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Abstract

All-to-all broadcast is one of the common collective
operations that involve dense communication between
all processes in a parallel program. Previously, pro-
grammable Network Interface Cards (NICs) have been
leveraged to efficiently support collective operations,
including barrier, broadcast, and reduce. This paper
explores the characteristics of all-to-all broadcast and
proposes new algorithms to exploit the potential ad-
vantages of NIC programmablity. Along with these al-
gorithms, salient strategies have been used to provide
scalable topology management, global buffer manage-
ment, efficient communication processing, and message
reliability. The algorithms have been incorporated into
a NIC-based collective protocol over Myrinet/GM. The
NIC-based all-to-all broadcast operations improve all-
to-all broadcast bandwidth over 16 nodes by a factor
of 3, compared to host-based all-to-all broadcast opera-
tion. Furthermore, the NIC-based operations have been
demonstrated to achieve better scalability to large sys-
tems and very low host CPU utilization.

1. Introduction

Collective communication can constitute up to 70%
of the execution time of a scientific application [10].
High-performance, scalable collective communication
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is an important factor for parallel programs in achiev-
ing good performance. The programmable processors
in some modern interconnects, including Myrinet [2]
and Quadrics [9], have been leveraged to offload com-
munication processing and optimize collective commu-
nication and synchronization [1, 4, 5, 15, 6, 14]. It
has been shown that collective operations based on pro-
grammable Network Interface Cards (NICs) reduce the
host processor involvement [5, 15], avoid round-trip PCI
bus traffic [5, 15], and increase the tolerance to pro-
cess skew [3, 15] and operating system effects [6]. To-
gether, these benefits help improve communication per-
formance in terms of latency and bandwidth.

To date, the collective communication operations that
have been studied and demonstrated as beneficial with
the NIC-based support have largely been limited to bar-
rier, broadcast, and reduce. No algorithms have been re-
ported to provide efficient NIC-based support to a com-
mon collective operation with a very dense communi-
cation pattern, such as all-to-all broadcast. In all-to-all
broadcast, every process sends the same message to all
the other processes, a procedure that implies that each
process also receives a message from every other pro-
cess. In distributed computing, all-to-all broadcast is of-
ten referred to as gossip. Because of its dense communi-
cation pattern, offloading all-to-all broadcast to the NIC
imposes a greater demand on the NIC’s limited mem-
ory and computation resources compared to other col-
lective operations. To avoid impacts on other message-
passing activities and enable efficient NIC-based all-to-
all broadcast operation, one must provide mechanisms
to handle additional design challenges, such as group
topology, buffer management, and message reliability.

In this paper, we take on these challenges. We
present scalable, high-performance NIC-based all-to-all
broadcast operations and incorporate them into a NIC-
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Fig. 1. NIC-Based All-to-All Broadcast in a NIC-
Based Collective Processing Protocol

based collective protocol. We propose two all-to-all
broadcast algorithms: concurrent broadcasting and re-
cursive doubling. Along with these algorithms, we pro-
vide salient strategies for a scalable, binomial tree-based
group topology; efficient global buffer management; ef-
ficient communication processing with fast forwarding
of packets; and reliability. The resulting all-to-all broad-
cast operations have been implemented and incorporated
into a NIC-based collective protocol over Myrinet/GM.

Compared to the host-based all-to-all broadcast op-
eration, the NIC-based operations improve broadcast
bandwidth over 16 nodes by a factor of 3. Furthermore,
the NIC-based all-to-all broadcast operations have been
demonstrated to achieve better scalability to large sys-
tems and very low host CPU utilization. To the best
of our knowledge, this paper is the first in the literature
to report efficient NIC-based all-to-all broadcast algo-
rithms over Myrinet/GM.

The rest of the paper is structured as follows. In
the next section, we describe the motivation and related
work. Section 3 gives an overview of Myrinet/GM. Sec-
tion 4 provides the design. The implementation of the
algorithms is described in Section 5. Experiments and
results are provided in Section 6. Conclusions and fu-
ture work are described in Section 7.

2. NIC-Based All-to-All Broadcast

In this section, we first discuss potential benefits of
NIC-based all-to-all broadcast. Then we briefly in-
troduce related work on efficient NIC-based collective
communications.

