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Accelerator Era 

•  Accelerators are becoming common in high-end system architectures 

•  Increasing number of workloads are being ported to take advantage of GPUs 

•  As they scale to large GPU clusters with high compute density – higher the  
synchronization and communication overheads – higher the penalty 

•  Critical to minimize these overheads to achieve maximum performance 
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Partitioned Global Address Space (PGAS) Models 

•  PGAS models, an attractive alternative to traditional message passing 

–  Simple shared memory abstractions 

–  Lightweight one-sided communication 

–  Flexible synchronization 

–  Lower synchronization and communication overheads – fit the requirements for 
GPU computing ? 

•  OpenSHMEM, a easy-to-use library based PGAS model that is gaining 
attention 

•  An effort to unify and standardize various proprietary SHMEM-like 
implementations 

•  Benefits from long standing SHMEM implementations and user base 
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The OpenSHMEM Memory Model 
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•  Defines symmetric data objects that are globally addressable  
–  Allocated using a collective shmalloc routine 

–  Same type, size and offset address at all processes/processing elements (PEs) 

–  Address of a remote object can be calculated based on info of local object 

Symmetric 
Object 

b 

b 

  PE 0   PE 1 

int main (int c, char *v[]) { 
    int *b; 
    start_pes();  
    b =  (int *) shmalloc (sizeof(int)); 

    shmem_int_get (b, b, 1 , 1); 
}                            (dst, src, count, pe)   

int main (int c, char *v[]) { 
    int *b; 

    start_pes();  
    b =  (int *) shmalloc (sizeof(int)); 

} 
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Limitations of OpenSHMEM for GPU Computing 
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•  OpenSHMEM memory model does not support disjoint memory address 
spaces - case with GPU clusters  
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PE 0 

Existing OpenSHMEM Model with CUDA  

•  Copies severely limit the performance  

PE 1 

GPU-to-GPU 
Data Movement 

PE 0 

cudaMemcpy (host_buf, dev_buf,  . . . ) 
shmem_putmem (host_buf, host_buf, size, pe) 
shmem_barrier (…) 

host_buf = shmalloc (…) 

PE 1 

shmem_barrier ( . . . ) 
cudaMemcpy (dev_buf, host_buf, size, . . . ) 

host_buf = shmalloc (…) 

•  Synchronization negates the benefits of one-sided communication 



Can we do better? 
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PE 0 

Proposed OpenSHMEM Model 

•  High performance – Preserve one-sided semantics 

PE 1 

GPU-to-GPU 
Data Movement 

PE 0 
shmem_putmem (dev_buf, dev_buf, size, pe) 

PE 1 

<< not involved >> 



Problem Statement 
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Can we extend the OpenSHMEM memory model to allow direct communication from 
GPU device memory?  

Can we design an OpenSHMEM runtime system to achieve the maximum performance 
for different GPU configurations?  

Can the performance benefits offered by the OpenSHMEM runtime result in 
improvements in performance of applications?  

Can the extensions be interoperable with both CUDA and OpenCL for wider 
acceptance in the GPU computing community?  



Proposed Design Framework 

HPC Applications & Kernels 

OpenSHMEM CUDA 
OpenCL 

Multi-core Nodes InfiniBand Network 

Modern HPC System Architecture 

GPUs 

High Performance OpenSHMEM Runtime 
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Intra-Node 

Intra-IOH Inter-IOH Inter-Node 

Extensions 
(performance, interoperability) 
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HPC Applications & Kernels 

OpenSHMEM Extensions 
(performance, interoperability) CUDA 

OpenCL 

Multi-core Nodes InfiniBand Network 

Modern HPC System Architecture 

GPUs 

High Performance OpenSHMEM Runtime 
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Intra-IOH Inter-IOH Inter-Node 
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Evaluating Existing Alternatives 
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•  Heap Selection (based on UPC extensions by Zheng et. al. and Luo et. al. ) 
–  Extensions to select memory domain before allocation 

