
ENHANCING MPI WITH MODERN NETWORKING

MECHANISMS IN CLUSTER INTERCONNECTS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Weikuan Yu, B.S., M.S.

* * * * *

The Ohio State University

2006

Dissertation Committee:

Professor Dhabaleswar K. Panda, Adviser

Professor Ponnuswamy Sadayappan

Professor Mario Lauria

Approved by

Adviser

Graduate Program in
Computer Science &

Engineering

�
Copyright by

Weikuan Yu

2006

ABSTRACT

Advances in CPU and networking technologies make it appealing to aggregate commodity

compute nodes into ultra-scale clusters. But the performance achievable is highly depen-

dent on how tightly their components are integrated together. The ever-increasing size of

clusters and applications running over them leads to dramatic changes in the requirements.

These include at least scalable resource management, fault tolerance process control, scalable

collective communication, as well as high performance and scalable parallel IO.

Message Passing Interface (MPI) is the de facto standard for the development of parallel

applications. There are many research efforts actively studying how to leverage the best per-

formance of the underlying systems and present to the end applications. In this dissertation,

we exploit various modern networking mechanisms from the contemporary interconnects and

integrate them into MPI implementations to enhance their performance and scalability. In

particular, we have leveraged the novel features available from InfiniBand, Quadrics and

Myrinet to provide scalable startup, adaptive connection management, scalable collective

operations, as well as high performance parallel IO. We have also designed a parallel Check-

point/Restart framework to provide transparent fault tolerance to parallel applications.

Through this dissertation, we have demonstrated that modern networking mechanisms

can be integrated into communication and IO subsystems for enhancing the scalability, per-

formance and reliability of MPI implementations. Some of the research results have been

incorporated into production MPI software releases such as MVAPICH/MVAPICH2 and

ii

LA-MPI. This dissertation has showcased and shed light on where and how to enhance the

design of parallel communication subsystems to meet the current and upcoming requirements

of large-scale clusters, as well as high end computing environments in general.

Keywords: InfiniBand, Myrinet, Quadrics, MPI, Parallel IO, RDMA

iii

To my wife, Juan Gao;

my kids, Wen-rui and Michael;

and my parents, Gongyuan and Zhixiu.

iv

ACKNOWLEDGMENTS

I would like to thank my adviser Prof. D. K. Panda for culturing me as a researcher in

the field of parallel and high performance computing science. I greatly appreciate his help,

support and friendship during my graduate study. I am indebted for the time and efforts

which he spent for my progress and appreciate the wisdom he shared with me.

I would also like to thank the other members of my dissertation committee, Prof. P. Sa-

dayappan and Prof. M. Lauria, for their valuable comments and suggestions.

I gratefully acknowledge the financial support provided by the Ohio State University,

National Science Foundation (NSF), and Department of Energy (DOE).

I am grateful to Dr. Darius Buntinas, Dr. Pete Wyckoff and Piyush Shivam for their

efforts and time in guiding me through the basics during the first year of my Ph.D. program.

I would also like to thank Dr. Rich Graham, Dr. David Daniel and Tim Woodall for

their guidance and support during my summer intern at Los Alamos National Laboratory.

I am very fortunate to have worked with many current and previous members of NOWLAB:

Jiuxing, Jiesheng, Pavan, Bala, Adam M., Sayantan, Shuang, Lei and Qi. I am grateful for

their valuable comments, suggestions and critiques.

I am also thankful to other members of NOWLAB, especially Jin, Gopal, Amith, Sundeep,

Karthik, Adam W., Wei, Matt and Prachi for their discussions on technical and non-technical

issues, as well as their friendship.

v

Finally, I would like to thank my family: my wife, Juan Gao, my kids, Wen-rui and

Michael, my sisters, Weiqiong and Weizhen, and my parents, Gongyuan and Zhixiu for their

support, love, encouragement and also patience throughout my long journey of study over

all these years.

vi

VITA

1974 . Born – Xiantao, Hubei Province,
China, 433013

July 1995 . B.S. – Genetics,
Wuhan University, China

June 1998 .M.S. – Molecular Cellular Biology,
Chinese Academy of Science, Shanghai

August 2001 . M.S. – Mol. Dev. & Cellular Biology,
The Ohio State University, Ohio

December 2004 .M.S. – Computer Science,
Continued in Ph.D Track,
The Ohio State University, Ohio

September 2004 – Present .Graduate Research Associate,
The Ohio State University, Ohio

June 2004 – September 2004 Summer Intern,
Los Alamos National Laboratory

June 1999 – June 2004 . Graduate Teaching/Research Associate,
The Ohio State University, Ohio

PUBLICATIONS

W. Yu, S. Sur, D. K. Panda, R. T. Aulwes and R. L. Graham. “High Performance Broadcast
Support in LA-MPI over Quadrics”. Special Issue of The International Journal of High

Performance Computer Applications. March 2005.

J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, P. Wyckoff, and D. K.

Panda. “Micro-Benchmark Performance Comparison of High-Speed Cluster Interconnects”.
IEEE Micro, January, 2004.

vii

Q. Gao, W. Yu and D. K. Panda. “Application-Transparent Checkpoint/Restart for
MPI Programs over InfiniBand”. The 35th International Conference for Parallel Processing

(ICPP’06), Columbus, OH, August 14-18, 2006.

S. Liang, W. Yu and D. K. Panda. “High Performance Block I/O for Global File System
(GFS) with InfiniBand RDMA”. The 35th International Conference for Parallel Processing

(ICPP’06), Columbus, OH, August 14-18, 2006.

W. Yu, R. Noronha, S. Liang and D. K. Panda. “Benefits of High Speed Interconnects to
Cluster File Systems: A Case Study with Lustre”. International Workshop on Communica-

tion Architecture for Clusters (CAC ’06), held together with IPDPS ’06.

W. Yu, Q. Gao and D. K. Panda. “Adaptive Connection Management for Scalable MPI

over InfiniBand”. International Parallel and Distributed Processing Symposium (IPDPS ’06).
Rhodes Island, Greece. April 2006.

W. Yu and D. K. Panda. “Benefits of Quadrics Scatter/Gather to PVFS2 Noncontiguous

IO”. International Workshop on Storage Network Architecture and Parallel IO. Held with the
14th International Conference on Parallel Architecture and Compilation Techniques. Sept

2005. St Louis, Missouri.

P. Balaji, W. Feng, Q. Gao, R. Noronha, W. Yu and D. K. Panda. “Head-to-TOE Com-
parison for High Performance Sockets over Protocol Offload Engines”. In the proceedings

of IEEE International Conference on Cluster Computing (Cluster ’05), September 2005,
Boston, Massachusetts.

W. Yu, S. Liang and D. K. Panda. “High Performance Support of Parallel Virtual File

System (PVFS2) over Quadrics”. The 19th ACM International Conference on Supercom-

puting. June 2005. Cambridge, Massachusetts.

W. Yu, T.S. Woodall, R.L. Graham and D. K. Panda. “Design and Implementation of
Open MPI over Quadrics/Elan4”. International Parallel and Distributed Processing Sympo-

sium (IPDPS ’05). Denver, Colorado. April 2005.

W. Yu, D. Buntinas, D. K. Panda. “Scalable, High Performance NIC-Based All-to-
All Broadcast over Myrinet/GM”. International Conference on Cluster Computing (Cluster

’04). San Diego, CA. September 2004.

W. Yu, J. Wu, D. K. Panda. “Fast and Scalable Startup of MPI Programs In InfiniBand
Clusters”. International Conference on High Performance Computing (HiPC ’04). Banglore,

India. December 2004.

viii

W. Yu, D. Buntinas, D. K. Panda and R. L. Graham. “Efficient and Scalable NIC-Based

Barrier over Quadrics and Myrinet”. Workshop on Communication Architecture for Clusters
(CAC ’04). Held in conjunction with IPDPS 2004. April 2004.

J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. P. Kini, W. Yu, D. Buntinas,

P. Wyckoff and D. K. Panda. “Performance Comparison of MPI implementations over
InfiniBand, Myrinet and Quadrics”. Int’l Conference on Supercomputing, (SC’03), Phoenix,

Arizona. Nov 2003.

W. Yu, S. Sur, D. K. Panda, R. T. Aulwes and R. L. Graham. “High Performance
Broadcast Support in LA-MPI over Quadrics”. In Los Alamos Computer Science Institute

Symposium, (LACSI’03), Santa Fe, New Mexico, October 2003.

W. Yu, D. Buntinas and D. K. Panda. “High Performance and Reliable NIC-Based Mul-

ticast over Myrinet/GM-2”. International Conference on Parallel Processing, (ICPP’03),
Kaohsiung, Taiwan, October 2003.

J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, P. Wyckoff, and

D. K. Panda. “Micro-Benchmark Level Performance Comparison of High-Speed Cluster
Interconnects”. In Hot Interconnects 11, (HotI’03), Stanford University. August 2003.

FIELDS OF STUDY

Major Field: Computer Science

Studies in:

Computer Architecture Prof. Dhabaleswar K. Panda
Software Systems Prof. Mario Lauria
Networking Prof. Dong Xuan

ix

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Tables . xiv

List of Figures . xv

Chapters:

1. Introduction . 1

1.1. Overview of MPI . 4

1.1.1 . MPI Collective Communication . 6
1.1.2 . MPI-IO . 6

1.1.3 . MPI Scalability and Fault Tolerance 7

1.2. Overview of InfiniBand, Quadrics and Myrinet 8
1.2.1 . InfiniBand . 8

1.2.2 . Quadrics . 9
1.2.3 . Myrinet . 10

1.3. Network Mechanisms in Modern Cluster Interconnects 12
1.4. Problem Statement . 13

1.5. Research Approaches . 17
1.6. Dissertation Overview . 19

x

2. Scalable MPI Startup over InfiniBand Clusters 21

2.1. Startup of MPI Applications using MVAPICH 22
2.2. The Scalability Problem . 23

2.3. Related Work on Job Startup and Process Management 24
2.4. Efficient Connection Setup . 25

2.5. Fast Process Initiation with MPD . 27
2.6. Experimental Results of Scalable Startup 30

2.7. Analytical Models and Evaluations for Large Clusters 31
2.8. Scalable Startup Summary . 32

3. Adapative Connection Management for Scalable MPI over InfiniBand 34

3.1. Related Work on Connection Management 37

3.2. InfiniBand Connection Management . 37
3.3. Designing Adaptive Connection Management 39

3.4. UD-Based Connection Establishment . 43
3.5. IBCM-Based Connection Establishment . 44

3.6. Performance Evaluation of Adaptive Connection Management 46
3.7. Summary of Adapative Connection Management 50

4. Checkpoint/Restart for Fault Tolerant MPI over InfiniBand 53

4.1. Parallel Coordination of Checkpoint/Restart 54
4.2. Ensuring Consistency of Global State over InfiniBand 58

4.3. Performance Evaluation of Initial Checkpoint/Restart Support 61
4.4. Summary of Process Fault Tolerance with Checkpoint/Restart 65

5. High Performance End-to-End Reliable Broadcast 67

5.1. LA-MPI Architecture . 67

5.2. Quadrics Hardware Broadcast . 69
5.3. LA-MPI Communication Flow and its Broadcast Performance 70

5.4. End-to-End Reliability with Hardware Broadcast 72
5.5. Proposed Broadcast Protocol . 75

5.6. Synchronization and Reliability . 78
5.7. Broadcast Implementation . 82

5.8. Performance Evaluation of End-to-End Reliable Broadcast 84
5.9. Summary of Scalable End-to-End Reliable Broadcast 88

xi

6. NIC-based Collective Operations over Myrinet/GM 89

6.1. Myrinet Programmability and Myrinet Control Program 90
6.2. Challenges in Designing NIC-Based Collective Operations 90

6.3. Design of NIC-based Barrier . 93
6.4. Design of NIC-based Broadcast/Multicast 96

6.5. Design of NIC-based All-to-All Broadcast 100
6.6. Results of NIC-Based Barrier . 105

6.7. Results of NIC-Based Broadcast . 109
6.8. Results of NIC-Based All-to-All Broadcast 116

6.9. Summary of NIC-Based Collective Operations over Myrinet 119

7. High Performance Parallel IO Support over Quadrics 126

7.1. Related Work for Parallel IO over Quadrics 128
7.2. Challenges in Designing PVFS2 over Quadrics/Elan4 129

7.2.1 . Overview of PVFS2 . 129
7.2.2 . Challenges for Enabling PVFS2 over Quadrics 130

7.3. Designing a Client/Server Communication Model 130
7.3.1 . Allocating a Dynamic Pool of Processes over Quadrics 131

7.3.2 . Fast Connection Management . 132
7.4. Designing PVFS2 Basic Transport Layer over Quadrics/Elan4 134

7.4.1 . Short and Unexpected Messages with Eager Protocol 135
7.4.2 . Long Messages with Rendezvous Protocol 136

7.5. Optimizing the Performance of PVFS2 over Quadrics 137
7.5.1 . Adaptive Rendezvous with RDMA Read and RDMA Write 137

7.5.2 . Optimizing Completion Notification 139

7.6. Designing Zero-Copy Quadrics Scatter/Gather for PVFS2 List IO 139
7.7. Implementation . 142

7.8. Performance Evaluation of Parallel IO over Quadrics 142
7.8.1 . Performance Comparisons of Different Communication Operations . 143

7.8.2 . Performance of Data Transfer Operations 144
7.8.3 . Performance of Management Operations 146

7.8.4 . Performance of MPI-Tile-IO . 148
7.8.5 . Benefits of Zero-copy Scatter/Gather 149

7.8.6 . Performance of NAS BT-IO . 151
7.9. Summary of Parallel IO over Quadrics . 151

8. Conclusions and Future Research Directions . 153

8.1. Summary of Research Contributions . 154

xii

8.1.1 . Scalable Startup for MPI Programs over InfiniBand Clusters 154
8.1.2 . Adaptive Connection Management for Scalable MPI over InfiniBand 155

8.1.3 . Transparent Checkpoint/Restart Support for MPI over InfiniBand . 156
8.1.4 . High Performance End-to-End Broadcast for LA-MPI over Quadrics 156

8.1.5 . Scalable NIC-based Collective Communication over Myrinet 156
8.1.6 . High Performance Parallel IO over Quadrics 157

8.2. Future Research Directions . 157

Bibliography . 161

xiii

LIST OF TABLES

Table Page

2.1 Comparisons of MVAPICH Startup Time with Different Approaches 30

3.1 Average Number of Communicating Peers per Process in some applications

(Courtesy of J. Vetter, et. al [85]) . 35

3.2 Average Number of Connections in NAS Benchmarks 47

4.1 Checkpoint File Size per Process . 62

7.1 Elan4 Capability Allocation for Dynamic Processes 132

7.2 Receiver’s Decision Table for Adaptive RDMA Rendezvous Protocol 138

7.3 Network Performance over Quadrics . 143

7.4 Comparison of the Scalability of Management Operations 147

7.5 Performance of BT-IO Benchmark (seconds) 151

xiv

LIST OF FIGURES

Figure Page

1.1 Cluster-Based High-End Computing Environment 2

1.2 Typical Software Components of MPI Implementations 5

1.3 The Switch Fabric of InfiniBand Architecture (Courtesy InfiniBand Trade

Association [43]) . 8

1.4 Quadrics Communication Architecture . 10

1.5 Myrinet LANai Network Interface . 11

1.6 Problem Space for this Dissertation . 14

2.1 The Startup of MPI Applications in MVAPICH-0.9.1 23

2.2 Parallelizing the Total Exchange of InfiniBand Queue Pair Data 26

2.3 Improving the Scalability of MPD-Based Startup 28

2.4 Performance Modeling of Different Startup Schemes 33

2.5 Scalability Comparisons of Different Startup Schemes 33

3.1 The Client/Server Model of IBCM . 39

3.2 Adaptive Connection Management in MPI Software Stack 41

3.3 UD-Based Connection Establishment . 43

3.4 Initiation Time of Different Connection Management Algorithms 48

xv

3.5 Memory Usage of Different Connection Management Algorithms 49

3.6 Latency of Different Connection Management Algorithms 50

3.7 Bandwidth of Different Connection Management Algorithms 50

3.8 Performance of IS, CG, MG, Class A . 51

3.9 Performance of BT, LU, SP, Class A . 51

3.10 Performance of IS, CG, MG, Class B . 51

3.11 Performance of BT, LU, SP, Class B . 51

4.1 MPD-based Checkpoint/Restart Framework 55

4.2 State Diagram for Checkpoint/Restart . 57

4.3 Consistency Ensurance of InfiniBand Channels for Checkpoint/Restart . . . 59

4.4 Overall Time for Checkpointing/Restarting NAS 63

4.5 Coordination Time for Checkpointing/Restarting NAS 64

4.6 Coordination Time for Checkpointing HPL 65

4.7 Performance Impact for Checkpointing NAS 66

4.8 Performance Impact for Checkpointing HPL 66

5.1 LA-MPI Architecture . 68

5.2 Quadrics Hardware Broadcast . 69

5.3 Communication Flow Path and Reliability Model in LA-MPI 71

5.4 Performance Benefits of Hardware Broadcast 73

5.5 The Overhead of Utilizing Hardware Broadcast in libelan 73

xvi

5.6 Proposed Broadcast Protocol . 75

5.7 Synchronization with Atomic Test-and-Set 79

5.8 Tree-Based Synchronization with Split-Phases 79

5.9 Unified Synchronization and Reliability Control 83

5.10 Flow Path of Broadcast Operation With Hardware Broadcast 83

5.11 Performance Comparison of Different Broadcast Algorithms 85

5.12 Broadcast Scalability with Different System Sizes 86

5.13 Impact of the Number of Broadcast Channels 86

5.14 Cost of Reliability . 87

6.1 NIC-based Barrier with Separated Collective Processing 93

6.2 Buffer Management for NIC-Based All-to-All Broadcast 102

6.3 Concurrent Broadcasting Algorithm for NIC-Based All-to-All Broadcast (show-

ing only two nodes broadcasting) . 104

6.4 Performance Evaluation of NIC-based and Host-Based Barrier Operations
with Myrinet LANai-9.1 Cards on a 16-node 700MHz cluster 106

6.5 Performance Evaluation of NIC-based and Host-Based Barrier Operations
with Myrinet LANai-XP Cards on an 8-node 2.4GHz cluster 106

6.6 Modeling of the Barrier Scalability . 108

6.7 The performance of the NIC-based (NB) multisend operation, compared to

Host-based (HB) multiple unicasts . 110

6.8 The MPI-level performance of the NIC-based (NB) broadcast, compared to
the host-based broadcast (HB), for 4, 8 and 16 node systems 111

6.9 The GM-level performance of the NIC-based (NB) broadcast, compared to

the host-based broadcast (HB), for 4, 8 and 16 node systems 112

xvii

6.10 Average host CPU time on performing MPI Bcast under different amount of

average skew with both the host-based approach (HB) and the NIC-based
(NB) approach . 122

6.11 The effect of process skew for systems of different sizes 123

6.12 All-to-All Broadcast Latency Comparisons of NIC-Based Operations with the

Concurrent-Broadcasting Algorithm (CB) and the Recursive-Doubling (RD)
Algorithm to Host-Based operations . 123

6.13 Bandwidth Comparisons of NIC-Based All-to-All Broadcast with the Con-

current Broadcasting Algorithm (CB) and the Recursive Doubling Algorithm

(RD) to Host-Based All-to-All Broadcast . 124

6.14 Improvement Factor for NIC-Based All-to-All Broadcast with the Concurrent
Broadcasting Algorithm (CB) and the Recursive Doubling Algorithm (RD) . 124

6.15 Scalability Comparisons of the NIC-Based All-to-All Broadcast with Concur-

rent Broadcasting Algorithm (CB) and Recursive Doubling Algorithm (RD)
to the Host-Based All-to-All Broadcast . 124

6.16 Host CPU Utilization Comparison of the NIC-Based All-to-All Broadcast with

the Concurrent Broadcasting Algorithm (CB) and the Recursive Doubling
(RD) Algorithm to the Host-Based All-to-All Broadcast 125

7.1 The Architecture of PVFS2 Components . 131

7.2 Connection Initiation over Native Elan4 Communication 134

7.3 Eager Protocol for Short and Unexpected Messages 135

7.4 Rendezvous Protocol for Long Messages . 137

7.5 An Example of PVFS2 List IO . 140

7.6 Zero-Copy Noncontiguous Communication with RDMA and Chained Event . 141

7.7 Performance Comparisons of PVFS2 Concurrent Read 145

7.8 Performance Comparisons of PVFS2 Concurrent Write 146

xviii

7.9 Performance of MPI-Tile-IO Benchmark . 149

7.10 Benefits of Zero-Copy Scatter/Gather to MPI-Tile-IO 150

xix

CHAPTER 1

Introduction

Because of its excellent price/performance ratio [77], cluster environment has emerged

as one of the main platforms for high end computing (HEC). Clusters of workstations have

evolved into systems with tens of thousands of processors connected with high speed net-

works [4]. As shown in Figure 1.1, a typical cluster-based HEC environment consists of three

different sets of nodes: front-end, computing cluster and storage cluster. Parallel applications

are first launched from one of the front-end nodes and scheduled to a group of computing

nodes. Many of these parallel applications demand large amounts of Input/Ouput (I/O)

services. Their performance greatly relies on how well the I/O subsystem can sustain the

demand for data requests.