2.1. Potential Benefits of the NIC-Based All-to-
All Broadcast

By taking advantage of NIC programmability, the
communication processing for all-to-all broadcast is
done completely by the NIC. Host CPU is not involved
in the intermediate steps of all-to-all broadcast. Re-
search [14] demonstrates that the barrier operation can
benefit from efficient NIC-based communication pro-
cessing using a separate NIC-based collective protocol.
Figure 1 shows that all-to-all broadcast can also be tar-
geted to be part of such a separate collective protocol at
the NIC. The all-to-all broadcast operation is then pre-
sented as an application interface to user applications at
the host. All-to-all broadcast may be viewed as the same
communication pattern as barrier except for the larger
amount of data communicated between processes. Pre-
sumably, all-to-all broadcast could also take advantage
of the following benefits of NIC-based communication
processing.

Low Latency and High Bandwidth – By offloading
the all-to-all broadcast communication processing,
received data packets can be processed and for-
warded directly without making a round trip across
the PCI bus. Offloading these can speed the com-
munication in all-to-all broadcast and improve per-
formance in terms of latency and bandwidth.

High Scalability – The NIC-based all-to-all broad-
cast has the potential of increasing the scalability
of this operation. Compared to the host-based all-
to-all broadcast, the NIC-based all-to-all broadcast
comes closer to utilizing full network capacity be-
cause of fewer trips across the PCI bus and less in-
volvement of host processors.

Low Host CPU Utilization – Since the communica-
tion processing for an all-to-all broadcast operation
is completely undertaken by the NIC, a user appli-
cation needs only to invoke the all-to-all broadcast
operation through the host-side interface. It can
then do other computation that does not depend on
the results of the all-to-all broadcast operation, and
check back later for the completion of the all-to-
all broadcast operation. The effective utilization of
the computation resources is very low. So the NIC-
based all-to-all broadcast allows user applications
to have the high overall host CPU utilization if they
are able to overlap the all-to-all broadcast commu-
nication with other useful computation. However,
it does not guarantee high host CPU utilization be-
cause user applications or higher-layer middleware
libraries may still use continuous polling to check
the completion of operations.



2.2. Related Work on NIC-Based Collectives

Previous work [13, 1, 4, 5, 15, 6, 14] has exploited the
benefits of efficient collective communications by tak-
ing advantage of NIC support. Researchers [13, 1, 15]
have implemented different algorithms to provide ef-
ficient NIC-based broadcast support. All these algo-
rithms use NIC-based packet forwarding as one of the
means to speed broadcast, although they differ signifi-
cantly in their reliability and flow control mechanisms.
Researchers [5, 3, 6, 14] have also studied the bene-
fits of offloading barrier and reduce operations to the
NIC. Results indicate that the barrier and reduce oper-
ations can benefit from reduced host involvement, effi-
cient communication processing, and better tolerance to
process skew. However, none of the work cited has stud-
ied the benefits of all-to-all broadcast operations with
NIC-based support.

Earlier work [14] provided a separate NIC-based col-
lective protocol to eliminate the communication pro-
cessing redundancy and introduced additional collective
application programming interface in the user-level pro-
tocol. The work did not, however, investigate how other
collective operations can fit into and benefit from this
NIC-based protocol. Two factors must be considered.
First, an all-to-all broadcast operation essentially in-
volves multiple parallel broadcast operations, each with
every participating process being the root. This factor
suggests that an efficient NIC-based all-to-all broadcast
operation could also be possible by taking advantage
of packet forwarding and resending similar to that used
by NIC-based broadcast operations [13, 1, 5, 15]. Sec-
ond, as stated earlier, all-to-all broadcast has a commu-
nication pattern similar to that of barrier, except for the
amount of data communicated. This factor suggests all-
to-all broadcast can also benefit from the NIC-based col-
lective protocol [14].

In this work we investigate the feasibility and ben-
efits of the NIC-based all-to-all broadcast. In studying
this communication-intensive collective operation, we
also address other design issues related to an efficient
NIC-based collective protocol, including group topol-
ogy management, buffer management, scalable commu-
nication processing, and reliability.

3. Overview of Myrinet and GM

Myrinet is a high-speed interconnect technology us-
ing wormhole-routed crossbar switches to connect all
the NICs. GM is a user-level communication protocol
that runs over the Myrinet [2] and provides a reliable,
ordered delivery of packets with low latency and high

bandwidth. The basic send and receive operations work
as follows.