–  Shmalloc can return CPU and GPU buffers 

PE 0 

shmem_putmem (dev_buf, dev_buf, size, pe) 

PE 1 

<set memory domain to GPU> 

<set memory domain to GPU> 
dev_buf = shmalloc (size) 

dev_buf = shmalloc (size) 

•  We saw limitations as we went into the details 
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•  Usability of shmalloc’ed buffers in CUDA/OpenCL calls 

–  OpenCL operates on data objects - require an address to object conversion 

•  Device buffer detection in OpenSHMEM communication calls 

–  Not an issue with CUDA with Unified Virtual Addressing (UVA) 

–  OpenCL standard does not offer a feature equivalent to UVA - user has to indicate the type of 
buffer with each call or OpenSHMEM runtime needs a way to differentiate 

•  Context Management 

–  CUDA provides separate API calls to set context,  user can select context before 
making OpenSHMEM calls 

–  Context is required as a parameter in several calls, need a way for user and runtime to 
exchange context information 

•  These complications arise as OpenSHMEM handles allocation of GPU device 
buffers 

Interoperability with CUDA and OpenCL 



Proposed Extension: shmmap 
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•  Let users mange device buffer allocation 

•  Allow buffers to be mapped onto a symmetric address space for communication 

void *shmmap (void *obj, size t size, int obj type); 
void shmunmap (void *ptr);   

•  obj 
–  a pointer to OpenCL memory 

object 
–  adevice buffer pointer with CUDA 

•  size 
•  type 

–  OSHM_MEMTYPE_CUDA 

–  OSHM_MEMTYPE_OPENCL 

Device 
Buffer 

Reserved Map 
Address Space 

shmmap 

mapped vaddr 

•  The address can be used in OpenSHMEM communication calls 

•  Note that the map address space is only virtual addresses 



Proposed Extension and Interoperability 
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•  Shmmap follows semantics similar to shmalloc routine – collective and 
symmetric 

•  Symmetric map allows for translation from local map address to remote map 
address 

•  The map address is then translated to the memory object or device address 

•  Buffer usability in CUDA/OpenCL calls 

–  User has complete control of the allocated buffers or buffer objects 

•  Device buffer detection 
–  A simple check owing to reserved virtual address space for symmetric mapping 

•  Context management 
–  Users have complete control of context information  

–  OpenSHMEM runtime can get OpenCL context information using clGetMemObjectInfo on 
the memory object 
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Design Framework 
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OpenSHMEM CUDA 
OpenCL 

Multi-core Nodes InfiniBand Network 

Modern HPC System Architecture 

GPUs 

High Performance OpenSHMEM Runtime 
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Intra-IOH Communication with CUDA 
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•  CUDA offers Inter-Process Communication 
(IPC), a host-bypass for GPU-GPU transfers  

HOST 

IOH 

GPU0 GPU1 

P0 P1 Intra-IOH 

CUDA IPC 

•  One process can map another process’s 
device buffer into its address space 

•  Single copy to move data between processes 

•  Buffers are mapped during shmmap, data 
movement fits well with one-sided 
semantics in OpenSHMEM 

•  However, this works only when GPUs are 
on the same IOH or Socket 

•  We work around this limitations by using a 
“shadow context” 



Inter-IOH Communication with CUDA:  
 Shadow Context 
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•  CUDA supports P2P transfers between GPUs on different IOHs within one 
process (staged through the host by the driver but still single copy call) 

HOST 

IOH 

GPU0 GPU1 

IOH 

Inter-IOH P0 P1 

P0’s 
Shadow 
Context 

P1’s 
Shadow 
Context 

•  Each process creates a “shadow” context on remote process’s GPU -  during 
init  

•  In shmmap call – process switches to shadow context, maps remote 
process’s buffer using CUDA IPC and switches back to original context 