Nowadays, CPU becomes more and more powerful. At the same time, more processors

are able to be aggregated into a single box. Thus, in a HEC environment with tens of

thousands of processors, the aggregated physical computing power can reach tens or hundreds

of Tera-Flops (1015 FLoating point Operations Per Sec). Department of Energy (DOE) also

has intiatives putting up several Peta-Flops (1018) computing systems in the next five years.

However, the performance that can be delivered to end applications, a.k.a efficiency, is highly

dependent on how the nodes can be integrated together for the destined functionalities of

their subsystems. Specifically, this performance efficiency is correlated to a spectrum of issues

1

including scalability, fault tolerance, collective communication, and parallel IO, etc. The

achievable performance to end applications usually falls much below the peak performance of

a cluster, i.e. the aggregated FLOPS and IO throughput from all participating nodes. Much

of this performance gap can be attributed to the cost at different layers of programming

libraries through which parallel applications access the computing and storage resources.

These include the operating system, the TCP/IP protocol and parallel programming libraries

such as MPI [52].

Figure 1.1: Cluster-Based High-End Computing Environment

Various strategies have been proposed and practically exploited to improve the communi-

cation performance. Some of them focus on optimizing the traditional TCP/IP communica-

tion path, while maintaining the interface to the user applications. Work, such as Container

shipping [67], IO-Lite [65], TCP offloading engine, and KStream IO [47] fall into this cate-

gory. Others propose new protocols that reduce or eliminate the kernel involvement from the

communication critical path. These include research projects such as AM [86], VMMC [11]

2

and FM [66], as well as commercial packages that are delivered along with the intercon-

nects, such as GM [59] and Elan libraries [73]. Using OS-bypass and zero-copy techniques,

they provide high performance communication to the application layer. MPI [53] is one of

the programming models that facilitate the development of parallel applications, and it can

leverage the benefits of those high performance protocols. MPI specifies a set of interface

for point-to-point communication, collective communication and noncontiguous communica-

tion. MPI-2 extends MPI with I/O, one-side communication, dynamic process management,

various language bindings, as well as expanded collective interfaces. Efficiently implement-

ing and optimizing MPI interfaces has been an active research field in both academia and

industrial domains.

On the other hand, high end interconnect technologies, such as Myrinet [12], Quadrics [7]

and InfiniBand [43], have provided modern networking mechanisms in software or hardware

to support high performance communication. These include OS-bypass user-level communi-

cation, remote direct memory access (RDMA) [1], atomic network operations and hardware

collective operations. Some of the interconnects provide programmable processors and a con-

siderable amount of memory in the Network Interface Cards (NICs), e.g. Myrinet, Quadrics,

and some of the new generations of 10Gigabit Ethernet interfaces. Communication sub-

systems built on top of these interconnects typically strive to expose the best performance

of their modern networking mechanisms. For example, Quadrics [73] Elan and Myrinet

GM (and newer MX) libraries [59] have offloaded part of MPI communication stack into

the network interface and provide several hardware broadcast-based collective operations;

MVAPICH/MVAPICH2 [60] leverages InfiniBand RDMA and hardware broadcast into the

MPI ADI layer implementations. These studies have suggested their benefits on improving

3

communication performance, though only a few network mechanisms have already been ex-

ploited. In this dissertation, we present our studies on how to take advantage of modern

networking mechanisms for enhancing MPI in modern cluster interconnects.

In the rest of this Chapter, we first provide an overview of MPI and relevant scalability

issues. We then provide an overview of InfiniBand, Quadrics and Myrinet, and also describe

modern networking mechanisms available from them. Following that, we present the prob-

lem statement and our research approaches. At the end, we provide an overview of this

dissertation.

1.1. Overview of MPI

In the early 1990’s, message passing was widely accepted as a promising paradigm for

building scalable parallel applications on parallel computers. The Message Passing Interface

(MPI) Forum was formed to standardize the core of message passing routines as the Message

Passing Interface (MPI) [53] based on various existed message-passing systems at that time.

MPI Forum has designed a MPI programming model with great portability, by carefully

selecting the most attractive and essential features.

MPI [53] has since established itself as the de facto parallel programming standard.

MPI-2 [54] provides extensions to the original MPI specification, including process creation

and management, one-sided communication, expanded collective operations, additional lan-

guage bindings, and MPI-IO. Various MPI-2 compliant implementations have been provided

by commercial vendors and research projects, notable ones include, Sun-MPI [76], IBM-

MPI [41], MPICH2 [57], LAM/MPI [22] and MVAPICH [60]. While MPI provides many

low-level services, such as process management, IO, communication, debugging, timing, pro-

filing, language bindings, etc, we focus on the components that are on the critical path of

4

MPI communication and IO in this dissertation. Figure 1.2 shows a generic diagram of these

software components.

Implementation Abstraction (e.g. ADI)

Communication Protocols

Message Passing Interface

MPI−IO

ADIO
Internal MPI Architecture

Point−to−Point
(Send/Receive)

Collectives
(Barrier/Bcast ...)

1

24

File SystemsManagement
Resource

Sided
One

3

Figure 1.2: Typical Software Components of MPI Implementations

MPI basic functions are a set of send and receive operations, together referred to as point-

to-point communication. A message is sent from the sender process using one of the send

routines. It is then received by the receiver process using one of the receive routines. MPI

enforces a matched, ordered message passing model. Typically, the standard blocking mode

send/receive routines: MPI Send and MPI Recv, are used. Other communication modes

such as synchronous, buffered and ready are also provided. MPI also provides a nonblocking

communication mechanism. In this mechanism, nonblocking operations are posted to initiate

the communication and return locally without waiting for the actual communication to

complete.

5

1.1.1. MPI Collective Communication

Besides basic point-to-point communication, MPI provides a large set of routines to

perform collective communication among a group of processes. An abstraction called com-

municator is used to represent process groups. In a collective operation, data is transmitted

among all the processes identified by a communicator context. The barrier operation is

provided to explicitly synchronize all the involving processes. It does not involve data com-

munication. Other collective operations include broadcast, gather/scatter, reduce, as well

as their variants. The semantics and requirements of the collective functions are simplified

in several aspects. Notably, all collective operations are strictly blocking, but each process

can complete as soon as its involvement is completed, i.e., without having to wait for the

completion of other processes. In addition, no tags are provided to match collective opera-

tions and all collective operations must strictly be matched in order. These design choices

allow easy usages for the application developers and efficient implementation for the MPI

developers.

MPI implementations typically provide basic collective communication support layered

on top of its point-to-point communication, as shown by the arrowhead 1 in Figure 1.2.

Due to the significance of collective operations in parallel processing [85], a large amount

of research has been done to improve their performance. This is often done by providing a

lightweight collective implementation directly over the underlying network protocol, shown

as the arrowhead 2 in Figure 1.2.

1.1.2. MPI-IO

MPI-IO defines a portable API for high performance parallel IO. It is designed to over-

come limitations of POSIX compliant file systems to support high performance and portable

6

parallel IO. MPI-IO employs several abstractions: derived datatypes, file view and collective

IO, to increase the expressiveness of its interface. It also supports asynchronous IO, strided

accesses, and storage layout control, allowing the underlying file system to take advantage of

this flexibility. MPI-IO also presents the IO services available from the underlying file system

to the parallel application in the form of collective IO. As shown in Figure 1.2, it utilizes col-

lective operations from an existing MPI implementation for easy collective communication

support of collective IO. Currently, ROMIO provides a portable MPI-IO implementation

using an abstract device IO interface (ADIO) [80]. It supports high performance MPI-IO

using data-sieving and two-phase collective IO techniques [81].

1.1.3. MPI Scalability and Fault Tolerance

Ultra-scale systems with tens of thousands of processors [4] lead to dramatically different

challenges and requirements, which include not only the traditional crave for low latency and

high bandwidth but also the need for scalable startup/teardown and fault-tolerant process

control. One of the major challenges in process management is the fast and scalable startup

of large-scale applications [15, 39, 46, 34, 45]. As the number of processes scales it is also a

challenge about how to establish and maintain the communication channels among all the

processes. Furthermore, statistics tells us that the failure rate of a system grows exponentially

with the number of the components. The applications running over ultra-scale systems

become more error-prone, especially as the failure of any single component tends to cascade

widely to other components because of the interaction and dependence between them. These

issues become more pronounced while the scale of these systems increases.

7

1.2. Overview of InfiniBand, Quadrics and Myrinet

In this Section, we provide a brief overview of high speed interconnects including Infini-

Band, Quadrics and Myrinet.

1.2.1. InfiniBand

The InfiniBand Architecture (IBA) [43] is an open specification designed for interconnect-

ing compute nodes, IO nodes and devices in a system area network. As shown in Figure 1.3,

it defines a communication architecture from the switch-based network fabric to transport

layer communication interface for inter-processor communication with high bandwidth and

low latency.

Figure 1.3: The Switch Fabric of InfiniBand Architecture (Courtesy InfiniBand Trade Asso-
ciation [43])

8

InfiniBand provides five types of transport services: Reliable Connection (RC), Reliable

Datagram (RD), Unreliable Connection (UC), Unreliable Datagram (UD), and raw data-

gram. It supports communications in both channel semantics with traditional send/receive

operations and memory semantics with RDMA operations, which enables zero-copy data

movement without host CPU involvement. Further details on RDMA are discussed in Sec-

tion 1.3.

1.2.2. Quadrics

Quadrics network (QsNet) [71] provides low-latency, high-bandwidth clustering technol-

ogy. In Quadrics clusters, computing nodes are connected using a quaternary fat-tree switch

network. The interface between the processing nodes and switch network is provided by

carefully designed network adaptors. The network adaptors and switches form the basic

building blocks of Quadrics. They are named as Elan4 and Elite4, respectively. The most

prominent features of Quadrics network include its ultra-low latency (0.9µs over Opteron

cluster), highly scalable hardware broadcast, programmable thread processor, as well as an

integral memory management unit (MMU) along with a TLB inside the Network Interface

Card (NIC).

Quadrics interprocess communication is supported by two deferent models: Queue-based

model (QDMA) and Remote Directed Message Access (RDMA) model. QDMA allows pro-

cesses to post messages (up to 2KB) to a remote queue of other processes. Quadrics provides

a communication architecture with several programming libraries. As shown in Figure 1.4,

these include SHMEM, libelan (with Tport), libelan3 (Libelan4 for QsNet-II) and a kernel

communication library. It also extends the underlying library with tagged message passing

9

(called Tagged Message Ports or Tport) and collective communication support. Tport in-

terface is very similar to MPI [37]. The library libelan also provides a very useful chained

event mechanism which allows one operation to be triggered upon the completion of another.

libelan,shmem

Hardware

Kernel Space

User Space

Elan Kernel
Library

IP CFS
Device
Driver

Elan{3,4} / Elite{3,4}

libelan{3,4}

Tport

User Applications

System Services

Figure 1.4: Quadrics Communication Architecture

1.2.3. Myrinet

Myrinet uses wormhole-routed crossbar switches to connect computing nodes provided

by Myricom. As shown in Figure 1.5, a Myrinet network interface consists of four major

components: a host DMA engine (hDMA) to access host memory, a send DMA engine

(sDMA) to inject message into the network, a receive DMA engine (rDMA) to drain message

from the network, a LANai processor and SDRAM memory (2 to 8MB). Latest cards also

include a copy/CRC engine to speed up the memory copying and CRC generation (LANai

XP and later), and support up to two ports (LANai XP-2). Each port supports full-duplex

2+2 Gbps link bandwidth.

10

JTAG
Interface Interface

EEPROM

CP/CRC

sDMA SDRAM

PORT

rDMA

Host Interface

LBUS

CPU

hD
M

A

Figure 1.5: Myrinet LANai Network Interface

Two alternative low-level message-passing systems are supported over Myrinet: GM and

MX. MX (Myrinet eXpress) is the new communication system for Myrinet. In this disserta-

tion, we have used GM as our basis of study. GM is a user-level communication protocol that

runs over the Myrinet [12] and provides a reliable ordered delivery of packets with low latency

and high bandwidth. GM provides communications to user application between end-to-end

communication points, called ports. All message passing must happen between registered

memory on both sides. Besides its OS-bypass network communication, these prominent

networking mechanisms are available over Myrinet: RDMA and programmable NIC proces-

sor. The programmable processor provided in the network interface lends a great degree of

flexibility to develop experimental features with different design options [66, 78, 35, 8].

11

1.3. Network Mechanisms in Modern Cluster Interconnects

In this section, we describe some modern network mechanisms in these high speed cluster

interconnects.

Remote Direct Memory Access – Remote Direct Memory Access (RDMA) is a network-

ing mechanism that enables one process to directly access the memory from another

process on a remote node, without incurring heavy load on the memory bus and host

CPU processing overhead. RDMA is provided with special hardware on the NIC. It

features zero-copy OS-bypass networking. Zero-copy means data is transferred directly

to or from application memory. OS-bypass networking means that an application in-

vokes RDMA operations from user space to the NIC without issuing a system call. This

reduces the number of context switches compared to the traditional TCP/IP protocols.

Two types of RDMA operations are available: RDMA write and RDMA read. RDMA

write transfers data from the memory of the local process to the exposed destination

memory at the remote process. RDMA read fetches data from the memory of a remote

process to local destination memory.

Programmable Network Interface – Several modern interconnects provide programmable

processors in their network interfaces [59, 73]. This increases the flexibility in the design

of communication protocols. Coupled along with OS-bypass user-level communication,

developers can choose to implement various portions of the software stack in the NIC.

Some NIC cards also provide a significant amount of memory, from 2MB up to 128MB.

For the data that needs to be immediately transmitted to the network, it is desirable

to cache the data in the NIC memory for fast re-transmission [92, 69].

12

Hardware Atomic Operations Hardware atomic operations, such as Read-Modify-Write,

Compare-and-Swap and Test-and-Set, can be utilized to synchronize the network nodes

closely and provide stronger consistency guarantees. This is applicable to both the

memory status and computation stages. Finer granularity of computation can be

achieved using its potential of synchronization.

Hardware Collective Operations Some interconnects also provide hardware collective

primitives in their networking hardware. For example, InfiniBand [43] and Quadrics [73]

provide hardware broadcast/multicast. The emerging BlueGene/L supercomputer [38,

83] provides five different networks. Two of them are intended for scalable collective

operations including broadcast, reduce and barrier. These hardware collective opera-

tions provide scalable mechanisms to synchronize and communicate data because the

network switch combines/broadcasts the data from/to the destination nodes. Other

collective operations can also take advantage of hardware collective operations by in-

corporating hardware collective support into their algorithms.

1.4. Problem Statement

Modern cluster interconnects provide new networking mechanisms in either software or

hardware to support high performance communication. As described earlier, these include

OS-bypass user-level communication, communication offloading, remote direct memory ac-

cess (RDMA), atomic network operations, hardware collective operations, programmable

network communication processor and a large amount of NIC resident memory (up to

128MB). A single interconnect may not provide all of these features. The benefits of network-

ing mechanisms have been explored in supporting some types of communication, but not the

others. For example, NIC programmability has been exploited in various ways to provide

13

offloaded communication processing and some collective operations (e.g., barrier, broadcast

and reduce [84, 9, 17, 19, 16]), but they have not been exploited to support efficient parallel

IO.

RDMA

Hardware Collectives Atomic Operations

NIC Memory

Physical Network
(10GigE, Myrinet, Quadrics, InfiniBand)

Networking Mechanisms

MPI Components
I/O

File Systems

Collectives
Point−to−Point

Programmability
Send/Receive

Management
Resource

NIC

Figure 1.6: Problem Space for this Dissertation

Figure 1.6 shows the problem space for this dissertation. We have represented the in-

tended research topics with bold arrowheads in the figure. In short, we aim to leverage

new network mechanisms further to enhance MPI based parallel computing in the following

three aspects: (a) resource management for scalable startup, connection management and

fault tolerance process control; (b) collective communication for scalable MPI collective op-

erations; (c) data movement for efficient and scalable parallel IO from computing cluster to

storage clusters. We provide the detailed problem statements as follows:

� How to design mechanisms to support scalable startup of MPI programs over Infini-

Band clusters? – The startup of a parallel program involves two steps. First, a parallel

14

job is launched by a process manager by creating a number of processes on a destined

set of computing nodes. After that, these initiated processes require assistance from

the process manager to set up peer-to-peer connections before starting parallel com-

munication and computation. Both steps can be serious bottlenecks to job startup on

very large scale platforms. It would be beneficial to analyze the startup bottlenecks

and exploit the feasibility of leveraging networking mechanisms to relieve them.

� How to provide scalable connection management for MPI over ultra-scale clusters?