Sending a Message – To send a message, a user ap-
plication generates a send descriptor, referred to as a
send event in GM, for the NIC. The NIC translates the
event to a send token (a form of send descriptor that the
NIC uses) and appends it to the send queue for the de-
sired destination. With outstanding send tokens to mul-
tiple destinations, the NIC processes the tokens to dif-
ferent destinations in a round-robin manner. To send a
message for a token, the NIC also has to wait for the
availability of a send buffer to accommodate the data.
Then the data is DMAed from the host buffer into the
buffer for the send packet and the packet is injected into
the network. The NIC keeps a send record of the se-
quence number and a timestamp for each packet it has
sent. If the acknowledgment is not received within the
timeout period, the sender retransmits the packet. When
all the send records are acknowledged, the NIC passes
the send token back to the host.

Receiving a Message – To receive a message, the
host provides some registered memory as the receive
buffer by preposting a receive descriptor. A posted re-
ceive descriptor is translated into a receive token by the
NIC. When the NIC receives a packet, it checks the se-
quence number. Unexpected packets are dropped im-
mediately. For an expected packet, the NIC locates a
receive token, DMAs the packet data into the host mem-
ory, and then acknowledges the sender. When all the
packets for a message have been received, the NIC sends
a receive event to the host process indicating that a new
message has arrived.

4. Design Challenges for NIC-Based All-to-
All Broadcast

In this section, we explore the design challenges
for scalable NIC-based all-to-all broadcast. Given the
high demand of memory and computation resources
of its dense communication pattern and the limited re-
sources available at the NIC, NIC-based all-to-all broad-
cast algorithms need to minimize resource requirements.
Under this restriction, four major design issues must
be considered in order to achieve good scalability and
high performance. These are group topology manage-
ment, buffer management, communication processing,
and message reliability.

4.1. Group Topology Management

For clusters with thousands of nodes, placing the en-
tire group membership information at the NIC incurs
a large memory requirement, and this requirement is



even greater if the communication state for each peer
NIC is to be maintained. Thus it is important to pro-
vide a scalable method to store and access group topol-
ogy information and the associated group communica-
tion states. Typically, collective operations over point-
to-point links use spanning trees to cover all the nodes.
One node in a spanning tree communicates with its par-
ent node and a limited number of child nodes. The bi-
nomial tree is one of the most commonly used topolo-
gies for collective communication. It provides two ad-
vantages over other topologies. First, it can be shared
by barrier, broadcast (even with different roots), all-to-
all broadcast, and other collective operations. Second,
since the distance between any pair of directly commu-
nicating nodes is always some power of 2, updating the
communication state of peers can be easily handled by
the NIC processors using bit-shifting operations (typi-
cally, NICs are not equipped with FPU). Thus the bino-
mial tree-based topology is a good choice for scalable
group management. To achieve scalability, the entire
group topology is managed distributively. Each NIC,�
, maintains the information of NICs that are in the set� �������	��

����������������
���� �

. So, each NIC only
needs to maintain the topology and state information of! �#"$�%
&���('

NICs.

4.2. Buffer Management for NIC-Based All-to-
All Broadcast

Processes in parallel applications can reach the same
collective communication at different times. Packets can
arrive at the NIC before the host even posts the receive
buffer for the corresponding collective operation. In or-
der to allow the NIC to still receive and forward the early
arrived data packets, a system buffer must be present
to accommodate these packets. This can avoid having
to drop packets and can improve the performance of
collective communication and its tolerance to process
skew [15]. A common way of managing of collective
buffers is to provide a global virtual memory [11, 16],
which is divided into multiple channels to receive pack-
ets from multiple outstanding collective operations. The
order in which these channels are used is globally syn-
chronized across all the NICs when the collective proto-
col is initialized. At the end of each collective communi-
cation, the packets buffered in a global collective chan-
nel (identified with a global collective sequence number)
are copied to the application buffer if needed. Collective
operations with large messages can be divided into mul-
tiple collective operations.

With the inherent synchronization of all-to-all broad-
cast, the completion of an all-to-all broadcast operation
signifies to a node that all the other nodes have at least
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Fig. 2. Buffer Management for NIC-Based All-to-
All Broadcast

reached the last all-to-all broadcast operation. When all-
to-all broadcast requests are generated only after the lo-
cal completion of previous broadcast requests, the fol-
lowing two conditions are always ensured.

1. At any moment, there is at most one outstand-
ing all-to-all broadcast operation for which packets
needs to be sent out.

