Efficient Intra-node Communication on Intel MIC Clusters

Sreeram Potluri Akshay Venkatesh Devendar Bureddy

Krishna Kandalla Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering
The Ohio State University
Outline

• Introduction

• Problem Statement

• Hybrid MPI Communication Runtime

• Performance Evaluation

• Conclusion and Future Work
Many Integrated Core (MIC) Architecture

- Hybrid system architectures with graphics processors have become common - high compute density and high performance per watt
- Intel introduced Many Integrated Core (MIC) architecture geared for HPC
- X86 compatibility - applications and libraries can run out-of-the-box or with minor modifications
- Many low-power processor cores, hardware threads and wide vector units
- MPI continues to be a predominant programming model in HPC
Programming Models on Clusters with MIC

- Xeon Phi, the first commercial product based on MIC architecture
- Flexibility in launching MPI jobs on clusters with Xeon Phi
MPI Communication on Node with a Xeon Phi

• Various paths for MPI communication on a node with Xeon Phi
Symmetric Communication Stack with MPSS

- MPSS – Intel Manycore Platform Software Stack
 - Shared Memory
 - Symmetric Communication InterFace (SCIF) – over PCIe
 - IB Verbs – through IB adapter
 - IB-SCIF – IB Verbs over SCIF
Problem Statement

What are the performance characteristics of different communication channels available on a node with Xeon Phi?

How can an MPI communication runtime take advantage of the different channels?

Can a low latency and high bandwidth *hybrid communication channel* be designed, leveraging the all channels?

What is the impact of such a *hybrid communication channel* on performance of benchmarks and applications?
Outline

• Introduction

• Problem Statement

• Hybrid MPI Communication Runtime

• Performance Evaluation

• Conclusion and Future Work
MVAPICH2/MVAPICH2-X Software

- High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP and RDMA over Converged Enhanced Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-3.0), available since 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2012
 - Used by more than 2,000 organizations (HPC Centers, Industry and Universities) in 70 countries
 - More than 165,000 downloads from OSU site directly
 - Empowering many TOP500 clusters
 - 7th ranked 204,900-core cluster (Stampede) at TACC
 - 14th ranked 125,980-core cluster (Pleiades) at NASA
 - and many others
 - Available with software stacks of many IB, HSE and server vendors including Linux Distros (RedHat and SuSE)
 - http://mvapich.cse.ohio-state.edu
- Partner in the U.S. NSF-TACC Stampede (9 PFlop) System
Intra-MIC Communication

- Shared Memory Interface (CH3-SHM)
 - POSIX Shared Memory API
 - Small Messages: pair-wise memory regions between processes
 - Large Messages: buffer pool per process, data is divided into chunks (8KB) to pipeline copy in and copy out
 - MPSS offers two implementations of `memcpy`
 - multi-threaded copy
 - DMA-assisted copy: offers low latency for large messages
 - We use 64KB chunks to trigger the use of DMA-assisted copies for large messages
Intra-MIC Communication

- SCIF Channel (CH3-SCIF)
 - Control of DMA engine to the user
 - API for remote memory access:
 - Registration: `scif_register`
 - Initiation: `scif_writeto/readfrom`
 - Completion: `scif_fence_signal`
 - We use a write-based rendezvous protocol
 - Sender sends *Request-To-Send (RTS)*
 - Receiver responds with *Ready-to-Receive (RTR)* with registered buffer offset and flag offset
 - Sender issues `scif_writeto` followed by `scif_fence_signal`
 - Both processes poll for flag to be set
Host-MIC Communication

- **IB Channel (OFA-IB-CH3)**
 - Uses IB verbs
 - Selection of IB network interface to switch between IB and IB-SCIF

- **SCIF-CH3**
 - Can be used for communication between Xeon Phi and Host
Host-MIC Communication: Host-Initiated SCIF

- DMA can be initiated by host or Xeon Phi
- But performance is not symmetric
- Host-initiated DMA delivers better performance
- Host-initiated mode takes advantage of this
 - Write-based from Host-to-Xeon Phi
 - Read-based transfer from Xeon Phi-to-Host
- Symmetric mode to maximize resource utilization on host and Xeon Phi
Outline

• Introduction

• Problem Statement

• Hybrid MPI Communication Runtime

• Performance Evaluation

• Conclusion and Future Work
Experimental Setup

- TACC Stampede Node
 - Host
 - Dual-socket oct-core Intel Sandy Bridge (E5-2680 @ 2.70GHz)
 - CentOS release 6.3 (Final)
 - MIC
 - SE10P (B0-KNC)
 - 61 cores @ 1085.854 MHz, 4 hardware threads/core
 - OS 2.6.32-279.el6.x86_64, MPSS 2.1.4346-16
 - Compiler: Intel Composer_xe_2013.2.146
 - Network Adapter: IB FDR MT 4099 HCA
 - Enhanced MPI based on MVAPICH2 1.9
Intra-MIC Point-to-Point Communication

- SHM (DEFAULT)
- SHM-TUNED
- SHM-SCIF

Latency (usec) vs Message Size (Bytes)
- Default chunk size severely limits performance
- Tuned block size alleviates it but shm performance still low
- Using SCIF works around these limitations – 75% improvement in latency, 4.0x improvement in b/w over SHM-TUNED

Bandwidth (MB/sec) vs Message Size (Bytes)

Better

osu_latency

osu_bw
Host-MIC Point-to-Point Communication

- IB provides a low-latency path – 4.7μsec for 4Byte messages
- IB-SCIF overheads due to SCIF and additional software layer
- SCIF designs are already hybrid, use IB for small messages
- SCIF outperforms IB for large messages – 72% improvement for 4MB messages
- Host-Initiated SCIF takes advantage of faster DMA – 33% improvement over SCIF for 64KB messages
Host-MIC Point-to-Point Communication

- **osu_bw: mic-to-host**
 - IB bandwith limited mic-to-host due to peer-to-peer limitation on Sandy Bridge
 - SCIF works around this, Host-initiated DMA delivers better bandwidth too – 6.6x improvement over IB
 - Host-initiated SCIF worse than SCIF in bibw due to wasted resources

- **osu_bw: host-to-mic**
 - Better

- **Better**
Collective Communication

- 16 processes on host + 16 processes on MIC
- Host-initiated SCIF or symmetric SCIF based on the communication pattern and message size, collective level selected
- Gather, rooted collective uses host-initiated SCIF – 75% improvement in at 1MB
- All-to-all uses symmetric SCIF – 78% improvement at 1MB
Performance of 3D Stencil Communication Benchmark

- Near-neighbor communication – upto 6 neighbors – 64KB messages
- 67% improvement in time per step
Performance of P3DFFT Library

- (MPI + OpenMP) version of popular library for 3D Fast Fourier Transforms - test performs forward transform and a backward transform in each iteration
- 2 processes on Host (8 threads/process) + 8 processes on MIC (8 threads/process)
- Uses symmetric SCIF because of the MPI_Alltoall
- Upto 19% improvement using SCIF-ENHANCED
Conclusion and Future Work

- A hybrid communication runtime to optimize intranode MPI communication on clusters with Xeon Phi
- Take advantage of SCIF in addition to standard channels like shared memory and IB
- Upto 75% improvement in latency and 6x improvement in unidirectional bandwidth for MIC-Host Communication
- Upto 78% improvement in MPI_Alltoall performance
- Considerable improvements with 3DStencil and P3DFFT kernels
- Focus on optimizations for shared memory based communication
- Working on designs for inter-node communication on clusters with Xeon Phi
Thank You!

{potluri, akshay, bureddy, kandalla, panda} @cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/