•  Uses P2P transfers for GPU-GPU communication, one-sided  
P0 
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Inter-Node Communication with CUDA 
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•  Pipelined data transfers through host memory - overlap between CUDA copies and 
IB transfers  

•  Used light-weight CUDA events for synchronization instead of streams 

•  Service-thread offered by OpenSHMEM reference implementation for asynchronous 
and one-sided progress 

•  We follow similar designs with OpenCL and more designs discussed in the paper 

HOST 

IOH 

HOST 

IOH 

GPU1 GPU0 

Inter-Node 
P0 P1 
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•  Micro-benchmark level evaluation 
–  A westmereep cluster, each node has 

•  Each node has two Intel Xeon E5645 quad-core CPUs, 12GB RAM 

•  Mellanox MT26428 QDR HCA  

•  Two NVIDIA  C2075 GPUs with 5GB Memory  

•  Red Hat Linux 5.4, OFED 1.5.1 and CUDA 4.1 
•  Application Kernel level evaluation 

–  XSEDE Keeneland-KIDS cluster  
•  Two Intel Xeon X5560 six- core CPUs , 32GB RAM 

•  Mellanox MT4099 IB FDR HCA  

•  Three NVIDIA Tesla M2090 GPUs   

•  OpenSHMEM Reference Implementation v1.0b 

•  OSU Micro-Benchmarks & SHOC Benchmark Suite 

Experimental Setup 
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Intranode Communication using CUDA 
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Small Messages Large Messages 

shmem_getmem 

•   CUDA IPC significantly improves intra-IOH GPU-GPU communication –        
90% improvement for 4Byte and 72% for 4MByte messages 

•   “shadow context” and P2P copies provides single copy for inter-IOH transfers - 
40% improvement for 4Byte and 45% improvement for 4MByte messages  
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Internode Communication using CUDA 
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Small Messages Large Messages 

shmem_getmem 

One-sided Progress 

•  Small messages benefit from selective 
CUDA registration – 17% for 4Byte messages 

•  Large messages benefit from pipelined 
overlap – 42% for 4MByte messages 

•  Service thread enables one-sided 
communication 
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Internode Communication using OpenCL 
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Small Messages Large Messages 

shmem_putmem 

•  Similar latency and benefits as with CUDA – 42% for 4MByte messages 
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Stencil2D Kernel 
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•  Modified SHOC Stencil2D kernelto use OpenSHMEM for cluster level parallelism 

•  The enhanced version shows 65% improvement on 192 GPUs  with 4Kx4K problem 
size/GPU 

•  Using OpenSHMEM for GPU-GPU communication allows runtime to optimize non-
contiguous transfers   
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BFS Kernel 
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•  Extended SHOC BFS kernel to run on a GPU cluster using a level-synchronized 
algorithm and OpenSHMEM 

•  The enhanced version shows upto 12% improvement on 96 GPUs, a consistent 
improvement in performance as we scale from 24 to 96 GPUs.  
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Conclusion and Future Work 
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•  Usability of OpenSHMEM on GPU clusters is severely limited 

•  Proposed extensions to the OpenSHMEM memory model to alleviate this, 
interoperable with both CUDA and OpenCL 

•  Presented a high-performance OpenSHMEM runtime including novel 
designs like shadow context 

•  Upto 90% improvement in inter-node GPU-GPU transfers and upto 42% 
improvement for inter-node GPU-GPU communication 

•  Demonstrated benefits using Stencil2D and BFS kernels 



Conclusion and Future Work 
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•  Current focus on runtime level optimizations using CUDA features like 
GPUDirect RDMA 

•  To re-design wider range of applications using the extended OpenSHMEM 
model 



   Thank You! 
{potluri, bureddy, wangh, subramon, panda}@cse.ohio-state.edu, 

Network-Based Computing Laboratory 
http://nowlab.cse.ohio-state.edu/ 
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