2. At any moment, there are at most two outstand-
ing all-to-all broadcast operations for which pack-
ets need to be received.

These conditions together simplify the management
of all-to-all broadcast buffer channels. At any moment,
only two buffer channels need to be provided for out-
standing all-to-all broadcast operations. The use of these
channels is inherently synchronized as operations rotate
through them. Figure 2 shows the management of all-
to-all broadcast buffers with two channels. Data to send
can be buffered into the channel before it is sent to avoid
having to register the memory. A message may be re-
ceived in the buffer channel if it arrives before the corre-
sponding request is posted, or if user applications choose
to use the buffer channel and avoid the memory registra-
tion cost. At the end of the operation, the buffered data
can then be copied out the channel.

4.3. All-to-All Broadcast Communication

In this subsection, we first describe the need for a dif-
ferent queuing and processing mechanism for all-to-all
broadcast requests. Then we provide the design of two
all-to-all broadcast algorithms: recursive doubling [12]
and concurrent broadcasting.

4.3.1. All-to-All Broadcast Request Queuing and Pro-
cessing

As described in the overview section, each request has
to go through different queues, waiting for the send



buffers to become available before it can send out one
of its packets and record its progress. This request is
not marked as complete until all acknowledgments come
back for the matching send records. This is the typi-
cal processing for point-to-point communications, and
it is generally fair and efficient. However, since all-to-
all broadcast needs to transmit the same data to multiple
destinations, applying the same processing mechanism
imposes unnecessary delays in the progress of an all-to-
all broadcast operation. For example, the arrived mes-
sage cannot immediately lead to the transmission of the
next message until a send packet is available and the cor-
responding request and its queue get a turn to transmit.

Thus it is desirable to have a separate queue for all-to-
all broadcast requests and manage their communication
state to different peers collectively. In doing so, not only
can all-to-all broadcast requests skip the other queues
and get processed faster, but also the complexity in the
management and ordering of collective operations can
be reduced. Because the ordering is no longer forced
with respect to other requests in different queues, trans-
mitting a packet to another destination can be accom-
plished by retransmitting a send packet without claim-
ing another send buffer. Similarly, a received packet
can be forwarded to other destinations immediately from
the receive buffer [15]. These communication process-
ing techniques can improve the performance of the NIC-
based all-to-all broadcast.

4.3.2. Recursive Doubling Algorithm

In the recursive doubling algorithm [12], each process
pairs with a peer process through bit operations and re-
cursively doubles the exchanged message size at each
step. It takes

�%
&� �
steps for a system size of

�
nodes.

This algorithm is well suited for small messages because
it can combine messages into a single packet, thus reduc-
ing the number of packets to be processed, and improv-
ing the communication performance. However, large
packets cannot be efficiently buffered and combined at
the NIC (due to slow NIC memory copy speed or insuf-
ficient NIC buffers); rather, this algorithm has to buffer
the intermediate data by copying the received data, us-
ing DMA, to the host memory and then copying it back
to the NIC for the next step of communication. It thus
does not have the benefit of avoiding round-trip PCI bus
traffic. We explore this algorithm in our design in order
to minimize the latency and shed more light on the NIC
communication processing.

4.3.3. Concurrent Broadcasting Algorithm

The concurrent broadcasting algorithm broadcasts the
data from each node to all the other nodes. Using the
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Fig. 3. Concurrent Broadcasting Algorithm for
NIC-Based All-to-All Broadcast (showing only
two nodes broadcasting)

distributively maintained binomial tree topology, each
NIC becomes a root for a different binomial spanning
tree and broadcasts its packets to the other nodes. Hav-
ing received or completed sending a data packet, a NIC
needs to reuse the data packet for fast forwarding or re-
sending. However, packets can come from any source,
and the current NIC has to perform different roles for
the broadcasting of different incoming packets. So the
NIC has to decide whether the packet needs to be sent
to a next destination and to which one. This process
has to be done efficiently and with information from the
packet. To this purpose, we have created a form of hop-
ping packets to facilitate the traversal of a packet in its
own broadcast spanning tree. Each packet is attached
with a two-tuple flag to identify the broadcast spanning
tree and the position of its traversal in the tree. As shown
in Figure 3, in a flag

! � � � ' , � denotes the rank of the orig-
inal NIC for this packet, and

�
the log of the distance it

has traversed for the current hop. The distance is mea-
sured as the difference between the ranks of NICs. The
current NIC finds out the next destination of a hopping
packet as

!�� �����
	�� � ��
 � � '
. If it is not less than the

size of the group, then there is no need for the packet to
make any further hops. Figure 3 shows how the packets
are broadcasted for an all-to-all broadcast operation with
hopping packets (only two broadcast spanning trees for
two NICs and the hopping packets are given, to avoid
complicating the graph).