– MPI assumes that all processes are logically connected and leaves the connection

management specific issues to the lower device layer. It is important to provide a

connection management policy on how to establish and maintain the communication

channels among thousands of processes, especially for connection-oriented networks,

such as InfiniBand and VIA. This is because an increasing number of connections

can lead to prolonged startup time in creating queue pairs, exchanging connection

information and establishing connections. Worse yet they can lead to heavy resource

usage including the need of to maintain a large amount of connection information,

which competes with the application data for physical memory, throttling parallel

applications throughout their entire course of execution.

� How to provide process fault tolerance support to ultra-scale clusters? – Failure rates

increase with increasing size of clusters. The applications running over large scale

systems become more error-prone, especially as the failure of any single component

tends to cascade widely to other components. On the other hand, few MPI imple-

mentations are designed with the fault tolerant support. Faults occurred during the

execution time often abort the program and the program has to start from beginning.

15

For long running programs, this can waste a large amount of computing resources as

all the computation done before the failure is lost. Thus it is desirable to provide fault

tolerance for long running applications.

� How to support scalable and reliable end-to-end broadcast communication? – Broad-

cast is one of the important collective operations, which also can be used to implement

other collective operations, such as allreduce, barrier and allgather. Quadrics network

provides a hardware broadcast primitive that can be used to support efficient, reliable

and scalable implementation of the MPI broadcast operation. However, compared

to the raw hardware broadcast performance, existing broadcast implementations over

Quadrics add more than 150% overhead to the basic hardware broadcast latency. Much

of that overhead can be attributed to the design of the current broadcast algorithm,

which enforces a synchronization before every broadcast operation. In addition, these

implementations ignore the issue of end-to-end reliable data delivery, which is solely left

to the Quadrics hardware. It remains to be investigated how one can add end-to-end

reliability to the hardware broadcast without incurring much performance impact.

� How to use Myrinet programmable NIC processor to design efficient collective opera-

tion? – It has been shown that providing NIC-based collective operations is effective

in reducing the host processor involvement [19], avoiding round-trip PCI bus traf-

fic [19, 94], increasing the tolerance to process skew [16] and OS effects [55]. In collec-

tive operations, such as broadcast and all-to-all broadcast, a process can send the same

message to many other processes. However, because of their dense communication pat-

tern, offloading these collective operations to the NIC may impose a greater demand

16

on the NIC’s limited memory and computation resources compared to other collec-

tive operations. It would be beneficial to explore the feasibility of designing efficient

algorithms for collective operations, which can complement the research on existing

NIC-based collective operations.

� How to enable high performance parallel IO over Quadrics Clusters? – The low-

overhead high-bandwidth user-level communication provided by VI [99], Myrinet [64],

and InfiniBand [90] has been utilized to parallelize I/O accesses to storage servers

and increase the performance of parallel file systems. Some of these modern fea-

tures, like RDMA, are exploited in other interconnects, e.g., Myrinet [64] and Infini-

Band [90]. However, one of the leading interconnect technologies that supports many of

the cutting-edge communication features, and provides great performance advantages,

Quadrics Interconnects [73, 7], has not been leveraged to support scalable parallel

IO at the user-level. It would be beneficial to provide this over Quadrics user-level

communication to enable scalable parallel IO over Quadrics clusters.

1.5. Research Approaches

In this section, we present our general approaches in leveraging modern networking mech-

anisms to tackle the aforementioned issues.

1. Designing scalable algorithms for efficient connection setup and adaptive

connection management – We have designed a scalable startup algorithm by pipelin-

ing the communication needed for exchanging connection information. Native Infini-

Band user-level protocol is used instead of going over TCP/IP -based data transfer.

We have also designed adaptive MPI connection management, utilizing the scalable

17

unreliable datagram (UD) transport services and InfiniBand Connection Management

(IBCM) interface.

2. Designing scalable collective operations with hardware broadcast and pro-

grammable NIC processors – Hardware broadcast operations are designed to pro-

vide scalable collective communication primitives. We have designed a communication

substrate to bridge the gap between the requirements of an end-to-end MPI imple-

mentation and the capability of Quadrics broadcast. This resulting implementation

provides a scalable end-to-end reliable broadcast operation in LA-MPI. On the other

hand, offloading the collective processing for collective operations can avoid much host

CPU involvement and avoid round-trip IO bus transactions. However, it will add ad-

ditional load to the less powerful NIC processors. We have exploited the capability

of Myrinet programmable NIC processors to provide scalable collective operations by

carefully designing NIC protocols for efficient data movement without adding too much

load into the NIC.

3. Designing efficient data movement for parallel IO with RDMA and chained

event mechanisms – We have leveraged the user-level protocol and RDMA capability

Quadrics to provide scalable and high performance parallel IO. We focus on several

issues for the utilization of Quadrics including: (a) constructing a client-server model

over Quadrics at the user-level, (b) mapping an efficient PVFS2 transport layer over

Quadrics, and (c) optimizing the performance of PVFS2 over Quadrics such as effi-

cient non-contiguous communication support. An efficient zero-copy non-contiguous

IO algorithm is also designed by chaining multiple RDMA operations with Quadrics

chained-event mechanism.

18

1.6. Dissertation Overview

Our research studies can be divided into three different aspects. In Chapters 2, 3 and 4,

we focus on scalable and fault tolerance MPI resource management issues. New algorithms

for enhancing collective operations over Quadrics and Myrinet clusters are presented in Chap-

ters 5 and 6, respectively. Chapter 7 covers our studies on enhancing MPI-IO performance.

In Chapter 2, we present our studies on scalable startup for InfiniBand clusters. We first

characterize the startup of MPI programs in InfiniBand clusters and identify two startup

scalability issues: serialized process initiation in the initiation phase and high communi-

cation overhead in the connection setup phase. To reduce the connection setup time, we

have developed one approach with data reassembly to reduce data volume, and another with

a bootstrap channel to parallelize the communication. In Chapter 3, we present adaptive

connection management in handling the scalability problems faced by a single process in

maintaining a large number of communication channels with peer processes. We have inves-

tigated two different adaptive connection management (ACM) algorithms: an on-demand

algorithm that starts with no InfiniBand RC connections; and a partial static algorithm

with only 2 ∗ logN number of InfiniBand RC connections initially. We have designed and

implemented both ACM algorithms in MVAPICH [60] to study their benefits. In Chapter 4,

we present our design of a low-overhead, application-transparent checkpoint/restart frame-

work. It uses a coordinated framework to save the current state of the whole MPI job to

reliable storage, which allows users to perform rollback recovery if the application ever falls

into some faulty state.

In Chapter 5, we present our studies in enhancing MPI collective communication with

Quadrics hardware broadcast. A design of an end-to-end reliable broadcast using Quadrics

hardware broadcast is provided. Experimental results have shown that it can achieve low

19

latency and high scalability while providing network-level fault tolerance. In Chapter 6,

we present algorithms for scalable, high-performance NIC-based collective operations over

Myrinet including barrier, broadcast and all-to-all broadcast. In designing these algorithms,

we have come up with strategies for scalable, binomial tree-based group topology, efficient

global buffer management, efficient communication processing with fast forwarding of pack-

ets, as well as reliability. Our results indicate that NIC-based collective operations can be

designed with scalability, high performance and low CPU utilization. They are also shown

to be beneficial for parallel processes to tolerate process skew.

In Chapter 7, we present our design and implementation of a Quadrics-capable version

of a parallel file system (PVFS2) by overcoming Quadrics static communication model and

providing an efficient transport layer over Quadrics. We have also designed an algorithm that

supports zero-copy noncontiguous PVFS2 IO using a software scatter/gather mechanism

over Quadrics. Their performance benefits have been investigated by comparing to the

implementations of PVFS2 over other interconnects including Myrinet and InfiniBand.

Finally, in Chapter 8, we conclude the dissertation and present directions for future

research.

20

CHAPTER 2

Scalable MPI Startup over InfiniBand Clusters

A parallel job is usually launched by a process manager, which is often referred to as the

process initiation phase. These initiated processes usually require assistance from the process

manager to set up peer-to-peer connections before starting communication and computation.

This is referred to as the connection setup phase. We have taken on the challenge to support

a scalable and high performance startup of MPI programs over InfiniBand clusters. With

MVAPICH [60] as the platform of study, we have analyzed the startup bottlenecks. Accord-

ingly, different approaches have been developed to speed up the connection setup phase, one

with data reassembly at the process manager and another using pipelined all-to-all broad-

cast over a ring of InfiniBand queue pairs (referred to as a bootstrap channel). In addition,

we have exploited a process management framework, Multi-Purpose Daemons (MPD) sys-

tem to further speed up the startup. The bootstrap channel is also utilized to reduce the

impact of TCP/IP-based communication including multiple process context switches and

quadratically increased data volume over the MPD management ring. Over 128 processes,

our work improves the startup time by more than 4 times. Scalability models derived from

these results suggest that the improvement can be more than two orders of magnitude for

the startup of 2048-process jobs.

21

The rest of this chapter is structured as follows. We first describe the challenge of scalable

startup faced by parallel programs over InfiniBand and related work on process management.

Then we describe the design of startup with different approaches to improve the connection

setup time and the process initiation phase. Finally, we provide experiments and summarize

this work.

2.1. Startup of MPI Applications using MVAPICH

MVAPICH [60] is a high performance implementation of MPI over InfiniBand. Its design

is based on MPICH [37] and MVICH [49]. The implementation of MVAPICH utilized the

Reliable Connection (RC) service for the communication between processes. The connection-

oriented nature of IBA RC-based QPs requires each process to create at least one QP for

every peer process. To form a fully connected network of N processes, a parallel application

needs to create and connect at least N×(N−1) QPs during the initialization time. Note that

it is possible to have these QPs be allocated and connected in an on-demand manner [89],

which we have explored as a followup study and presented in Chapter 3. Another reason for

the fully-connected connection model is its simplicity and robustness.

The startup of an MPI application using MVAPICH-0.9.1 can also be divided into two

phases. As shown in Figure 2.1(a), an MPI application using MVAPICH is launched with

a simple process launcher iterating over UNIX remote shell (rsh) or secure shell (ssh) to

start individual processes. Each process connects back to the launcher via an exposed port.

Except the rank of the process, each process has no global knowledge about the parallel

program. In the second phase of connection setup, as shown in Figure 2.1(b), each process

creates N − 1 QPs, one for each peer process, for an N-process application. Then, these

processes exchange their local identifiers (LIDs) and corresponding QP identifiers (QP-IDs).

22

process (rank)

daemons
(rsh/ssh)

launcher (port)

fork/exec

(a) The Initiation Phase

lid,qp{N−1}

process 0

process 1

launcher
...lid0,qp{N−1} lid1,qp{N−1}

lid,qp{N−1}

(b) The Connection Setup Phase

Figure 2.1: The Startup of MPI Applications in MVAPICH-0.9.1

Since each process is not connected to its peer processes, the data exchange has to rely on

the connections that are created to the launcher in the first phase. The launcher collects

data about LIDs and QP-IDs from each process, and then sends the combined data back

to each process. Each process in turn sets up connections over InfiniBand with the received

data. A parallel application with fully connected processes is then created.

2.2. The Scalability Problem

The startup paradigm described above is able to handle the startup of small scale parallel

applications. However, as the size of an InfiniBand cluster goes to 100s–1000s, the limitation

of this paradigm becomes pronounced. For example, launching a parallel application with

2000 processes may take tens of minutes. There are two main scalability bottlenecks, one

in each phase. The first bottleneck is rsh/ssh-based startup in the process initiation phase.

This process startup mechanism is simple and straightforward, but its performance is very

poor on large systems. The second bottleneck is the communication overhead for exchanging

23

LIDs and QP-IDs in the connection setup phase. To launch an N-process MPI application,

the launcher has to receive data containing (N − 1) QP-IDs from each process. Then it

returns the combined data with N × (N − 1) QP-IDs to each process. In total, the launcher

has to communicate data in the amount of O(N 3) for an N-process application. Each QP-

ID is usually a four-byte integer, for a 1024-process application the launcher will receive

about 4 MegaBytes data from and sends about 4 Gigabytes of data to every process. This

communication typically goes through the management network which is normally Fast

Ethernet or Gigabit Ethernet. This incurs significant communication overhead and can slow

down the application startup.

2.3. Related Work on Job Startup and Process Management

Numerous work have been done to provide resource management framework for col-

lections of parallel processes, ranging from basic iterative rsh/ssh-based process launch in

MVICH [49] to more sophisticated packages like MPD [23], Cplant [15], PBS [63], to name

a few. Compared to the rsh/ssh-based iterative launch of processes, all these packages can

provide more scalable startup and retain better monitoring and control of parallel programs.

However, they typically lack efficient support for complete exchange of LIDs and QP-IDs

as required by parallel programs over InfiniBand clusters. In this dissertation, we focus on

providing an efficient support for the complete exchange of LIDs and QP-IDs, and applying

such a scheme to one of these package, MPD, in order to obtain efficient process initiation

support. We choose to study MPD [23] because it is one of the systems widely distributed

along with MPICH [37] releases and has a large user base.

24

2.4. Efficient Connection Setup

As mentioned earlier, because the launcher has to collect, combine and broadcast QP

IDs, the volume of these data scales up in the order of O(N 3), which leads to prolonged

connection setup time. One can consider two directions in order to reduce the connection

setup time. The first direction is to reduce the volume of data to be communicated. The

other direction is to parallelize communication for the exchange of QP IDs.

Approach 1: Reducing the Data Volume with Data Reassembly (DR) – To

have processes fully connected over InfiniBand, each process needs to connect with another

peer process via one QP. This means that each process needs to obtain N−1 QP IDs, one for

each peer. That is to say, out of the combined data of N × (N − 1) QP IDs in the launcher,

each process only needs to receive N − 1 QP IDs that is specifically targeted for itself. This

requires a centralized component, i.e., the launcher, to collect and reassembly QP IDs. The

biggest advantage of this data reassembly (DR) scheme is that the data volume exchanged

can be reduced down to an order of O(N 2). But there are several disadvantages associated

with this scheme. First, the entire set of QP IDs need to be reassembled before sending

them to each client process. This constitutes another performance/scalability bottleneck at

the launcher. Second, the whole procedure of receive-reassembly-send is also serialized at

the launcher.

Approach 2: Parallelizing Communication with a Bootstrap Channel (BC)

– More insights can be gained on the possible parallelism with further examination of the

startup. Essentially, what needs to be achieved at the startup time is an all-to-all per-

sonalized exchange of QP IDs, i.e., each process receives the specific QP IDs from other

processes. In the original startup scheme as shown in Figure 2.1, the launcher performs a

gather/broadcast to help the all-to-all broadcast of their QP data. On top of that, the DR

25

lid,qp{lhs,rhs}

lid,qp{lhs,rhs}

launcher

(lid,qp){lhs,rhs}

(lid,qp){lhs,rhs}

process 0

process 1process 2

process 3

(a) Setup a Bootstrap Channel

lid,qp{N−1}

process 0

process 1

(2) (3)(1)

(1) (0) (3)

process 2

process 3

(2)

(1)

(0)

(3)

(0)

(2)

lid,qp{N−1} lid,qp{N−1} lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}lid,qp{N−1}lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}

(b) Ring-Based All-to-all Broadcast of QP

Data

Figure 2.2: Parallelizing the Total Exchange of InfiniBand Queue Pair Data

scheme in Section 2.4 reassembles and “personalizes” QP data to reduce the data volume.

Both do not exploit the parallelism of all-to-all personalized exchange. Algorithms that par-

allelize an all-to-all personalized exchange can be used here. These algorithms are usually

based on a ring-, hypercube- or torus-based topology, which requires more connections to

be provided among processes. With the initial star topology in the original startup scheme,

providing these connections has to be done through the launcher. However, since a parallel

algorithm can potentially overlap both sending and receiving QP data, it promises better

scalability over clusters with larger sizes.

Among the three possible parallel topologies, the ring-based topology requires the least

number of additional connections, i.e., 2 per process. This would minimize the impact of

the ring setup time. Another design option is that which type of connections is possible.

Either TCP/IP- or InfiniBand-based connections can be used. Since the communication over

26

InfiniBand is much faster than that over TCP/IP, we choose to use a ring of InfiniBand QPs

as a further boost to the parallelized data exchange.

The second approach works as follows. First, each process creates two QPs for its left

hand side (lhs) and right hand side (rhs) processes, respectively. We call these QPs bootstrap

QPs. Second, the DR scheme mentioned in Section 2.4 is used to set up connections between

these bootstrap QPs as shown in Figure 2.2(a). Thus, a ring of connections over InfiniBand

is created, as shown by the dotted line in Figure 2.2(a). We refer to this ring as a bootstrap

channel (BC). After this channel is set up, each process initiates a broadcast of its own

QP IDs through the channel in the clockwise direction as shown in Figure 2.2(b) with four

processes. Each process also forwards what it receives to its next process. In this scheme,

we take advantage of both communication parallelism and high performance of InfiniBand

QPs to reduce the communication overhead.

2.5. Fast Process Initiation with MPD

MPD [23] is designed to be a general process manager interface that provides the needed

support for MPICH, from which MVAPICH is developed. It mainly provides fast startup

of parallel applications and process control to the parallel jobs. MPD achieves its scalable

startup by instantly spreading a job launch request across its ring of daemons, then launches

one ring of manager and another ring of application processes in a parallel fashion. For

processes to exchange individual information MPD system also exposes a BNR interface

with a put/fence/get model. A process stores a {key,value} pair at its manager process, a

part of the MPD database, then another process retrieves (gets) that value by providing the

same key after a synchronization phase (fence).

27

Store (put) Retrieve (get) RepRetrieve (get) Req

Processes

mpd managers

peer 3

peer 2

peer 1

process 0

process 1

process 2

process 3

(a) Exchange of Queue Pair IDs Over the Ring

of Manager

Store (put) Retrieve (get) Req Retrieve (get) Rep

Processes

mpd managers

lhs

rhs

process 3

process 0

process 1

process 2

(b) Setting up Bootstrap Channel within Pro-

cesses

Figure 2.3: Improving the Scalability of MPD-Based Startup

Although this fast and parallelized process startup from MPD solves the process initiation

problem, the significant volume of QP data still poses a great challenge to the MPD model.

As shown in Figure 2.3(a), the database is distributed over the ring of manager processes

when each process stores (puts) their process-specific data to its manager. To collect the

data from every peer process, one process has to send a request and get the reply back for

the target process. At the completion of these data exchanges, each process then sets up

connections with all the peers, as shown with process 0 in Figure 2.3(a). Together, messages

for the request and the reply make a complete round over the manager ring. For a parallel

job with N processes, there are N × (N − 1) message exchanges in total. Each of these

messages is in the order of O(N) bytes and has to go through the ring of manager processes.

In addition, since application processes store and retrieve data through their corresponding

manager processes at each node, process context switches are very frequent and they further

28

degrade the performance of ring-based communication. Furthermore, the message passing is

over TCP/IP sockets, which delivers lower performance than InfiniBand-based connections.

