheme for small burst sizes

Node Utilization for 3 Co-hosted Web sites

• For large burst lengths, the reconfiguration time is negligible; performance is better

Presentation Roadmap

Concluding Remarks

- Growing Fragmentation of resources in data-centers
 - Related services provided by Multi-Tier Data-Centers
 - Unrelated services provided by Shared Data-Centers
- Dynamically configuring resources allotted
 - A common approach used in clusters
 - Data-Center environment has its own challenges
 - Highly loaded back-end servers
 - Compatibility with existing applications
- Provided a novel approach utilizing the RDMA features of IBA
 - A scheme resilient to the load on the back-end servers
 - Demonstrated up to 2.5 times improvement in the throughput
 - Similar performance using only half the nodes

Continuing and Future Work

- Multi-Stage Reconfigurations
 - Least loaded servers might not be the best server to reconfigure
 - Caching constraints
 - Replicated Databases
 - Hardware heterogeneity
- Utilizing Dynamic Reconfigurability for advanced services
 - QoS guarantees
 - Differentiation in the resources provided

Thank You!

For more information, please visit the

http://nowlab.cis.ohio-state.edu

Network Based Computing Laboratory,

The Ohio State University

Backup Slides

STATE