The all-to-all broadcasting algorithm exploits numer-
ous packet forwarding and resending techniques and
reduces much of the traffic over the PCI bus. How-
ever, each NIC has to maintain the communication state
about the amount of data that has arrived from each peer
NIC. This requirement has two disadvantages. First,
for small-message all-to-all broadcast operations, it does
not combine the data into larger packets. Thus, for a sys-
tem size of

�
nodes, each NIC has to receive

! � ��� '

packets, and forward many received packets. So, for
small-message all-to-all broadcast operations, the re-



quired processing time increases linearly with the sys-
tem size, compared to

��
����
packets with the recursive

doubling algorithm. Second, the resource requirement
for maintaining the communication state increases lin-
early with the number of peer NICs and can lead to a
scalability constraint. To reduce this resource require-
ment, we use a status bit-vector to record the communi-
cation state. An additional integer can be used to count
the number of packets arrived. This approach reduces
both the memory requirement and the NIC processing
time, because only when all expected packets have not
arrived in time is this bit vector checked to find out the
missing packets.

4.4. Reliability

Myrinet NIC Control Program (MCP) provides error
control to ensure the reliable delivery of packets. For
each packet transmitted, one send record is created. An
acknowledgment must be returned by the receiver in or-
der for the sender to release a send record created ear-
lier. When a sender NIC fails to receive the ACK within
a timeout period specified in the send record, it retrans-
mits the packet. If the existing error control mechanism
is used for all-to-all broadcast operation, each NIC must
create �

! �('
number of send records and return �

! �('

number of acknowledgments.
An approach called receiver-driven retransmission is

provided to ensure reliable delivery of all-to-all broad-
cast messages. With the recursive doubling all-to-all
broadcast algorithm, one NIC communicates with only

�
! �%
&� �('

number of peers. Detailed bookkeeping is
possible for incoming packets from different peers with-
out leading to a scalability constraint. For this algo-
rithm, arrays of records are used to record the dynam-
ics of packets that have been sent to, or received from
each peer NIC. With the concurrent broadcasting al-
gorithm, however, the same approach is not scalable
since the number of records needed is �

! �('
. For scal-

able bookkeeping with the concurrent broadcasting al-
gorithm, we provide only a bit vector as a send record
to keep track of the arrival of packets. This allows at
most one packet from each sender to be sent at a time.
Larger all-to-all broadcast messages have to be frag-
mented and completed with multiple all-to-all broadcast
operations. Note that all this communication state infor-
mation is maintained at the NIC; it is not carried along
with any packet. With the receiver-driven approach, the
receiver NICs of the all-to-all broadcast messages no
longer need to return acknowledgments to the sender
NICs. If any expected all-to-all broadcast message is
timed out, a NACK is generated by the receiver NIC
and sent to the corresponding sender NIC. The sender

NIC then retransmits the all-to-all broadcast message.
For the all-to-all broadcast algorithm, the sender NIC is
the parent in the binomial tree that is supposed to send
that packet. The NACK can be propagated up further,
or even to the original root for the packet, if the par-
ent NIC does not have the packet. If the sender NIC
is congested by packets from other communication traf-
fic, however, the receiver has to keep retransmitting the
NACK. We choose a rather large timeout value to reduce
the frequency of the NACK retransmission and allow the
network to recover from a congested state. This reliabil-
ity scheme allows fast normal communication process-
ing for a low error rate interconnect, such as Myrinet,
while still maintaining a sentinel mechanism for error
recovery.

5. Implementation of NIC-Based All-to-All
Broadcast over Myrinet/GM

In this section we describe the implementation of the
NIC-based all-to-all broadcast in Myrinet/GM. Our im-
plementation is based on gm-2.0.3 Linux. We focus on
the initiation of NIC-based all-to-all broadcast support
and communication processing.