There are different alternatives to overcome these limitations. One way of doing that

is to replace the connections for the MPD manager ring with VAPI connections to provide

fast communications. In addition, copies of QP data can be saved at each manager process

as the first copy of QP data passes through the ring. Then further retrieve (get) requests

can get the data from the local manager directly instead of the MPD manager ring. This

approach will improve the communication time, however, the process context switches still

exist between the application processes and manager processes. In addition, retrieve requests

made before QP data reaches the local manager process still has to go through the manager

ring. Last but not least, this approach necessitates a significant amount of instrumentation

of MPD code and has only limited portability to InfiniBand-ready clusters.

Instead of exchanging all the QP data over the ring of MPD manager processes, we

propose to exchange QP IDs over the bootstrap channel described in Section 2.4. Though

setting up the bootstrap channel still needs help from the ring of manager processes. As

shown in Figure 2.3(b), each process first creates and stores QP IDs for its left side (lhs) and

right hand side (rhs) processes to the local manager. Then, from the database, they retrieve

QP IDs for its left hand side and right hand side processes, and then set up InfiniBand

connections. Eventually a ring of such connections are constructed and together form a

bootstrap channel. This bootstrap channel is then utilized to perform a complete exchange

of QP IDs. Since this bootstrap channel is provided within the application processes and over

InfiniBand, this approach will not only provide fast communication and eliminate the process

context switches, but also reduce the number of communications through each manager

process.

29

2.6. Experimental Results of Scalable Startup

Our experiments were conducted on a 256-node cluster of 4GB DRAM dual-SMP 2.4GHz

Xeon at the Ohio Supercomputing Center. For fast network discovery with data reassembly

(DR) or the bootstrap channel (BC), we used ssh to launch the parallel processes. Per-

formance comparisons were provided against MVAPICH 0.9.1 (Original). Since Networked

File System (NFS) performance could be a big bottleneck in a large cluster and mask out

the performance improvement of startup, all binary executable files were duplicated at local

disks to eliminate its impact.

Number of Processes 4 8 16 32 64 128
Original (sec) 0.59 0.92 1.74 3.41 7.3 13.7
SSH-DR (sec) 0.58 0.94 1.69 3.37 6.77 13.45
SSH-BC (sec) 0.61 0.95 1.70 3.38 6.76 13.3
MPD-BC (sec) 0.61 0.63 0.64 0.84 1.58 3.10

Table 2.1: Comparisons of MVAPICH Startup Time with Different Approaches

Table 2.1 shows the startup time for parallel jobs of different number processes using

different approaches. SSH-DR represents ssh-based startup with QP data assembly (DR) at

the process launcher. SSH-BC represents ssh-based startup using the bootstrap channel (BC)

to exchange QP IDs. MPD-BC represents MPD-based startup with a bootstrap channel for

the exchange of QP IDs.

As the number of processes increases, both SSH-DR and SSH-BC reduce the startup time,

compared to the original approach. This is because data reassembly can reduce the data

volume by an order of O(N) and the bootstrap channel can parallelize the communication

30

time. Note that the BC-based approach performs slightly worse than the the original and

DR-based approach for small number of processes. This is due to the overhead from setting

up the additional ring over InfiniBand. As the number of processes increases, the benefits

become greater. Both SSH-BC and SSH-DR will be able to provide more scalable startup

for a job with thousands of processes since they remove the major communication bottleneck

imposed by potentially large volume of QP data. In contrast, the MPD-based approach with

a bootstrap channel provides the most scalable startup. On one hand, MPD-BC provides

efficient parallelized process initialization, compared to the ssh-based schemes. On the other

hand, it also pipelines the QP data exchange over a ring of VAPI connections, hence this

approach speeds up the connection setup phase. Compared to the original approach, the

MPD-BC approach reduces the startup time for a 128-process job by more than 4 times.

2.7. Analytical Models and Evaluations for Large Clusters

As indicated by the results from Section 2.6, the benefits of the designed schemes will

be more pronounced for parallel jobs with larger number of processes. Here we further

analyze the performance of different startup schemes and provide parameterized models to

gain insights about their scalability over large clusters. The total startup time Tstartup can be

divided into the process initiation time and the connection setup time, denoted as Tinit and

Tconn respectively. Based on the scalability analysis, we use the following model to describe

the startup time of the original scheme (Original), ssh-based scheme with data reassembly

(SSH-DR) and the MPD-based scheme with the bootstrap channel (MPD-BC). Each of the

models shows the time for the startup of N processes, and the last component describes

the time for other overheads that are not quantified in the models, for example, process

switching overhead.

31

Original: Tstartup = (O0 ∗ N) + (O1 ∗ N ∗ (WN + WN2)) + O2

The process initiation phase time Tinit scales linearly as the number of pro-

cesses increases with ssh/rsh-based approaches, while during the connection
setup there are 2N messages communicated over TCP/IP. Half of them are

gathered by the launcher, each being in the order of O(N) bytes; the other
half are scattered by the launcher, each of O(N 2) bytes .

SSH-DR: Tstartup = (D0 ∗ N) + (Dcomp ∗ N3 + D1 ∗ 2N ∗ WN) + D2

The process initiation time Tinit scales linearly with ssh/rsh. During the

connection setup phase, the amount of computation scales in the order of
O(N3) (the constant Dcomp can be very small, being the time for extracting

one QP Id), and there are 2*N message communicated over TCP/IP. Half of
them are gathered by the launcher, each being in the order of O(N) bytes;

The other half are scattered by the launcher, each of them is only O(N)
bytes due to reassembly.

MPD-BC: Tstartup = (M0 + N ∗ Wreq) + (Mch setup ∗ N + M1 ∗ N ∗ WN) + M2

The process initiation time Tinit scales constantly using MPD, however there

is a small fractional increase of communication time for the request message
Wreq. During the connection setup phase, the time to setup a bootstrap

channel increases in the order of O(N). Each process also handles N message
in the pipeline, each in the order of O(N) bytes.

Original: Tstartup (sec) = (0.100 ∗ N) + (10.5 ∗ N ∗ (WN + WN2)) + 0.12

SSH-DR: Tstartup (sec) = (0.100 ∗ N) + (8.5e−9 ∗ N3 + 10.5 ∗ N ∗ WN) + 0.12

MPD-BC: Tstartup (sec) = (0.20+0.0010∗N)+(0.0180∗N+2.5∗N ∗WN)+0.30

The above scalability models are parameterized based on our analytical modeling. As

shown in Figure 2.4, the experiment results confirm the validity of these models for jobs

with 4 to 128 processes. Figure 2.5 shows the scalability of different startup schemes when

applying the same models to larger jobs from 4 to 2048 processes. Both SSH-DR and MPD-

BC improves the scalability of job startup significantly. Note that MPD-BC scheme improves

the startup time by about two orders of magnitudes for 2048-process jobs.

2.8. Scalable Startup Summary

We have presented our design for scalable startup of MPI programs in InfiniBand clusters.

With MVAPICH as the platform of study, we have characterized the startup of MPI jobs into

32

0

4

8

12

16

20

4 8 16 32 64 128

S
ta

rt
up

 T
im

e(
se

c)

Number of Processes

Original
SSH-DR
MPD-BC

Original Modeling
SSH-DR Modeling
MPD-BC Modeling

Figure 2.4: Performance Modeling of Dif-
ferent Startup Schemes

0

500

1000

1500

2000

2500

4 8 16 32 64 128 256 512 1024 2048

S
ta

rt
up

 T
im

e(
se

c)

Number of Processes

Original Modeling
SSH-DR Modeling
MPD-BC Modeling

Figure 2.5: Scalability Comparisons of Dif-
ferent Startup Schemes

two phases: process initiation and connection setup. To speed up connection setup phase,

we have developed two approaches, one with queue pair data reassembly at the launcher

and the other with a bootstrap channel. In addition, we have exploited a process manage-

ment framework, Multi-Purpose Daemons (MPD) system, to improve the process initiation

phase. The performance limitations in the MPD’s ring-based data exchange model, such

as exponentially increased communication time and numerous process context switches, are

eliminated by using the proposed bootstrap channel. We have implemented these schemes

in MVAPICH [60] and the solutions are available from MVAPICH 0.9.2 onward. Our exper-

imental results show that, for 128-process jobs, the startup time has been reduced by more

than 4 times. We have also developed an analytical model to project the startup scalabil-

ity. The extrapolated results suggest that the improvement can be more than two orders of

magnitudes for the startup of 2048-process jobs with our startup scheme using ring-based

parallelization.

33

CHAPTER 3

Adapative Connection Management for Scalable MPI over
InfiniBand

MPI does not specify any connection model, but assumes that all processes are logically

connected and leaves the connection management specific issues to the lower device layer. For

connection-less interconnects, such as Quadrics [73] and Myrinet [58], an MPI process can

start MPI communication without extra mechanisms to manage peer-to-peer connections.

On top of InfiniBand, however, for any pair of processes to communicate over RC for its high

performance and RDMA capability, a pair of RC queue pairs (QPs) must be created on each

node with a connection established between them. To enable high performance RDMA fast

path for small messages, additional RDMA receive buffers also need to be provided for each

connection.

Several of the most commonly used MPI implementations over InfiniBand, such as MVA-

PICH [60] (up to 0.9.7 version), set up RC connections between every process pairs a priori.

Because of its connection-oriented nature, every process needs to allocate a dedicated QP

for each peer process. This leads to quadratically increased number of RC connections, e.g.,

1024*1023 connections for a 1024-process MPI program. These number of connections in

turn lead to prolonged startup time for the need of creating queue pairs, exchanging con-

nection information and establishing connections. This also leads to heavy resource usage,

34

taking into account of the memory needed for all the QPs and their associated send and

receive WQEs, as well as RDMA send and receive buffers. To make the matters worse, each

QP also needs some number of send/receive buffers for taking advantage of fast RDMA for

small messages.

Number of
Processes

Application

1024
64

1024
64

1024
64

1024
64

1024
64

1024
64

CG

Samrai 4

Sweep3D

SMG2000

Sphot

sPPM
5.5
< 6

41.88

0.98
1

< 10
4.94
< 4
3.5

6.36
< 11

< 1023

Distinct Destinations

Average Number of

Table 3.1: Average Number of Communicating Peers per Process in some applications (Cour-
tesy of J. Vetter, et. al [85])

In fact, research on communication characteristics of parallel programs [85] indicates that

not all pairs of MPI processes communicate among each other with equal frequency. Table 3.1

shows the average number of communicating peers per process in some scientific applications.

The majority of process pairs do not communicate between each other. Thus, maintaining

a fully-connected network not only leads to the aforementioned scalability problems, but

also negatively affects the performance of the communicating processes. This is because the

MPI program has to continuously check for potential messages coming from any process,

35

which drives the CPU away from attending to traffic of the most frequently communicated

processes and destroys the memory cache locality that could be achieved thereof. There have

been discussions in the IBA community to either provide only UD-based communication, or

RC on-demand via an out-of-band asynchronous message channel. However, UD does not

provide comparable performance as RC; the processing of out-of-band asynchronous messages

will introduce the need of another thread that contends for CPU with the main thread.

So these solutions can result in performance degradation. It remains to be systematically

investigated what connection management algorithms can be provided for parallel programs

over InfiniBand, and what are their performance and scalability implications.

In this dissertation, we take on the challenge of providing appropriate connection man-

agement for parallel programs over InfiniBand clusters. We propose adaptive connection

management (ACM) to manage different types of InfiniBand transport services. The time

to establish and tear town RC connections is dynamically decided based on communication

statistics between the pair of processes. New RC connections are established through either

an unreliable datagram-based mechanism or an InfiniBand connection Management-based

mechanism. We have also studied strategies to overcome challenging issues, such as race

conditions, message ordering and reliability, for the establishment new RC connections. The

resulting ACM algorithms have been implemented in MVAPICH [60] to support parallel

programs over InfiniBand. Our experimental data with NAS application benchmarks indi-

cate that ACM can significantly reduce the average number of connections per process, and

it is also beneficial in improving the process initiation time and reducing memory resource

usage. Note, one of the side effects of ACM is that it moves connection establishment from

the process initiation stage into the actual critical path of parallel communication. Our

evaluation also indicates that ACM has little performance impact to microbenchmarks and

36

NAS scientific applications since only very few connections are established on the basis of

frequent communication.

3.1. Related Work on Connection Management

There had been previous research efforts carried out to study the impact of connection

management on the performance of parallel applications. Brightwell et. al. [14] analyzed

the scalability limitations of VIA in supporting the CPlant runtime system as well as any

high performance implementation of MPI. While not taking into account the impacts of the

number of connections on the scalable usage of computation and memory resources to dif-

ferent connections, the authors argued that on-demand connection management could not

be a good approach to increase the scalability of the MPI implementation by qualitative

analysis. Wu et. al. [89] demonstrated that on-demand connection management for MPI

implementations over VIA [29] could achieve comparable performance as the static mecha-

nism with efficient design and implementation. Our work continues the research efforts of

on-demand connection management [89] and scalable startup [97] to improve the scalability

of MPI implementations over InfiniBand.

3.2. InfiniBand Connection Management

To support RC, a connection must be set up between two QPs before any communication.

In the current InfiniBand SDK, each QP has a unique identifier, called QP-ID. This is usually

an integer. For network identification, each HCA also has a unique a local identifier (LID).

One way to establish a connection is to exchange the QP IDs and LIDs of a pair of QPs and

then explicitly program the queue pair state transitions. Another way is to use InfiniBand

connection management interface. In the IBA community, a new interface called RDMA

37

CMA (Connection Management Agent) has been proposed recently [62]. RDMA CMA over

IBA is derived on top of IBCM, but provides an easy-to-use, portable, yet similar approach

for connection establishment. It is currently available only in the OpenIB Gen2 stack [62].

We plan to study the benefits of RDMA CMA in our future work.

InfiniBand Communication Management (IBCM) encompasses the protocols and mecha-

nisms used to establish, maintain, and release different InfiniBand transport services, such as

RC, UC, and RD. Communication Managers (CMs) inside IBCM set up QPs (or end-to-end

context for RD) upon calls to the IBCM interface. CMs communicate with each other and

resolve the path to remote QPs through an address resolution protocol. There are two mod-

els to establish a connection: one is Active/Passive (also referred as client/server) model,

the other Active/Active (or peer-to-peer) model. In the client/server model, the server side

listens for connection requests with a service id; the client side initiates a connection request

with a matching service ID. In the peer-to-peer model, both sides actively send connection

requests to each other, and a connection is established if both requests contain matching

service IDs. Compared to the peer-to-peer model, the client/server model is more mature in

the current InfiniBand implementations, and is what we have studied in this dissertation.

Figure 3.1 shows the diagram of the client/server model of IBCM. The server begins

to listen on a service ID. A client then creates a QP and initiates a request (REQ) to the

server with a matching service ID. If the server can match the service ID, a callback function

is called to create a QP, accept the client’s request, and confirm the request with a reply

(REP). When the client receives the server’s reply indicating that its request is accepted, a

client-side callback handler is called, within which the client confirms the establishment of

a new connection back to the server via a RTU (ready-to-use) message. When the server

receives RTU, the connection is then ready for communication. In the client/server model,

38

S
e
r
v
e
r
C
l
i
e
n
t

C
a
l
l

C
o
n
n
e
c
t

C
a
l
l

L
i
s
t
e
n

C
a
l
l

C
o
n
f
i
r
m

R
E
Q

R
E
P

R
T
U

C
a
l
l

A
c
c
e
p
t

C
r
e
a
t
e

Q
P
,

M
o
d
i
f
y

t
o

I
N
I
T

C
r
e
a
t
e

Q
P
,

M
o
d
i
f
y

t
o

I
N
I
T

Q
P

m
o
d
i
f
i
e
d

t
o

R
T
R

Q
P

m
o
d
i
f
i
e
d

t
o

R
T
S
Q
P

m
o
d
i
f
i
e
d

t
o

R
T
S

Figure 3.1: The Client/Server Model of IBCM

QPs are created in an INIT state and progressed through RTR (Ready-to-Receive) to RTS

(Ready-to-Send) by CMs as shown in the figure.

3.3. Designing Adaptive Connection Management

Since different interconnects may have different software and hardware capabilities and

exhibit different communication characteristics, the design of MPI [52] in general leaves in-

terconnect specific issues to ADI (abstract device interface) implementations. For example,

MPI does not specify any connection model, but assumes that all processes are logically

connected. This does not lead to complications for connection-less interconnects, such as

Quadrics [73] and Myrinet [58], on which MPI process can start MPI communication without

extra care for managing peer-to-peer connections. InfiniBand [43], however, comes with a

plethora of transport services, from the typical connection-less Unreliable Datagram (UD)

to the high-performance connection-oriented Reliable Connection (RC). Different types of

39

transport services come with different performance qualities and different resource require-

ments. Within a parallel application spanning thousands of parallel processes, a process

potentially needs to handle such resource requirements for a large number of connections

depending on the number of peers it is communicating with. On top of this, a scalable MPI

implementation also needs to satisfy the memory requirements from parallel applications.

These complexities all need to be handled within rigid resource constraints. Therefore, when

and how to enable what types of connections is a very important design issue for scalable

and high performance MPI implementations.

To this purpose, we propose Adaptive Connection Management (ACM) to handle these

complexities. There are two two different ACM algorithms: on-demand and partially static.

In the on-demand algorithm, every process is launched without any RC connections; in

the partially static algorithm, each process is initially launched with at most 2 ∗ logN of RC

connections to communicate with peers that have a rank distance of 2N from it. These initial

2∗logN RC connections are meant to capture the frequent communication patterns based on

the common binary tree algorithms used in many MPI collective operations. The main design

objective of ACM is to manage InfiniBand transport services in an adaptive manner according

to the communication frequency and resource constraints of communicating processes. To

this purpose, new RC connections are established only when a pair of processes have exhibited

a frequent communication pattern. In this dissertation, this is decided when two processes

have communicated more than 16 (an adjustable threshold) messages. Compared to the

commonly used static connection management, ACM algorithms are designed to allow the

best adaptivity, while the partially static algorithm also allows applications to pre-configure

common communicating processes with RC connections at the startup time.

40

Figure 3.2 shows a diagram about the intended ACM functionalities in a typical MPI

software stack. As shown in the figure, ACM works in parallel with the ADI’s channel

interface (CH2), which is in charge of the actual message communication functionalities.

While the channel interface mainly provides appropriate channels to transport messages

based on their sizes and destinations, ACM controls when to activate the transport services

of different performance capabilities and maintains the communication statistics of these

channels. Specifically, ACM manages the following information about transport services

over InfiniBand.

Abstraction Device Interface (ADI)

Internal MPI Architecture

Message Passing Interface

ManagementConnection Channel

Interface
Establishment Mechanisms

Existing ServicesStatistics

Communication Protocols

Figure 3.2: Adaptive Connection Management in MPI Software Stack

� Existing transport services – In ACM, each process maintains information about

which transport services are available to reach peer processes. The most commonly

41

used InfiniBand transport services are UD and RC. All processes start with a UD queue

pair, through which other processes can request the establishment of RC connections.