5.1. Group Initiation

To initialize NIC-based all-to-all broadcast support
within a group, a list of peer node IDs describing the
topology of the group is first created and posted to the
NIC, along with the preregistered system buffer. The
preallocated buffer is divided into two all-to-all broad-
cast channels. A contiguous 8 KB staging buffer is also
preallocated at the NIC to allow the group to temporar-
ily buffer received packets. At the end, a group handle is
returned to the user application for identifying the group.

5.2. All-to-All Broadcast Communication

An interface function, gm gossip(), is added to
the GM API. User applications generate all-to-all broad-
cast requests by specifying the group handle, the algo-
rithm to use, the sequence number, and send and re-
ceiver buffer information. Having detected the all-to-
all broadcast request, each node prepares the packet and
transmits the packet to the corresponding NIC accord-
ing to the specified all-to-all broadcast algorithm. At
the receive side, as packets come in, the receiving NIC
either forwards the packets to other NICs, in the case
of the concurrent broadcasting algorithm, or updates the
communication state and proceeds to the next commu-
nication steps in the case of the recursive doubling al-
gorithm. When an all-to-all broadcast request is com-



pleted, a new receive event is generated to the host re-
ceive queue. A user application then detects the com-
pletion through such an event.

6. Performance Evaluation

To evaluate the performance of our protocol, we con-
ducted experiments on a 16-node cluster of 512 MB
DRAM dual-SMP 1 GHz Pentium-III, each equipped
with 33 MHz/32 bit PCI bus. Myrinet NICs on this
cluster have 133 MHz LANai 9.1 processors and 2 MB
SRAM. All nodes are connected to a Myrinet 2000 net-
work. Our NIC-based implementation over Myrinet is
based on GM-2.0.3. Our modification is done by leav-
ing the code for other types of communications mostly
unchanged. Our evaluation indicates that the modifi-
cation has no noticeable impact on the performance of
other types of communication. To avoid any possible
impact from the network topology and the allocation of
nodes, we initially performed our experiments with ran-
dom permutation of the nodes. We observed only negli-
gible variations in the performance results.

The NIC-based all-to-all broadcast performance is
measured as the time between when an all-to-all broad-
cast request is sent to the NIC and when its completion
is detected through a receive event. A microbenchmark
is used to measure the average time of 5,000 iterations
after the first 20 warm-up iterations. The bandwidth is
taken as the total number of bytes broadcast by each pro-
cess divided by the time to perform an all-to-all broad-
cast operation. From the two typical host-based all-to-
all broadcast algorithms, our experiments indicate that
ring-based pipelining provides better performance than
the does recursive doubling. Thus we choose the re-
cursive doubling algorithm in our microbenchmark for
measuring host-based all-to-all broadcast performance.

6.1. Latency and Bandwidth

Figure 4 shows the latency comparisons between the
host-based all-to-all broadcast operation and the NIC-
based all-to-all broadcast with the concurrent broadcast-
ing (NIC-CB) and recursive doubling (NIC-RD) algo-
rithms. As shown in Figure 4(a), for small messages,
NIC-RD provides the best performance, compared to
NIC-CB or the host-based all-to-all broadcast. The rea-
son is that the NIC-RD algorithm can enjoy the benefits
of fast communication processing at the NIC, while, at
the same time, it is able to combine small messages into
larger packets and does not suffer from having to process
a linear scaling number of packets from all the other pro-
cesses, as is the case for NIC-CB. In contrast, for large
messages, the NIC-CB algorithm provides the best per-

formance compared to NIC-RD or the host-based all-
to-all broadcast. The reason is that the combined mes-
sages can no longer fit into a single MTU and they are
still fragmented into packets at the NIC, so the recur-
sive doubling algorithm no longer benefits from message
combining, whereas NIC-CB still benefits from fast for-
warding and retransmitting of the received (or transmis-
sion completed) packets. Both NIC-based algorithms
perform better than the host-based all-to-all broadcast
for large messages. Figure 4(b) shows the latency com-
parisons for large messages. NIC-based algorithms can
improve performance by a factor of 3.

Figure 5 shows the bandwidth comparisons between
the host-based and the NIC-based all-to-all broadcast
algorithms. The bandwidth performance for the host-
based all-to-all broadcast drops with multipacket mes-
sages (greater than 4 KB). In contrast, the NIC-based
all-to-all broadcast operations are able to sustain their
bandwidth performance. Compared to NIC-RD, NIC-
CB can achieve better bandwidth with the benefits from
fast packets forwarding and retransmitting. Figure 6
shows the performance improvement factor of the NIC-
based all-to-all broadcast algorithms. Over the 16-node
cluster with LANai 9.1 cards, the concurrent broadcast-
ing algorithm provides an improvement factor of up to
3.01 for large messages, and the recursive doubling al-
gorithm provides an improvement factor of up to 1.54
for small messages.

6.2. Scalability

Figure 7 shows the scalability comparisons between
the host-based and the NIC-based all-to-all broadcast al-
gorithms with 4 byte small messages and 4 KB large
messages. For small messages, NIC-RD provides the
best scalability because it benefits from offloaded com-
munication processing and combining of small mes-
sages into larger packets. In contrast, NIC-CB performs
the worst as the system size increases. The reason is
that it does not combine small messages and hence the
communication processing time for a large number of
packets dominates over its benefits of message forward-
ing. These results are shown in Figure 7(a). For large
messages, the NIC-CB algorithm provides the best scal-
ability because it has the benefits the communication of-
floading and also the benefits of fast message forward-
ing. The other two algorithms do not have these fea-
tures and have lower scalability, while the NIC-based
all-to-all broadcast with recursive doubling still provides
better scalability than the host-based all-to-all broadcast
because of communication offloading. These results are
shown in Figure 7(b).
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6.3. Host CPU Utilization

One of the major benefits of NIC-based all-to-all
broadcast is that it has low host CPU utilization. With
host-based all-to-all broadcast, the host process must
constantly poll for the arrival of messages and trigger
the next step for the all-to-all broadcast operation. The
host CPU is largely occupied during the all-to-all broad-
cast operation. Figure 8(a) shows the host CPU utiliza-
tion of host-based all-to-all broadcast over 16 nodes. In
contrast, with the NIC-based all-to-all broadcast, once
the host process sends its request to the NIC, it is free to
perform other useful computation. To determine the host
CPU utilization for the NIC-based all-to-all broadcast,
we measured the effective time that the host CPU spends
on posting the all-to-all broadcast request to the NIC
and processing the arrival of a all-to-all broadcast re-

ceive event. Figure 8(b) shows the average host CPU uti-
lization for the NIC-based all-to-all broadcast operations
with both the concurrent broadcasting and the recursive
doubling algorithms over various numbers of nodes. For
the NIC-based all-to-all broadcast algorithms, the host
CPU utilization is mostly constant over various numbers
of nodes and different sizes of messages. The reason is
that the time to post a send request to the NIC and the
time to process a receive event does not vary with respect
to the change of message size or system size. Note that
for small messages the CPU utilization is higher. The
reason is that for small messages the last-received data is
DMAed into the receiver queue along with the event, to
improve the overall performance. The host process thus
has to perform an additional memory copy to obtain the
message. Also note that user applications can perform
nonblocking NIC-based all-to-all broadcast, where pro-
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cesses do not wait for the result from the NICs after they
have posted the requests. Instead, these processes can
perform useful computation that does not depend on the
results, and they read the result from the NICs only when
they need the data. Therefore, the NIC-based all-to-all
broadcast allows user applications to achieve high uti-
lization of the computation resources with its low CPU
utilization.

7. Conclusions and Future Work

In this paper, we have explored the challenges of sup-
porting efficient all-to-all broadcast taking the advantage
of NIC programmability. We have proposed strategies
for scalable binomial tree-based topology management,
efficient global buffer management, efficient commu-
nication processing, and message reliability. We have
designed scalable, high-performance NIC-based all-to-
all broadcast with concurrent broadcasting and recur-

sive doubling algorithms. The resulting NIC-based op-
erations have been implemented and incorporated into a
NIC-based collective protocol [14] over Myrinet/GM.

Compared to the host-based all-to-all broadcast, the
NIC-based all-to-all broadcast operations improves all-
to-all broadcast bandwidth over 16 nodes by a factor
of 3. The NIC-based all-to-all broadcast with recursive
doubling algorithm is more scalable for small messages,
and the concurrent broadcasting algorithm more scalable
for large messages. Furthermore, the NIC-based all-to-
all broadcast operations have very low host CPU uti-
lization, which allows user applications to achieve high
CPU utilization when the operation is used in a non-
blocking manner.

We intend to extend the design of this NIC-based all-
to-all broadcast to MPI [7] layer and study its benefits
to applications. In addition, we intend to study its ben-
efits in other programming models, such as distributed
shared-memory [8], and their applications.
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