� Resource allocation and communication statistics – Messages can be transmit-

ted over the existing transport services. The number of messages and the total message

size are recorded as communication statistics, which determine when to set up new RC

connections. Future work can also introduce mechanisms to dismantle RC connections

when some processes are either quiescent or relatively less active for a certain amount

of time.

� Establishment mechanisms for new transport services – Currently, we have ex-

ploited two different mechanisms for establishing new RC connections over InfiniBand:

(1) Connection establishment via UD-based QP-ID exchange; and (2) IBCM-based RC

connection establishment. In future, we plan to study the benefits of RDMA CMA for

MPI connection management over the InfiniBand Gen2 stack [62].

On-demand and partially static ACM algorithms can use either connection establishment

mechanisms to set up new RC connections. In this work, we intend to study combinations of

ACM algorithms and connection establishment mechanisms to gain insights into the following

questions:

1. How much can the adaptive connection management help on reducing the number of

the connections for scientific applications?

2. What performance impact will the adaptive connection management have?

3. How much can the adaptive connection management help on reducing the process

initiation time?

42

4. What benefits will the adaptive connection management have on the memory resource

usage?

3.4. UD-Based Connection Establishment

Figure 3.3 shows the diagram of UD-based connection establishment. Upon frequent

communication between Proc A and Proc B, Proc A sends a request for new connection

to Proc B. Proc B responds with a reply to acknowledge the request. A new connection is

established at the end of a three-way exchange of request, reply and confirm messages. The

actual scenario is more complicated than what is shown in the diagram. We describe the

detailed design issues as follows:

P
r
o
c
.

A
 P
r
o
c
.

B

R
e
p
l
y

(
Q
P

n
u
m
b
e
r
,

R
D
M
A

a
d
d
r
e
s
s
)

C
o
n
f
i
r
m

C
r
e
a
t
e

Q
P
,

C
r
e
a
t
e

R
D
M
A

b
u
f
f
e
r
s

o
n

p
r
o
c
.
A
 R
e
q
u
e
s
t

(
Q
P

n
u
m
b
e
r
,

R
D
M
A

a
d
d
r
e
s
s
)

C
r
e
a
t
e

Q
P
,

C
r
e
a
t
e

R
D
M
A

b
u
f
f
e
r
s

o
n

p
r
o
c
.
B

M
o
d
i
f
y

Q
P

t
o

R
T
S

M
o
d
i
f
y

Q
P

t
o

R
T
R

M
o
d
i
f
y

Q
P

t
o

R
T
R

M
o
d
i
f
y

Q
P

t
o

R
T
S

M
a
r
k

Q
P

a
s

a
c
t
i
v
e
 M
a
r
k

Q
P

a
s

a
c
t
i
v
e

Figure 3.3: UD-Based Connection Establishment

� Progress rules – When using UD-based connection management, an MPI process

has to handle extra UD messages for connection setup purposes. To provide a clean

43

and light-weight solution, we provide a dedicated completion queue for UD messages.

However, this completion queue is being polled at a much reduced frequency compared

to the completion queue for regular data messages. This is intended to reduce the

extra burden on the main MPI process for attending to extra traffic.

� Ordered reliable message delivery – Any of three messages may get lost since

they are sent over UD. We introduce timeout-based retransmission to handle such

situations. However, this may also lead to duplicated requests. For this problem, a

sequence number is introduced along with UD messages to avoid redundant requests.

� Race conditions – Race conditions between two requests can occur for the establish-

ment of the same RC connection since Proc B may have sent out a connection request

to Proc A at the same. Both Proc A and B are trying to set up a RC connection

between them. To guard against race conditions, a process responds to a request with

a positive acknowledgment only when it has not initiated a request or its rank is higher

than the source rank contained in the request. Status flags are introduced to reflect

the progression of connection state during the connection establishment.

3.5. IBCM-Based Connection Establishment

In the IBCM-based mechanism each process starts a new listening thread with a unique

service ID, which is set to its rank plus a constant so that every process knows the service

IDs of all other processes. When a process wants to establish a connection, it sends a request

to the corresponding target. The procedure in general follows what we have described in

Section 3.2. In particular, we describe the following design issues as follows.

Synchronization – To establish a RC connection via IBCM, some information such

as source/destination ranks must be exchanged during the connection establishment phase.

44

And we also need to make sure that the receive descriptor be posted before the RC con-

nection progresses to RTR. Thus, it would be more efficient if one can integrate the receive

descriptor posting and RDMA receive buffers exchange into the process of IBCM connection

establishment. To this purpose, we ensure that the server has prepared the receive descrip-

tors and buffers before it replies back to the client. After the client receives the reply, we

make sure that the client completes the same preparation before it confirms back to the

server with a RTU (ready-to-use) message (Figure 3.1). Only until the server receives the

expected RTU message and the client gets the correct local completion of RTU message, will

the connection be marked as active on both sides. Both sides are then correctly synchronized

on the state of the new RC connection and the connection is ready to use.

Race conditions – Each process has two possible activities for establishing new connec-

tions. One is the main MPI thread that may connect to a target process as a client, the other

being the listening thread that functions as a CM server for incoming connection requests.

It is critical to ensure that, at any time, one of them is driving the establishment of a new

connection. Otherwise, both of them will fail for incorrect sharing of the same queue pair.

We describe our solution with two arbitrary processes, Proc A and B, the rank of A

greater than B. When both of them simultaneously send a request to the other process, we

let A act as a server to continue and have the CM server of B to reject the request from

A. The client request from B continues to be processed by the CM server of A and finish

the establishment of a new connection. In addition, to avoid an inconsistent connection

state, before A accepts B’s request, it also needs to wait until a reject notification from B is

received. Structures related to connection progression are critical sections being protected

by mutexes and they are used to avoid the race conditions between the main thread and the

CM thread.

45

3.6. Performance Evaluation of Adaptive Connection Management

Our experiments were conducted on two clusters. One is a cluster of 8-node SuperMi-

cro SUPER P4DL6, each with dual Intel Xeon 2.4GHz processors, 1GB DRAM, PCI-X

133MHz/64-bit bus. The other is a cluster of eight SuperMicro SUPER X5DL8-GG nodes:

each with dual Intel Xeon 3.0 GHz processors, 512 KB L2 cache, PCI-X 64-bit 133 MHz

bus, 533MHz Front Side Bus (FSB) and a total of 2GB PC2100 DDR-SDRAM physical

memory. The nodes are connected using the Mellanox InfiniScale 24 port switch MTS 2400.

The original MVAPICH [60] release we used is 0.9.5 with patches up to 118. We evalu-

ated the original static connection management of MVAPICH-0.9.5 (referred to as Orig) and

the following combinations of ACM algorithms and connection establishment mechanisms

(UD/IBCM): partially static ACM with UD (UD-PS), on-demand ACM with UD (UD-OD),

and on-demand ACM with IBCM (CM-OD).

Average Number of Connections – One of the main benefits of adaptive connection

management is to increase the scalability of MPI implementations in terms of scalable usage

of RC connections over InfiniBand. Table 3.2 lists the average number of InfiniBand RC

connections used in the NAS application benchmarks with different ACM configurations

compared to the original static algorithm. With UD-OD, the number of RC connections for

NAS benchmarks are in general less than the numbers reported before in [89]. This suggests

that UD-OD can indeed eliminate all the connections that are either not communicating or

very rarely. For example, the number of connections used in EP is 0, because no connections

are established between the processes since the processes only communicate rarely with a

few barrier operations for the purpose of synchronization.

46

Algorithm SP BT MG LU IS EP CG
16 Processes

Orig 15 15 15 15 15 15 15
UD-OD 6 6 5 3.6 15 0 2.7
UD-PS 9.5 9.5 7 7 15 7 7.8

32 Processes
Orig – – 31 31 31 31 31

UD-OD – – 7 4.1 31 0 3.8
UD-PS – – 9.5 9 31 9 9.8

Table 3.2: Average Number of Connections in NAS Benchmarks

Process Initiation Time – Since adaptive connection management reduces the initial

number of InfiniBand RC connections, the time needed for the establishment of these connec-

tions in the original static algorithm is no longer needed. We have investigated the benefits

of our algorithms in terms of process initialization time. We first measured the initialization

time using a ssh/rsh-based startup scheme and noticed that the variation in startup time is

too high to obtain the portion of reduced initialization time. Instead we incorporated the

ACM algorithms into a scalable MPD-based startup scheme and measured the initialization

time.

Figure 7.2 shows process initialization time for 32-process programs over the 16-node

cluster. Compared to the original algorithm, UD-OD can reduce process initialization time

by 15-20%, while UD-PS can reduce the time by around 10%. The amount of reduction

in initialization time is smaller for UD-PS because around 2 ∗ logN connections need to be

established at the beginning.

Reduction in Memory Usage – Another benefit of adaptive connection management is

reducing the memory resource usage. Because the number of connections is tightly coupled to

47

Orig UD−OD UD−PS
0

1

2

3

4

5

6

7

In
iti

at
io

n
T

im
e

(M
ill

is
ec

on
ds

)

Figure 3.4: Initiation Time of Different Connection Management Algorithms

the communication behavior of parallel applications, it is not easy to decide an appropriate

time to take a snapshot of memory usage. To gain insights into the memory usage, we

measured the initial memory usage when the parallel processes first start up, i.e., at the end

of MPI Init.

Figure 3.5 shows the memory resource usage for a parallel program with varying number

of processes over the 16-node cluster. Compared to the original, all ACM algorithms start

with slightly higher memory usages, this is because the connection management algorithms

introduced additional data structure such as a UD-queue pair and/or a CM server thread,

which consumes slightly more memory. However, the original algorithm has a clearly faster

increasing trend of memory usage compared to others. For a 32-process application, UD-OD

can reduce memory usage by about 17%, while UD-PS can reduce the memory by about 12%.

Again, because UD-PS has to set up around 2 ∗ logN connections, the amount of memory

48

 70

 80

 90

 100

 110

 120

 130

 32 16 8 4 2

M
em

or
y

U
sa

ge
 (

M
eg

aB
yt

es
)

Number of Processes

Orig
UD-OD
UD-PS
CM-OD

Figure 3.5: Memory Usage of Different Connection Management Algorithms

usage is higher than that of UD-OD. These results suggest ACM algorithms are beneficial

in terms of memory resource usage. These benefits are expected to be more significant as

system size increases.

Impact on Latency and Bandwidth – To find out the impact of ACM on the basic

latency and bandwidth performance of MVAPICH, we have compared the performance of

different algorithms with the original. As shown in Figures 3.6 and 3.7, UD-OD and UD-PS

have negligible impacts on the latency and bandwidth performance. This suggests that our

implementations are indeed light-weight and efficient. However, CM-OD causes degradation

on latency and bandwidth. This is expected because the IBCM-based ACM introduces

additional threads for managing connection requests and establish new connections.

Performance of NAS Parallel Benchmarks – The NAS suite consists of a set of

programs, such as MG, CG, IS, LU, SP and BT. We compared the performance of these

NAS programs over UD-PS and UD-OD to the original. Figures 3.8, 3.9, 3.10 and 3.11 show

49

 0

 150

 300

 450

 600

 750

 900

256K64K16K4K1K 256 64 16 4

La
te

nc
y

(µ
s)

Message Size (bytes)

Orig
UD-OD
UD-PS
CM-OD

Figure 3.6: Latency of Different Connec-
tion Management Algorithms

 0

 200

 400

 600

 800

 1000

 1200

256K64K16K4K1K 256 64 16 4

B
an

dw
id

th
 (

M
B

yt
es

/s
)

Message Size (bytes)

Orig
UD-OD
UD-PS
CM-OD

Figure 3.7: Bandwidth of Different Con-
nection Management Algorithms

the performance of NAS programs with different program sizes and numbers of processes.

Our testbed has 32 processors, the largest number of processes tested in CG, MG, IS is 32,

while only 16 in SP and BT since they require a square number of processes. The performance

results of NAS benchmarks indicate that the proposed algorithms have little performance

impacts. Thus, the proposed algorithms can provide benefits in terms of scalability and

memory resource usage while not having any impact on performance. We believe that the

benefits of scalable resource usage would contribute to the performance improvement, which

could become noticeable only with larger scale scientific applications. We plan to investigate

into this issue further.

3.7. Summary of Adapative Connection Management

We have explored different connection management algorithms for parallel programs over

InfiniBand clusters. We have exploited adaptive connection management to establish and

maintain InfiniBand services based on communication frequency between a pair of processes.

Two different mechanisms have been designed to establish new connections: an unreliable

50

IS CG MG
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
im

e
(s

ec
on

ds
)

UD−OD
UD−PS
Orig

Figure 3.8: Performance of IS, CG, MG,
Class A

BT LU SP
0

10

20

30

40

50

60

70

80

T
im

e
(s

ec
on

ds
)

UD−OD
UD−PS
Orig

Figure 3.9: Performance of BT, LU, SP,
Class A

IS CG MG
0

5

10

15

20

25

30

T
im

e
(s

ec
on

ds
)

UD−OD
UD−PS
Orig

Figure 3.10: Performance of IS, CG, MG,
Class B

BT LU SP
0

50

100

150

200

250

300

350

T
im

e
(s

ec
on

ds
)

UD−OD
UD−PS
Orig

Figure 3.11: Performance of BT, LU, SP,
Class B

datagram-based mechanism and an InfiniBand connection management-based mechanism.

The resulting adaptive connection management algorithms have been implemented in MVA-

PICH to support parallel programs over InfiniBand. Our algorithms have been evaluated

with respect to their abilities in reducing the process initiation time, the number of active

connections, and the communication resource usage. Experimental evaluation with NAS ap-

plication benchmarks indicates that our connection management algorithms can reduce the

51

average number of connections per process, the initial memory usage, as well as the startup

time for the MPI program.

52

CHAPTER 4

Checkpoint/Restart for Fault Tolerant MPI over InfiniBand

Message Passing Interface (MPI)[53] has no specification about the fault tolerance sup-

port that a particular implementation must achieve. As a result, most MPI implementations

are designed without any fault tolerance capability. Faults occurred during the execution

time often abort the program and the program has to start from beginning. For long running

programs, this can waste a large amount of computing resources as all the computation done

before the failure is lost. To save the valuable computation resources, it is desirable that a

parallel application can restart from some previous state before a failure and continue the

execution. Checkpointing and rollback recovery is the most commonly used technique in

fault recovery. Recent deployment of large-scale InfiniBand-based cluster systems makes it

imperative to deploy checkpoint/restart support for the long-running MPI parallel programs

so that they can recover from failures. However, it is still an open challenge to provide

checkpoint/restart support for MPI programs over such InfiniBand clusters.

We have explored the existing checkpoint/restart efforts and utilized Berkeley Lab’s

Checkpoint/Restart(BLCR)[33] as a base of designing checkpoint/restart support for MPI

programs over InfiniBand. Based on the capability of BLCR [33] to take snapshots of pro-

cesses on a single node, we have designed a checkpoint/restart framework to orchestrate the

53

process of checkpointing and periodically take globally consistent snapshots of an entire MPI

program.

We have implemented our design of checkpoint/restart in MVAPICH2 [60]. Our imple-

mentation of Checkpoint/restart-capable MVAPICH2 (MVAPICH2-CR) allows low-overhead,

application-transparent checkpointing for MPI applications. To the best of our knowledge,

this work is the first report of checkpoint/restart support for MPI over InfiniBand clusters

in the literature.

4.1. Parallel Coordination of Checkpoint/Restart

While BLCR provides a way to checkpoint/restart an individual process, a process man-

agement framework must be designed to orchestrate the checkpointing and/or restart parallel

applications. Here we first describe our checkpoint/restart framework and the functionalities

of individual components. Then we sketch the steps involved during checkpoint/restart.

Multiple processes (referred as worker processes) together form a parallel application.

For retaining management capabilities to processes, stdio and also resources within the com-

puting nodes, a running MPI program involves at least two other components: the front-end

process, a.k.a MPI console, and the management daemons, which create and help moni-

toring worker processes of an parallel application. The actual computating state of such

application includes every process, as well as that of the console because it manages the

important information on stdio and application status. There could be transient control

messages across the management daemons, but they are not indispensable to the parallel

application for the recovery purpose, thus can be skipped from the snapshot. So in order to

checkpoint a parallel application, a parallel process management framework needs to pro-

vide functionalities to checkpoint console and worker processes. In addition, for coordination

54

console req

mpd

mpdman

fork/exec

fork/exec

Processes

std i/o

Global Coordinator Local Coordinator Control Messenger

Figure 4.1: MPD-based Checkpoint/Restart Framework

purpose, control messages need to be communicated amongst the console, the management

daemons and the worker processes. Based on this understanding we have introduced the

global co-ordinator, local coordinators and control messenger to undertake these functional-

ities. Note that the management daemons can be from any process management framework,

such as PBS and SLURM, even just rsh/ssh daemons at the simplest form. We have chosen

to use MPD because it is the default process management framework distributed along with

MVAPICH2.

Figure 4.1 shows the design of parallel checkpoint/restart components, along with two

rings of MPD processes: mpd and mpdman. The global coordinator is a separate thread

along with the MPI console process. Local coordinators are separate threads, one for each

MPI processes. Control messengers are extended activities from mpdman processes.

55

� Global Coordinator: The global coordinator manages the checkpoint/restart pro-

cedure for an entire MPI job. It initiates checkpointing based on checkpoint/restart

requests from a user signal or a system event (be it an error or faulty state). In addi-

tion, it triggers the checkpoint/restart of the console process in order to maintain the

communication state of the console process.

� Local Coordinator: There is a local coordinator for each MPI process, which partici-

pates in the coordination initiated from the global coordinator. Each local coordinator

is responsible for triggering the corresponding checkpoint/restart of the worker pro-

cess. Its functionality includes the following: (a) communicating C/R requests from

and replies to the global coordinator; (b) preparing the local MPI process for check-

point/restart, by triggering the draining of communication state, and the open/close

of the communication channels; (c) invoking BLCR [33] to perform the process of

checkpoint/restart for a local worker process.

� Control Messenger: Control message manager provides an interface between the

global coordinator and the local coordinator. It needs to be coupled with the process

manager framework for the extended functionality of communicating C/R messages.

In our design, we extend the functionality of MPD process manager, mpdman, to

communicate C/R control messages.

Figure 4.2 depicts the state diagram of our checkpoint/restart framework. A checkpoint-

ing cycle involves five phases: initial synchronization, pre-checkpoint coordination, local

checkpointing, post-checkpoint coordination, and restarting. These phases are described in

detail below.

56

I
n
i
t
i
a
l

S
y
n
c
h
r
o
n
i
z
a
t
i
o
n
R
u
n
n
i
n
g

P
r
e
-
c
h
e
c
k
p
o
i
n
t

C
o
o
r
d
i
n
a
t
i
o
n

R
e
s
t
a
r
t
i
n
g

P
o
s
t
-
c
h
e
c
k
p
o
i
n
t

C
o
o
r
d
i
n
a
t
i
o
n

L
o
c
a
l

C
h
e
c
k
p
o
i
n
t
i
n
g

S
t
o
r
a
g
e

N
o
r
m
a
l

S
t
a
r
t

R
e
s
t
a
r
t

Figure 4.2: State Diagram for Checkpoint/Restart

Initial Synchronization All processes in a job synchronize with each other and prepare

for pre-checkpoint coordination. First, the global C/R coordinator from the console

process propagates a checkpoint request to all local C/R coordinators running in indi-

vidual MPI processes. Then, upon the arrival of the request, local C/R coordinators

takes over the control of communication channels from the main thread to avoid pos-

sible inconsistency of communication channels that might be caused by interleaved

accesses from both C/R coordinator and main thread.

Pre-checkpoint Coordination The global and local coordinators work together to pre-

pare all MPI processes and the front-end console for checkpointing to ensure global

57

consistency. During this phase, local coordinators must manage to drain the outstand-

ing message inside the communication channels, i.e. over the network. This is to ensure

the entire state of the parallel job can be captured from the compute nodes, that is to

say, nothing left in the network.

Local Checkpointing Each coordinator invokes BLCR to take snapshots of the process it

is responsible for. The checkpoint files are saved to stable secondary storage, either a

local disk or a remote storage through network file system.

Post-checkpoint Coordination This phase is needed to resume the execution of the par-

allel application. The global and local coordinators cooperate together and reactivate

communication channels, which involves rebuilding the low level network connections

and processing outstanding send/receive messages.

Restarting This is an additional phase needed to recreate all processes from their individual

checkpoint files when restarting a parallel job. The global coordinator first recreates the

console and propagates the restart request to local coordinators, who in turn recreate

all worker processes. Local C/R coordinators also reestablish the control channels with

their worker processes to re-gain the process control and resume coordination with the

global coordinator. At this point of time, the job is restarted from a state same as

a previous state in local checkpointing phase. A post-checkpoint coordination phase

then brings the entire application back to its running state.

4.2. Ensuring Consistency of Global State over InfiniBand

For the initial framework, we adopt a coordinated approach to take globally consistent,

transparent snapshots of MPI applications. In this section, we explain how we transparently

58

suspend/reactivate the InfiniBand communication channel while preserving the channel con-

sistency.

C
Q
s
 M
R
s
 P
D
s
Q
P
s

R
e
g
i
s
t
e
r
e
d

U
s
e
r

B
u
f
f
e
r
s

N
e
t
w
o
r
k

C
o
n
n
e
c
t
i
o
n

I
n
f
o
r
m
a
t
i
o
n

D
e
d
i
c
a
t
e
d

C
o
m
m
u
n
i
c
a
t
i
o
n

B
u
f
f
e
r
s

C
h
a
n
n
e
l

P
r
o
g
r
e
s
s

I
n
f
o
r
m
a
t
i
o
n

M
V
A
P
I
C
H
2

(
U
p
p
e
r

L
a
y
e
r
s
)

M
V
A
P
I
C
H
2

(
I
n
f
i
n
i
B
a
n
d

C
h
a
n
n
e
l
)

I
n
f
i
n
i
B
a
n
d

C
h
a
n
n
e
l

H
o
s
t

A
d
a
p
t
o
r

(
H
C
A
)

R
e
b
u
i
l
d

U
p
d
a
t
e

P
r
e
s
e
r
v
e

S
o
f
t
w
a
r
e

H
a
r
d
w
a
r
e

U
s
e
r

A
p
p
l
i
c
a
t
i
o
n

Figure 4.3: Consistency Ensurance of InfiniBand Channels for Checkpoint/Restart

The structure of InfiniBand communication channel in MVAPICH2 can be described

by Figure 4.3. Below the MVAPICH2 InfiniBand channel is the InfiniBand Host Channel

Adapter (HCA), which maintains the network connection context, such as Queue Pairs

(QPs), Completion Queues (CQs), Memory Regions (MRs), and Protection Domains (PDs).

MVAPICH2 InfiniBand channel state consists of four parts:

� Network connection information is the user-level data structures corresponding to

the network connection context.

� Dedicated communication buffers are the registered buffers which can be directly

accessed by HCA for sending/receiving small messages.

59

� Channel progress information is the data structures for book-keeping and flow

control, such as pending requests, credits, etc.

� Registered user buffers are the memory allocated by user applications. These

buffers are registered by communication channel to HCA for zero-copy transmission of

large messages.

Among the four, network connection information can be discarded during checkpointing,

and be rebuilt afterwards. Dedicated communication buffers, and channel progress informa-

tion by and large remain the same. Registered user buffers need to be re-registered and the

content of them need to be totally preserved.

In pre-checkpoint coordination phase, to suspend communication channels, channel man-

agers first drain all the in-transit messages, which means that, upon synchronization, all the

messages before that point must have been delivered and all the messages after that point

must have not been posted to network. Two things need to be noted here: (a) the word

‘messages’ refer to the network level messages rather than MPI level messages, and one MPI

level message may involve several network level messages, and (b) the synchronization points

for different channels do not need to correspond to the same time point, and each channel

can has its own synchronization point. Due to the First-In-First-Out (FIFO) nature of Infini-

Band RC channel, this can be achieved by exchanging flagged control messages between each

pair of channel managers. These control messages are exchanged to achieve synchronization

for the channels. Once the channel manager detects the completion for all outgoing control

messages and expected incoming messages, the channel can be successfully suspended. The

channel manager then releases the underlying network connection. One key issue involved is

when the channel manager should process the messages received before the control message,

which are the drained in-transit messages. Because the communication channel is designed

60

to execute the transmission protocol chosen by upper layers in MPI library, processing an

incoming message may cause sending a response message, which may lead to an infinite

‘ping-pong’ livelock condition. To avoid that, the channel manager has to either buffer the

drained messages, or if possible, process these messages but hold on the response messages.

In post-checkpoint coordination phase, after rebuilding underlying network connections,

the channel manager first updates the local communication channel as we described before,

and then sends control messages to update the other side of the channel. The remote

updating is to resolve the potential inconsistency introduced by invalid remote keys for

RDMA operation. For example, the rendezvous protocol for transmitting large messages

is implemented with RDMA write. To achieve high responsiveness and transparency, our

design allows rendezvous protocol being interrupted by checkpointing. Therefore the remote

keys cached in sender side for RDMA write will become invalid because of the re-registration

on receiver side. Hence, the receive channel manager needs to obtain the refreshed memory

keys from the source process.

4.3. Performance Evaluation of Initial Checkpoint/Restart Support

In this section, we describe experimental results and analyze the performance of our

current implementation based on MVAPICH2-0.9.0. Our experiments are conducted on an

InfiniBand cluster of 12 nodes. Each node is equipped with dual Intel Xeon 3.4GHz CPUs,

2GB memory and a Mellanox MT25208 PCI-Express InfiniBand HCA. The operating system

used is Redhat AS4 with kernel 2.6.11. The filesystem we use is ext3 on top of local SATA

disk.

61

Benchmark: lu.C.8 bt.C.9 sp.C.9
Checkpoint File Size (MBs): 126 213 193

Table 4.1: Checkpoint File Size per Process

We evaluate the performance of our implementation using NAS parallel Benchmarks [87]

and High-Performance Linpack (HPL) [5]. First, we analyze the overhead for taking check-

points and restarting from checkpoints, and then we show the performance impact to appli-

cations for taking checkpoints periodically.

Overhead Analysis for Checkpoint/Restart – We have first analyzed the overhead

for C/R in terms of checkpoint file size, checkpointing time, and restarting time. We choose

BT, LU and SP from NAS Parallel Benchmarks and HPL Benchmarks.

Because checkpointing involves saving the current state of running processes into reliable

storage, i.e. taking a full snapshot of the entire process address as a checkpoint file. Thus the

file size is determined by the process memory working set, Table 4.1 shows the checkpoint

file sizes per process for BT, LU and SP, class C, using 8 or 9 processes.

The time of checkpoint/restart is determined mainly by three factors: the time for syn-

chronization; the time for store/retrieve the checkpoint file; and the time for suspending and

resuming communication channels.

Figure 4.4 shows the time for checkpointing/restarting NAS benchmarks. It also provides

the file accessing time for the checkpoint file for comparison. With the limited performance

of underlying ext3 file systems over SATA disks on our system, we have observed that the

file accessing time is the dominating factor. High performance parallel file system can also

be used to store the checkpoint files for better performance. We plan to further investigate

issues in this directions for speeding up the commitment of checkpoint files.

62

Figure 4.4: Overall Time for Checkpointing/Restarting NAS

To further analyze the coordination overhead, we have taken a time breakdown of the

coordination time for individual phases. As shown in Figure 4.5, post-checkpoint coordina-

tion consumes most of the time. The reason is that post-checkpointing involves a relatively

time-consuming component, the establishment of InfiniBand connections, which has been

explored in our previous study [97]. The response time, which is the sum of initial syn-

chronization time and pre-checkpoint coordination time, represents the delay from when

the checkpoint request is isssued to the time when all MPI processes have drained all their

network messages, reaching a stage for taking a global consistent checkpoint. For restart-

ing, the post-checkpoint coordination consumes almost the same amount of time as that of

checkpointing, but the major part of time is in restarting phase, during which all processes

have to be reloaded from the checkpoint files.

63

Figure 4.5: Coordination Time for Checkpointing/Restarting NAS

To evaluate the scalability of our design, we measure the average checkpointing time for

HPL benchmark using 2, 4, 6, 8, 10, and 12 processes. In the experiment we choose the

problem size to let HPL benchmark consume around 800MB memory for each process.

To improve the scalability, we adopt the technique of boot-strap channel described in [97]

to reduce the InfiniBand connection establishment time from the order of O(N 2) to O(N),

where N is the number of connections. As shown in Figure 4.6, post-checkpoint coordination

time, is O(N), the overall coordination time is also in the order of O(N). To further improve

the scalability of checkpoint/restart, we plan to utilize adaptive connection management

model[95] to reduce the number of active InfiniBand connections.

Performance Impact for Checkpointing – we have conducted experiments to analyze

the performance impact when taking checkpoints at different frequencies during the execution

time of applications. We used LU, BT and SP from NAS benchmarks and HPL benchmark

to simulate user applications.

64

Figure 4.6: Coordination Time for Checkpointing HPL

As shown in Figure 4.7, the total running time of LU, BT and SP decreases as the

checkpointing interval increases. The additional execution time caused by checkpointing

matches the theoretical value: checkpointing time × number of checkpoints. Figure 4.8 shows

the impact on calculated performance in GLFOPS of HPL benchmarks for 8 processes. The

dominating part of the overhead for checkpointing is the file writing time. With a reasonable

checkpointing interval, e.g. 4 minutes. the performance degradation appears to be negligible

even with this overhead included.

4.4. Summary of Process Fault Tolerance with Checkpoint/Restart

We have presented our design of checkpoint/restart framework for MPI over InfiniBand.

Our design enables application-transparent, coordinated checkpointing to save the state of

the whole MPI program to reliable storage for future restart. We have evaluated our design

using NAS benchmarks and HPL. Experimental results indicate that our design introduces

very little checkpointing overhead.

65

Figure 4.7: Performance Impact for Checkpointing NAS

Figure 4.8: Performance Impact for Checkpointing HPL

66

CHAPTER 5

High Performance End-to-End Reliable Broadcast

Broadcast is an important collective operation, which can be used to implement other

collective operations, such as allreduce and barrier. The current LA-MPI [36] implementation

is generic, using point-to-point messaging and a spanning tree algorithm to implement the

broadcast. Fault tolerance to data transmission errors is already provided by the point-

to-point messaging layer. Here we describe how we use the hardware broadcast primitive

provided by the Quadrics network to implement an efficient MPI broadcast function, while

providing fault tolerance to data transmission errors. We first provide an overview of LA-MPI

architecture. Then we propose a new end-to-end broadcast protocol that takes advantage of

Quadrics hardware broadcast. Finally, we provide performance results.

5.1. LA-MPI Architecture

As shown in Figure 5.1, the implementation of LA-MPI has its MPI interface layered

upon a set of User Level Messaging (ULM) interface primitives, which itself consists of two

layers: the Memory and Message Layer (MML) and the Send and Receiver Layer (SRL) [36].

The Memory and Message Layer – The MML layer is composed of a memory man-

ager, a set of network paths and a path scheduler. The memory manager controls all memory

67

Net
A B C

Net Net

SRL

MML
Network Path Scheduler

Management
Memory and Message

Communication
NetworkShared

Memory

USER LEVEL
KERNEL LEVEL

OS Bypass
Device

Network
Drivers

Other Machines

Memory
Subsystem

MPI

Application

LAMPI

Figure 5.1: LA-MPI Architecture

(physical and virtual), including the process private memory, shared memory, as well as “net-

work memory”, such as memory on the NIC. A network path is a homogeneous transport

abstraction used to encapsulate the properties of different network devices and protocols. It

controls access to one or more network interface cards (NICs), within a path there may be

several independent “routes”. The path scheduler “binds” a specific message between a pair

of source and destination processes to a particular path. Message pipelining and reassembly

are supported in LA-MPI at MML layer. Together all three components of the MML archi-

tecture provide support to MPI functionalities with network transmission-specific primitives

(i.e., the SRL).

The Send and Receiver Layer – The Send and Receive Layer (SRL) is responsible

for sending and receiving messages. It consists of multiple network path implementations

and a highly optimized shared memory communication implementation. Messages that do

not require the network (on-host) are simply copied through shared memory. Those that do

68

require the network (off-host) are handled by the Network Communication module, where

the message fragments are sent via physical resources associated with the path, to which the

message is bound. The SRL layer also supports message fragmentation and reassembly.

5.2. Quadrics Hardware Broadcast

An efficient, reliable and scalable hardware broadcast is also supported over QsNet [73].

As shown in Figure 5.2, a hardware broadcast packet takes a predetermined path to reach

all the recipients. It is successfully delivered only when all the recipients send an acknowl-

edgment. The top Elite switch in the path takes care of broadcasting the packets to and

combining the acknowledgments from the recipients [70]. However, the hardware broadcast

has its own restrictions. The destination addresses in a hardware broadcast have to be the

same across all the processes being addressed. In addition, the processes being addressed

must be located on contiguous nodes in order for the switch to perform the broadcast. The

second release, QsNet-II, removes this restriction and supports hardware broadcast to non-

contiguous nodes.

(a) Data Propagation (b) ACK Collection

Figure 5.2: Quadrics Hardware Broadcast

69

5.3. LA-MPI Communication Flow and its Broadcast Performance

LA-MPI implements an end-to-end reliable MPI library. Reliability is provided with

sender-side retransmission by checking the list of unacknowledged messages every 5 seconds

(adjustable at compile time). LA-MPI reliable transmission protocol is shown in Figure 5.3.

The Sender and the receiver coordinate their activities as follows.

At the sender side:

1. Post a sender descriptor to send a message

2. Bind a send descriptor to a network path and generate fragment descriptors

3. Record transmission time and sequence numbers to the send descriptors

4. Send fragments along with the CRC/checksum

5. Check received ACK’s and NACK’s and update the list of fragment descriptors

6. Retransmit a fragment if it is timed out or a corresponding NACK is received

At the receiver side:

1. Post a receive descriptor to receive a message

2. Check the integrity of received fragments, and return ACK’s or NACK’s accordingly

3. Assemble the received fragments into messages and match with the receive descriptors

LA-MPI collective operations, such as MPI Bcast, are layered on top of point-to-point op-

erations. The broadcast operation over point-to-point operations uses a generic tree-based

70

ACK?

FragFrag

FragFragFrag

(CRC/Checksum)
Fragments

retransmit

bind

Send Descriptors

(Send Frag’s)
Network Paths

Timer

Specific? Yes

Network Paths
(Recv Frag’s)

NACKACK

Release Fragment Record Seq. Info

Recv Descriptors

No

NoYes

CRC/Checksum OK?

Fragments Recv’d

Assemble

Figure 5.3: Communication Flow Path and Reliability Model in LA-MPI

algorithm for fast delivery. If the network path only provides point-to-point communica-

tion primitives, the tree-based algorithm (or its variants) can provide the best performance.

However, one of LA-MPI supported interconnects, Quadrics, provides an efficient, reliable

and scalable RDMA-based hardware broadcast. The broadcast algorithm implemented in

libelan from Quadrics [73] provides a high performance, scalable broadcast operation by

taking advantage of the hardware broadcast (shown in Figure 5.2). A tree-based broadcast

algorithm is also provided in libelan. Our work focuses only on the algorithm on top of

hardware-based broadcast. We refer to this algorithm as the libelan broadcast implemen-

tation unless specified otherwise. LA-MPI tree-based algorithm does not take advantage of

Quadrics hardware broadcast. As shown in Figure 5.4, in our eight-node Quadrics cluster

LA-MPI Broadcast operation is not performing as well as the MPICH broadcast operation.

In addition, LA-MPI has a logarithmic scalability compared to the constant scalability of

71

the MPICH broadcast operation. Thus it is desirable to incorporate the hardware broadcast

into LA-MPI’s end-to-end reliability model for optimized broadcast performance.

5.4. End-to-End Reliability with Hardware Broadcast

End-to-end reliability for a broadcast operation implies a form of acknowledgments to be

returned from the receivers to the sender. That adds an overhead to the base performance of

the message passing activities. Therefore it seems to be conflicting goals in order to achieve

end-to-end reliability while maintaining the maximum performance of message passing at the

same time. More performance degradation is readily seen by the collectives, as exemplified by

LA-MPI broadcast performance in Figure 5.3. It is important to characterize the hardware

broadcast communication before any initiatives on exposing its maximum performance and

providing end-to-end broadcast reliability.

Quadrics Hardware Broadcast Communication Flow – Quadrics hardware broad-

cast can be considered as a two-phase communication, up and down, as shown in Figure 5.2.

In the up-phase, a packet first takes adaptive routing to a switch that can reach all the

destination processes. Then in a down-phase it is replicated by the switch(es) to reach all

the recipients. The hardware broadcast is also network reliable. The Elite switches in the

path take care of broadcasting the packet to and combining the acknowledgments from recip-

ients [70]. This hardware support produces a highly efficient and scalable hardware broadcast

primitive. A communication library that does take advantage of this primitive can speed up

the broadcast operation and also other collectives on top it. However, the hardware broad-

cast has its own limitations. The processes being addressed must have contiguous VPIDs

in order for the switch to perform the broadcast (The next generation of Quadrics release,

Quadrics-II, removes this limitation). In addition, the destination addresses in a hardware

72

broadcast have to be the same across all the recipient processes. And to make the hardware

broadcast available to a general broadcast routine, a broadcast algorithm usually adds some

amount of overhead on top of hardware broadcast.

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8

La
te

nc
y

(µ
s)

Number of Nodes

elan_hbcast
MPICH Bcast
LA-MPI Bcast

Figure 5.4: Performance Benefits of Hard-
ware Broadcast

2

4

6

8

10

12

14

16

18

2 4 8 16 32 64 128 256 512 1024

La
te

nc
y

(µ
s)

Message Size (Bytes)

hw bcast
elan_hbcast

Figure 5.5: The Overhead of Utilizing
Hardware Broadcast in libelan

Figure 5.5 shows the comparison between the raw performance of the hardware broadcast

and the performance of the current broadcast operation implemented as elan hbcast in libelan

by Quadrics [73]. Again over an eight-node cluster, a raw broadcast latency is only 3.6us, but

9.5us with elan hbcast for eight-byte message. So a significant amount of overhead is added

to the hardware broadcast performance. A part of the overhead is related to the overhead

of overcoming hardware broadcast limitations. However, a large portion of the overhead is

from the algorithm itself as described in the following. In the case of Quadrics broadcast

algorithm on top of the hardware broadcast, two sets of broadcast buffers and associated

resources are provided, and used alternatively by the broadcast operations. Each broadcast

operation consists of two steps: synchronization and message broadcast. To avoid the in-

coming broadcast messages clobbering the existing message with RDMA, the root process

73

starts the hardware broadcast only until it is notified of the completion of synchronization.

Consecutive broadcast operations are then throttled by this inserted synchronization, which

can lead to a lower broadcast throughput and higher overhead. Minimizing this synchro-

nization overhead is critical for a broadcast algorithm to maximize the performance benefits

of Quadrics hardware broadcast.

End-to-End Reliability – As the cost effectiveness of cluster computing continues to

be appealing to the high end computing field, the average size of the cluster is ever increas-

ing and the fault tolerance support that comes with the manufacturers are not adequate

to guarantee error-free execution of an parallel application, given the length of a typical

application run and the very large number of nodes. LA-MPI is an implementation of MPI

library that provides end-to-end message passing reliability against possible I/O bus errors

or networking errors [36]. Quadrics hardware broadcast is only network-level reliable. Sim-

ple means using another message for end-to-end reliability would lead to further degradation

on the broadcast performance. It is beneficial if the reliability cost can be merged into the

synchronization needed for Quadrics hardware broadcast or hidden from the critical path of

broadcast communication.

In this work, we have taken the challenges on the aforementioned issues: maximizing

performance benefits and providing end-to-end reliability for hardware broadcast. A broad-

cast protocol is proposed to reduce the synchronization cost and maximize the performance.

A unified synchronization and reliability control is also exploited to reduce the performance

penalty on adding end-to-end reliability. These issues are discussed in the following two

sections.

74

Bcast #2

Synchronization

Bcast #n

Bcast #1

ro
ta

te

Broadcast RDMA

User Data Buffering

header payload

header payload

header payload

Figure 5.6: Proposed Broadcast Protocol

5.5. Proposed Broadcast Protocol

A general purpose MPI broadcast routine to take advantage of the hardware broadcast

has to take into account the restrictions placed by the Quadrics hardware broadcast. One

has to provide a global address space for the broadcast communication and overcome the

non-contiguity of the receiver nodes. In this section, we propose a broadcast protocol and

discuss the basic issues on buffer management and the mechanisms for broadcast transport

on the global buffer management and transmission mechanism. In addition, the strategies

adopted to design an efficient broadcast protocol are also discussed.

1. Multiple Buffering

Hardware broadcast can only address a destination address that is global across a given

set of receiving processes. This necessitates the use of global memory. In order to do

75

this, an identical elan3 address space across all processes is allocated and then mapped

to the host virtual memory by each process. The consistency of the global memory

has to be maintained for further broadcast operations. Address translation can have a

big impact on the application performance [51]. To ease the buffer management and

reduce the impact of address translation, the global memory is divided into an array of

broadcast channels. Figure 5.6 shows the allocation of global broadcast channels. At

the beginning of each channel, there is a reserved header field. Header/payload bound-

ary can be dynamically determined. Channels with the same index from each process

are grouped together. Broadcast operations will deliver the data to each process. This

buffer allocation allows the potential advantage from double buffering, a technique to

allow a transmission request to be initiated while another is still in progress. It also

extends that by allowing multiple outstanding transmissions. Even if the hardware

allows one transmission in progress, multiple buffering still can benefit from pipelining

the broadcast communication. The management of multiple channels needs to be dif-

ferent from a sliding window protocol. In a typically slide window protocol a sender

update the available windows when a notification about the used buffers is received.

Since these broadcast channels must be preserved as global address space, one pro-

cess cannot update its use of a channel unless a global decision is made across all the

processes. Thus a global synchronization is inevitable before the reuse of any chan-

nel. Synchronization on these global buffer channels is discussed in detail later in the

coming section.

2. Non-blocking and Pipelining Transport

For a broadcast operation to be performed over the hardware broadcast, it is first bound

to a broadcast channel. The sender process fills the header and posts a broadcast

76

RDMA request down to the network interface. Tradeoffs can be made on whether

to buffer the application message into the broadcast channel or broadcast directly

from the application buffer. After receiving the broadcast message, a receiver process

checks the header and copies the message into its user buffer. MPI broadcast operation

can involve an arbitrary set of processes while Quadrics hardware broadcast can only

address a set of processes with contiguous VPIDs. Thus the scope of this work focuses

on how to expose the performance of the hardware broadcast over a set of contiguous

processes to a higher application layer. Work in [28] has explored how to partition

the processes into disjoint sets of processes with contiguous VPIDs, then use a tree-

based algorithm for fast broadcasting of the data. Nonetheless, in order to make the

hardware broadcast available to a set of processes with non-contiguous VPIDs, we use

an iterative approach to perform multiple hardware broadcasts to deliver messages to

a set of non-contiguous processes, one per subset of contiguous processes.

MPI broadcast operations are blocking in nature. As stated in MPI specification [56],

the completion of a call indicates that the caller is free to access locations in the com-

munication buffer. This specification does not mandate how the implementation shall

meet the specification at the transport layer. Therefore one can design a collective

algorithm that is non-blocking at the transport layer and it is also valid for an im-

plementation of a broadcast operation to buffer the message and return the control

to the application immediately so long as the message can be delivered later on. Of

course, the implementation has to maintain the compliance to other specifications.

With the provision of multiple broadcast channels, multiple broadcast operations can

be invoked to the transport layer in a pipeline, and each is processed at different stages

of communications. For example, while the receiver is copying a message out of the

77

broadcast channel, another message is being broadcasted in the network and a third

is being buffered at the sender process. These broadcast operations can also be from

different sender processes.

To avoid the copying overhead for large message, it is possible to use a form of long

send, i.e., first send the header with a broadcast RDMA and then chain that with a

second broadcast RDMA whose source data is located at the user buffer. However,

this precludes the possibility of non-blocking broadcast at the transport layer as the

call cannot be returned until the broadcast transport is done. Our earlier results [96]

also indicate that there is a superlinear increase on the latency when the message

size goes above the buffering threshold (16KB). So instead, large messages are split

into multiple small fragments and their transmissions are pipelined at the transport

layer. This maintains the benefits of non-blocking transport and also overlaps the

buffering (and copying at the receiver side) of one message with the transmission of

other messages.

5.6. Synchronization and Reliability

Since the data can be written to a remote process without its knowledge, we must ensure

that a new message does not overwrite the previous message that is still in the global buffer.

In addition, the broadcast memory must be preserved as global address space. One process

cannot update its use of this memory unless a global decision is made across all the processes.

Thus synchronization across these processes is needed before a broadcast operation reuses a

global buffer.

1. Synchronization

78

Manager

test/set UpdateUpdate

Sync

Others

Figure 5.7: Synchronization with Atomic
Test-and-Set

������������ �
�
���������

�
�������
�
			
	

���
�
���
�

���
�

���������
���
���
������������� �

�
�� �
�
��������������

1 023
Phase 0:

Acquire
Phase 3:

Free
Phase 2:

Sync−Down
Phase 1:

Sync−Up

Others

3

1

1

Manager

2

Figure 5.8: Tree-Based Synchronization
with Split-Phases

One alternative for the synchronization is to use a tree-based algorithm to have a

process collect all the acknowledgments and then update others with the combined re-

sults. Another is to use a special form of Quadrics network transactions, test-and-set,

to perform a test on a global value [34, 73]. This transaction tests a global variable

at all processes against a value and it optionally writes a new value into the global

variable [70]. Using this transaction for the synchronization, one can have all processes

write a number to a dedicated global variable, and wait for this variable to be updated.

This synchronization is very efficient when all the processes reach the synchronization

fairly close to each other. However, an exponential back-off scheme must be in place

to avoid too much broadcast traffic incurred by the test-and-set transaction [70, 73]

in the case of a set of processes unbalanced in their computation. As shown in Fig-

ure 5.7, the manager process has to keep polling on the global variable until all the

processes have updated their value. Thus all processes must simultaneously participate

79

in synchronization and the time to complete the synchronization is determined by the

process with the maximum skew.

Unlike strict requirement on all processes to participate in the synchronization with

test-and-set atomic transaction and potential flooding traffic to the network, the tree-

based algorithm is less intrusive to Quadrics network. As show in Figure 5.8, processes

will form a tree to propagate their synchronization messages up to the manager. With

Quadrics chained RDMA mechanism, these synchronization messages can be combined

and propagated to the manager by the network interface without involving host pro-

cesses or threads. In addition, with multiple broadcast channels and non-blocking

transport of broadcast messages, the synchronization can be delayed until no more

free broadcast channels are available. Thus the cost of synchronization can be amor-

tized into multiple broadcast operations. With a provision of sufficiently large set of

broadcast channels, the synchronization cost can be negligible. Besides, it does not

generate polling broadcast traffic as needed by test-and-set.

Furthermore, a split-phase synchronization scheme can be adopted to completely free

processes from explicit synchronization. As shown in Figure 5.8, broadcast channels are

grouped into multiple sets. Once a process completes the use of one set of broadcast

channels, it performs a RDMA to send the synchronization information up to the

manager, referred to as sync-up phase. Chained RDMA’s combine and propagate

the messages to the manager. The manager checks the notifications it has received

and, once a new set of broadcast channels are free, it broadcasts the synchronization

conclusion down to all others. This is referred to as the sync-down phase. In addition,

there are two sets of channels, one that is free to be used by upcoming broadcast

operations, the other for which the manager has broadcasted its global decision and

80

to be marked as free by all processes. So at any given moment, there is one set

of free channels being used, another set being reclaimed as free channels, a third

set undergoing a sync-up phase for which the manager is being updated about the

synchronization status, a fourth set in the sync-down phase for which the manager is

broadcasting the combined conclusion on synchronization. Therefore no processes will

ever be blocked in waiting for free broadcast channels provided that the time takes to

use up one set of the free broadcast channels is more than the synchronization time

for any of the four phases.

2. Reliability and its Unified Control with Synchronization

Unlike many MPI libraries that consider all underlying communication perfectly reli-

able, LA-MPI is designed to tolerate the failures of the PCI bus and the network [36].

These errors can be propagated and the effect of these errors can be amplified in

long running parallel programs over terascale clusters, because of the sheer number

of their components. To achieve reliable end-to-end message passing, LA-MPI op-

tionally supports sender-side retransmission when the messages have exceeded their

timeout periods for point-to-point messages. A similar sender side retransmission can

be employed to achieve reliable broadcast.

Every broadcast message is transmitted along with an embedded 32-bit additive check-

sum or, optionally, 32-bit cyclic redundancy code (CRC). This checksum/CRC protects

the message against network and I/O bus corruption. When a message is received, its

checksum/CRC is validated before the recipient acknowledges its arrival. In the point-

to-point cases, if the verification is successful, the recipients generate their positive

81

acknowledgments, ACK’s. Otherwise, negative acknowledgments, NACK’s are gener-

ated. However, explicit ACK or NACK messages for the reliability control could only

increase the implementation overhead. Instead, the existing synchronization setup can

be expanded and the reliability control message can be combined into the synchro-

nization scheme. Figure 5.9 shows the proposed unified control of synchronization

and reliability. The regular messages for the synchronization of broadcast channels

are taken as the ACK’s generated to parent processes and ultimately the manager. A

separate network of chained RDMA is constructed to communicate NACK’s. For fast

detection of errors, each NACK is delivered to the manager directly instead of being

propagated up. A NACK wins over all the received ACK’s. The manger processes take

immediate actions to notify all the other processes about a failure. Then all processes

will be synchronized to perform the broadcast operation again. Multiple failures of the

same broadcast operation will be taken as the hardware or network failure. A fail-over

function is provided to detect this and re-bind all the outstanding broadcast operations

to another broadcast operation on top of point-to-point operations. The fault tolerant

point-to-point operations in LA-MPI can then ensure the completion of the outstand-

ing broadcast operations by choosing another network path. A timestamp and the

number of retransmission times are also recorded with every broadcast message. The

loss of a message can be detected by the sender or the receiver when it has exceeded

its timeout period.

5.7. Broadcast Implementation

As shown in Figure 5.10, we implemented the broadcast operation with added support

in both the MML and the SRL in LA-MPI. To make use of the hardware broadcast, global

82

Manager

Others

ACK

ACK

NACK

Figure 5.9: Unified Synchronization and
Reliability Control

1

2 3

55

66

1

SRL

Channels

MML

Requests
7(or 4)

Manager

3.Message Reception

7.Sender Status Update

5.Sync−Up
6.Sync−Down

4.Status Update

2.Broadcast RDMA
1.Acquire Channels

Broadcast RDMA

4 DataData

Figure 5.10: Flow Path of Broadcast Op-
eration With Hardware Broadcast

memory is allocated and divided into a number of channels. As shown in Figure 5.10, in the

MML for both the senders and receivers, a broadcast operation binds to a free channel. At

the sender side, the sender generates CRC/checksum and creates a message header at the

beginning of the channel. Messages ≤ 16KB are copied over into the channel as payload.

Then this message is transmitted over the network with hardware broadcast. Messages

> 16KB are fragmented into separate small messages and broadcasted. At the receiver end,

the message header is extracted and CRC/checksum checking is done to validate the message.

If the received data is not corrupted, messages are delivered to the application buffer and

the request status is updated as completed. The broadcast channel synchronization and

reliability control are unified into a split-phase synchronization scheme as described earlier.

When a message is corrupted or lost, the manager synchronizes the actions of all processes

and the previous message is transmitted to complete the broadcast operation. Eventually,

when a Quadrics network failure is suspected, the broadcast operation will fail over to the

tree-based broadcast operation. And it will be bound to other network paths. Broadcast

83

within SMP nodes is also supported. One process on an SMP node first participates in the

off-host communication that requires the network hardware broadcast. Once the off-host

communication is completed, these processes perform an on-host communication with the

other processes on the same node through the shared memory to share the data.

5.8. Performance Evaluation of End-to-End Reliable Broadcast

In this section, we describe the performance evaluation of the broadcast algorithm.

We have evaluated the implementation on a TRU64 quad-1.25GHz alpha cluster, which

is equipped with Quadrics interconnect, composed of a dimension four switch, Elite-256,

and QM-400 cards. On the same system, we have also measured the performance of the

broadcast implementation by Quadrics for MPICH [37], and HP’s for Alaska MPI. We have

used an eight-node cluster of quad-700MHz Pentium-III, in which an Elan3 QM-400 card is

attached to each node and links to a quaternary fat tree switch of dimension two, Elite-16.

Our tests are performed by having the processes first warmed up with 20 broadcast

operations. Then a sample size of 1000 broadcast operations are performed after a barrier

synchronization. This is repeated for 100 samples, each again performed after a barrier. The

time for performing each sample is recorded. With statistical analysis on these samples, we

derive the average time for a broadcast operation as the latency. The same test is used to

measure the performance of MPICH and Alaska MPI broadcast operation, which uses the

hardware broadcast communication.

1. Broadcast Latency

We measured the broadcast latency over 128 processes on a contiguous 32-node cluster.

As shown in Figure 5.11, the new algorithm in LA-MPI (LA-MPI HW) significantly

reduces broadcast latency, compared to the original algorithm. This is to be expected

84

0

20

40

60

80

100

120

140

160

180

200

4 8 16 32 64 128 256 512

La
te

nc
y

(µ
s)

Message Size (Bytes)

MPICH
Alaska

LA-MPI
LA-MPI HW

(a) Small Messages

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1k 2k 4k 8k 16k 32k 64k

La
te

nc
y

(µ
s)

Message Size (Bytes)

MPICH
Alaska

LA-MPI
LA-MPI HW

(b) Large Messages

Figure 5.11: Performance Comparison of Different Broadcast Algorithms

because the new broadcast algorithm takes advantage of the hardware broadcast. As

also shown in Figure 5.11(a), our broadcast algorithm outperforms the algorithms

implemented for MPICH by Quadrics [73] and HP’s for Alaska MPI. This indicates

that the new algorithm is able to take advantage of the hardware broadcast with

much less overhead compared to the broadcast algorithm provided in libelan. These

performance gains are due to the non-blocking and pipelining implementation of the

broadcast operations. In addition, split-phase synchronization also contributes to the

reduction on synchronization overhead.

2. Broadcast Scalability

Scalability is an important feature of any collective operation. To evaluate the scala-

bility of the broadcast operation with different system sizes, we performed the same

test with varying number of processes. Figure 5.12 shows the broadcast latency for

an eight-byte message over different number of processes. Compared to the original

85

0

10

20

30

40

50

60

70

80

8 16 32 64 128 256

La
te

nc
y

(µ
s)

Number of Processes

MPICH
Alaska

LA-MPI
LA-MPI HW

Figure 5.12: Broadcast Scalability with Dif-
ferent System Sizes

0

5

10

15

20

25

2 4 6 8 10 12 14 16

La
te

nc
y

(µ
s)

Number of Channels

8 Bytes

Figure 5.13: Impact of the Number of
Broadcast Channels

generic algorithm in LA-MPI, the new broadcast algorithm maintains a scalability

close to O(1), up to 128 processes. When compared to MPICH or Alaska MPI, a

better scalability is also observed. This indicates that the new broadcast algorithm

is also able to provide a better scalability while taking performance advantage of the

hardware broadcast.

3. Cost of Reliability

While the Quadrics [73] implementation for MPICH [37] and HP’s for Alaska MPI

leaves the issue of reliable data delivery to the Quadrics hardware, LA-MPI ensures

end-to-end fault-tolerant message passing. This broadcast algorithm also allows the

option to turn on the reliability. Under the reliable running mode, broadcast messages

are retransmitted if any error occurs. The overhead of adding reliability can be mea-

sured by comparing the performance of LA-MPI under both the reliable mode and

the unreliable mode. As shown in Figure 5.14(a) the reliability cost is about 1µs for

messages ≤ 256 bytes. This indicates that the added reliability has a little impact

86

2

3

4

5

6

7

8

1 2 4 8 16 32 64 128 256

La
te

nc
y

(µ
s)

Message Size (Bytes)

No Reliability
With Reliability

(a) Small Messages

0

200

400

600

800

1000

1200

512 1k 2k 4k 8k 16k 32k 64k

La
te

nc
y

(µ
s)

Message Size (Bytes)

No Reliability
With Reliability

(b) Large Messages

Figure 5.14: Cost of Reliability

to the overall broadcast performance. But it has a significant impact to large mes-

sage broadcast operations, as shown in Figure 5.14(b). This is to be expected because

the generation and validation of CRC/checksum for large messages takes a significant

amount of time.

4. Impact of the Number of Broadcast Channels

Global synchronization is needed to maintain the consistency of the global buffers.

With the provision of multiple broadcast channels, the synchronization cost can be

amortized over a set of broadcast operations.

To gain insights into the performance of the broadcast algorithm, it is beneficial to

find out the impact of providing different number of broadcast channels. Split-phase

synchronization is disabled to isolate the synchronization overhead. We measured the

broadcast latency of the broadcast operation with different number of channels over

eight processes on an eight-node system. As shown in Figure 5.13, with two channels,

87

the broadcast latency is 17.1µs for eight-byte messages. The latency is reduced when

more channels are provided. When sixteen channels are provided, this latency is re-

duced to 4.3µs. Thus the synchronization cost is reduced by 13µs as the frequency of

synchronization is dropped to every sixteen broadcast operations. By using multiple

buffering with sixteen channels, the cost is indeed amortized into multiple operations.

5.9. Summary of Scalable End-to-End Reliable Broadcast

We take on the challenge of incorporating Quadrics hardware broadcast communication

into LA-MPI to provide an efficient broadcast operation. We then describe the benefits and

limitations of the hardware broadcast communication and possible strategies to overcome

them. Accordingly, a broadcast algorithm is designed and implemented with the best suit-

able strategies. Our evaluation shows that the new broadcast algorithm achieves significant

performance benefits compared to the original generic broadcast algorithm in LA-MPI. It

is also highly scalable as the system size increases. Moreover, it outperforms the broadcast

algorithms implemented by Quadrics [73] MPICH, and HP’s for Alaska MPI. Furthermore,

instead of leaving the reliability of message passing to the Quadrics hardware, this new

algorithm can ensure the end-to-end reliable data delivery.

88

CHAPTER 6

NIC-based Collective Operations over Myrinet/GM

Collective communication can consist up to 70% of the execution time of a scientific

application [72]. High performance and scalable collective communication is an important

factor to achieve good performance and increase the effective utilization of a high-end com-

puting platform. The programmable processors in some modern interconnects, including

Myrinet [12] and Quadrics [71], have been leveraged to offload communication processing

and optimize collective communication and synchronization [10, 18, 19, 94, 55, 93]. Col-

lective operations based on programmable Network Interface Cards (NICs) can reduce the

host processor involvement [19, 94], avoid round-trip PCI bus traffic [19, 94], and increase

the tolerance to process skew [16, 94] and operating system effects [55]. These benefits are

beneficial to the performance of collective operations in terms of latency and bandwidth.

In this chapter, we present our studies on further enhancing collective operations using

modern networking mechanisms over Myrinet. Through our studies, we have designed and

implemented NIC-based barrier, broadcast and all-to-all broadcast over Myrinet/GM. Since

they share some common design issues, we first describe these issues together. Then we

discuss the design and performance evaluation of individual operations separately.

89

6.1. Myrinet Programmability and Myrinet Control Program

Myrinet provides a programmable processor in its network interface. That lends a great

degree of flexibility to develop experimental protocols with different design options [66, 78,

35, 8]. New firmwares can be developed to support different protocols with different commu-

nication characteristics, or optimize the default firmware from Myrinet/GM, i.e., Myrinet

Control Program (MCP) to facilitate certain communication patterns. In the second gen-

eration of the GM protocol, a data structure, the packet descriptor, is also introduced to

describe every network packet. Inside this data structure, there is a callback handler, which

allows the possibility of further actions when the previous action on the packet is completed.

By using the Myrinet packet descriptor and its callback handler, one can easily have a packet

queued again for transmission before it is freed. For example, a callback handler can be used

to change the packet header and send a replica of the packet to another destination. This

will be beneficial to collective operations, such as broadcast, in which a packet is repeatedly

transmitted to different destinations.

6.2. Challenges in Designing NIC-Based Collective Operations

Collective operations usually involve complex algorithms, and dense communication pat-

tern. This brings a variety of challenging issues including: (a) group topology management,

(b) collective buffer management, (c) communication processing, (d) communication algo-

rithm, (e) message reliability and deadlock. We discuss each of these issues in detail as

follows.

1. Group Topology Management

90

Collective communication needs to maintain information about group topology. One

topology may give better performance over another depending on the communication

characteristics and also the desired performance metrics, latency or throughput. The

performance of logical topology can be affected by the underlying hardware topology.

Our intent is not to study the effects of hardware topology. We use Myrinet network

default hardware topology, Clos network. For clusters with thousands of nodes, placing

the entire group membership information in the NIC will have a large memory require-

ment. This requirement is even higher if the communication state for each peer NIC

is to be maintained. Thus it is important to provide a scalable method to store and

access group topology information and the associated group communication states.

2. Collective Buffer Management

Processes in parallel applications can reach the same collective communication at differ-

ent time. A message can arrive at the NIC before the host posts the receive buffer and

it is discarded as unexpected. This message will not be retransmitted until the sender

is timed out. To avoid dropping this type of immediately needed messages, a system

buffer can be provided to accommodate them. This can improve the performance of

collective communication and its tolerance to process skew [94].

3. Communication Processing

The main objective of NIC-based collective process is to efficiently offload communi-

cation processing for collective messages from the host CPU to the NIC processor. By

doing so, The host CPU can avoid polling on the intermediate steps of collective opera-

tions and the same data do not have to be pulled over the PCI bus multiple times. This

means that, to send the same data to multiple destinations, the first and the only copy

91

should be injected to network multiple times. Other surrounding mechanisms, such as

flow control and reliability, need to be modified or redesigned to fit together. Moreover,

to achieve the best benefits, collective operations shall not be treated as algorithmic

aggregations of multiple point-to-point operations. This is because point-to-point pro-

cessing ensures the correct delivery of messages with a whole set of functionalities,

such as, queuing, packetization, data reassembly, bookkeeping, and flow/error control,

etc. Identifying and minimizing the redundancy of these functionalities in collective

operations can simplify processing, decrease memory requirement and improve their

scalability.

4. Collective Algorithm

To achieve high performance, collective operations typically are carried out according

to a predefined algorithm. Applicable algorithms are often restricted by the group’s

connectivity and topology. An ideal algorithm needs to avoid complex communication

processing and reduce memory requirement at the NIC whenever possible. Thus it is

important to choose a right algorithm for the correct collective operation.

5. Message Reliability and Deadlock

GM employs a form of Go-back-N protocol to ensure ordered delivery between peer-

to-peer communication end points, called ports. When a packet is not acknowledged

within a timeout period, the sender NIC will retransmit the packet, as well as all the

packets after it from the same port. Deadlock is another important aspect of concern

for collective communication. This can occur if there is a cyclic dependency on some

shared resources among multiple concurrent operations, and each of them demands

resources at multiple destinations for its completion. With a small number of send

92

and receive tokens being recycled in the Myrinet Control Program (MCP), collective

operations shall avoid any possible deadlock scenario that could starve the MCP.

6.3. Design of NIC-based Barrier

We have explored many of the challenging issues of NIC-based barrier over Myrinet/GM

in an earlier work with GM-1.2.3 [19, 21]. We choose to create a separated protocol to

process the barrier messages in this work. Figure 6.1 shows the comparisons between the

earlier barrier scheme and the new scheme with separated processing for barrier messages.

Flow/Error Control

Queuing, Bookkeeping
Point−to−Point Processing:

Packetization, Assembly

Barrier

Device Control

User API

Kernel Module

NIC Control Program

Point−to−Point

U
se

r−
L

ev
el

 P
ro

to
co

ls

Physical Network

User API

Kernel Module

NIC Control Program

Point−to−Point

U
se

r−
L

ev
el

 P
ro

to
co

ls

Point−to−Point Processing:
Queuing, Bookkeeping

Flow/Error Control

Collective Processing:
Packetization, AssemblyQueuing, Bookkeeping

Packetization, Assembly
Flow/Error Control

Device Control

Physical Network

ManagementManagement Barrier

a) A Direct Scheme

Barrier

b) Barrier with Separated Collective Processing

Figure 6.1: NIC-based Barrier with Separated Collective Processing

1. Queuing the Barrier Operations

MCP processes the send tokens to different destinations in a round robin fashion.

Send tokens to the same destination are processed in a FIFO manner. So the send

tokens for barrier operations must go through multiple queues before their messages

can be transmitted. This is enforced for the initial barrier message and also the barrier

message that needs to be transmitted immediately when an earlier barrier message

93

arrives. It is rather inefficient to have the NIC-based barrier operations put up with so

much waiting. We created a separate queue for each group of processes, and enqueued

only one send token for every barrier operation. Then the barrier messages do not

have to go through the queues for multiple destinations. With this approach, the send

token for the current barrier operation is always located at the front of its queue. Both

the initial barrier message and the ones that need to be triggered later no longer need

to go through the queues for the corresponding destinations.

2. Packetizing the Barrier Messages

Within MCP, to send any message, the sender NIC must wait for a send packet to

become available and fill up the packet with data. So to complete a barrier operation,

it is inevitable for the sender NIC to go through multiple rounds of allocating, filling

up and releasing the send packets. Since all the information a barrier message needs to

carry along is an integer, it is much more efficient if a static send packet can be utilized

to transmit this integer and avoid going through multiple rounds of claiming/releasing

the send packets.

This static send packet can be very small since it only carries an integer. One can

allocate an additional short send packet for each group of processes. However, there

is a static send packet to each peer NIC in MCP, which is used for fast transmission

of ACKs. We pad this static packet with an extra integer and utilize it in our imple-

mentation. With this approach, all the packetizing process (including packets claiming

and releasing) for transmitting regular messages is avoided for the barrier messages.

3. Bookkeeping and Error Control for Barrier Messages

94

The Myrinet Control Program provides bookkeeping and error control for each packet

that has been transmitted. This is to ensure the reliable delivery of packets. One

acknowledgment must be returned by the receiver in order for the sender to release the

bookkeeping entries, i.e., a send record in MCP. When a sender NIC fails to receive the

ACK within a timeout period specified in the send record, it retransmits the packet.

Besides creating multiple send records and keeping track of them, this also generates

twice as many packets as the number of barrier messages. It is desirable to design

a better way to provide the bookkeeping and error control for the barrier operations

based on its collective nature.

For the bookkeeping purpose, we create only a send record for a barrier operation.

Within the send record, a bit vector is provided to keep track of the list of barrier

messages. When the barrier operation starts, a time-stamp is also created along with

the send record. In addition, an approach called receiver-driven retransmission is

provided to ensure reliable delivery of barrier messages. The receiver NICs of the

barrier messages no longer need to return acknowledgments to the sender NICs. If any

of the expected barrier messages is not received within the timeout period, a NACK

will be generated from the receiver NIC to the corresponding sender NIC. The sender

NIC will then retransmit the barrier message. Taken together, these enhancements

ensure the reliable delivery with the minimal possible overhead and also reduce the

number of total packets by half compared to the reliability scheme for the regular

messages. Thus, it promises a more efficient solution for barrier operation.

95

6.4. Design of NIC-based Broadcast/Multicast

There are several design issues for the implementation of NIC-based broadcast: the

sending of message replicas to multiple destinations, message forwarding at the intermediate

NIC, reliability and in order delivery, deadlock, and construction of the spanning tree. For

each of these issues, we describe design alternatives below and show how we choose the best

alternative.

1. Sending of Multiple Message Replicas

To send replicas of a message to multiple destinations, one can directly generate mul-

tiple send tokens and queue them to multiple destinations. An alternative is to use a

callback handler as described in Section 6.1. A third way to do this is to change the

header right after the transmit DMA engine is done transmitting the header and queue

the packet again for transmission. The first approach performs the processing for each

of the tokens, and it saves nothing more than the posting of multiple send events. The

benefits of this is no more than 1µs, if any, since the host overhead over GM is less

than 1µs. Both the second and third approach can save the repeated processing, but

the third approach takes special care and demands good timing strategy in order to

avoid clobbering the packet header before it is transmitted out. We implemented the

second approach in our broadcast scheme. The benefits of the third approach could be

more, but we decided to leave it for later research.

2. Messages Forwarding

For a received message to be forwarded, we need to consider: 1) how to set up timeout

and retransmission mechanisms, and 2) which replica of the message should be made

available for the retransmission. As to the first issue, we create send records to record

96

the time the packets are forwarded. When the records are not acknowledged within

the timeout period, retransmission of the packets is triggered. Since the intermediate

NIC does not have a send token for this broadcast, one has to generate a token for the

purpose of transmission. This can be done by grabbing a send token from the free send

token pool, or by transforming the receive token into a send token. Using the former

approach can probably lead to deadlock when the intermediate nodes are running out of

send tokens. We take the second approach since it does not require additional resources

at the NIC. The receive token is presumed to be available to receive any message. In

this approach, the receive token is used for transferring the data to the host at the

intermediate NIC, and is also used to retransmit the message when it is timed out.

As to the second issue, a naive solution would be to keep the received packet available

until all the children acknowledge the transmission. The problem with this approach

is that the NIC receive buffer is a limited resource, and holding on to one or more

receive buffer will slow down the receiver or even block the network. An alternative is

to release the packet as the forwarding is done, and use the message replica in the host

memory for retransmission. Since GM can only send and receive data from registered

memory, this requires the host memory to be kept registered until all the children

acknowledged that the packets are correctly received. We take the second alternative

in our implementation.

3. Reliability and In Order Delivery

To ensure ordered sending, GM employs a form of Go-back-N protocol to ensure ordered

delivery between peer-to-peer communication end points, called ports. When a packet

is not acknowledged within a timeout period, the sender NIC will retransmit the packet,

as well as all the later packets from the same port. A reliable ordered broadcast

97

requires modification to the existing ordering scheme. Since each sender is involved

with multiple receivers, the sending side must keep track of the ordering of packets

in a one-to-many manner to all its children. A modified ordering scheme works as

described below. Multicast send tokens are queued by group. Each broadcast group

has a unique group identifier. For each group, the NIC keeps tracks of: 1) a receive

sequence number to record the sequence number for the packets received from its

parent, 2) a send sequence number to record the packets that have been sent out, and

3) an array of sequence numbers to record the acknowledged sequence number from each

child. A broadcast packet sent from one NIC to its children has the same sequence

number and send record, ensuring ordered sending for the same group’s broadcast

packets. When an acknowledgment from one destination is received, the acknowledged

sequence number for that destination is updated. If the record for a packet is timed

out, the retransmission of the packet and the following ones will be performed only for

the destinations which have not been acknowledged. A receiver only acknowledges the

packets with expected sequence numbers for the desired group sequentially.

4. Deadlock

Deadlock is an important aspect of concern for any collective communication, which

may occur if there is a cyclic dependence on using some shared resources among multi-

ple concurrent operations. We take the following approaches to avoid the possibilities

of the deadlock. First, we do not use any credit-based flow control, avoiding one source

of deadlock. In addition, we provide a unique group identifier and a separate queue for

each broadcast group with a sender, so that one group does not block the progress of

another. The other possibility for a deadlock is when some nodes in multiple broad-

cast/broadcast operations form a cyclic parent-child relationship, in which all of them

98

are using its last receive token while requesting another to receive its message with a

new receive token. Since the root node in a broadcast/broadcast operation only uses

its send token, it will not be in such a cycle. To break a possible cycle among the rest

of the nodes, we sort the list of destinations linearly by their network IDs before tree

construction, and a child must have a network ID greater than its parent unless its

parent is the root. Thus a deadlock on the use of receive token can not form under

either situation. As long as receive tokens are available at the destinations, broadcast

packets can be received by all the destinations. The responsibility of making receive

tokens available to receive broadcast messages is left to client programs, the same way

as is required to receive regular point-to-point messages.

5. The Spanning Tree

The tree topology is also important for broadcast performance. One tree topology may

give better performance over another depending on the communication characteristics

and also the desired performance metrics, latency or throughput. The performance

of logical tree topology can be affected by the underlying hardware topology. Our

intent is not to study the effects of hardware topology. The default hardware topology,

Clos network, is used in our studies. The design issue we study here is where to

generate the tree, since the NIC processor is typically rather slow to perform intensive

computation. To better expose the potential of the NIC-based broadcast protocol, we

use an algorithm similar to [17] for constructing an optimal tree in terms of latency.

The optimality of such trees has been shown by Bar-Noy and Kipnis [6]. The basic

idea of constructing an optimal tree is to have maximum number of nodes involved

in sending at any time. In other words, we construct the tree such that a node will

send to as many destinations as possible before the first destination it sent to becomes

99

ready to send out data to its own children. We compute the number of destinations

a sender can send to before its first receiver can start sending as the ratio of: (a) the

total amount of time for a node to send a message until the receiver receives it, and (b)

the average time for the sender to send a message to one additional destination. The

message delivery time is calculated as end-to-end latency. Different message lengths

lead to different optimal tree topologies. Since the LANai processor is much slower

compared to the host processor, we carried out the following division of labor in order

to be efficient on tree construction: the host generates a spanning tree and inserts

it into a group table stored in the NIC and the NIC is responsible for the protocol

processing related to communication.

6.5. Design of NIC-based All-to-All Broadcast

We have explored the design challenges for scalable NIC-based all-to-all broadcast. Given

the high demand of memory and computation resources of its dense communication pattern

and the limited resources available at the NIC, NIC-based all-to-all broadcast algorithms

need to minimize resource requirements. The following major design issues are considered

in order to achieve good scalability and high performance.

1. All-to-All Broadcast Group Topology Management

For clusters with thousands of nodes, placing the entire group membership information

at the NIC incurs a large memory requirement, and this requirement is even greater if

the communication state for each peer NIC is to be maintained. Thus it is important

to provide a scalable method to store and access group topology information and the

associated group communication states. Typically, collective operations over point-to-

point links use spanning trees to cover all the nodes. One node in a spanning tree

100

communicates with its parent node and a limited number of child nodes. The bino-

mial tree is one of the most commonly used topologies for collective communication.

It provides two advantages over other topologies. First, it can be shared by barrier,

broadcast (even with different roots), all-to-all broadcast, and other collective opera-

tions. Second, since the distance between any pair of directly communicating nodes

is always some power of 2, updating the communication state of peers can be easily

handled by the NIC processors using bit-shifting operations (typically, NICs are not

equipped with FPU). Thus the binomial tree-based topology is a good choice for scal-

able group management. To achieve scalability, the entire group topology is managed

distributively. Each NIC, i, maintains the information of NICs that are in the set

{i ± 2j mod N : 0 ≤ j < log N}. So, each NIC only needs to maintain the topology

and state information of (2 × log N) NICs.

2. Buffer Management for NIC-Based All-to-All Broadcast

Processes in parallel applications can reach the same collective communication at dif-

ferent times. Packets can arrive at the NIC before the host even posts the receive

buffer for the corresponding collective operation. In order to allow the NIC to still

receive and forward the early arrived data packets, a system buffer must be present to

accommodate these packets. This can avoid having to drop packets and can improve

the performance of collective communication and its tolerance to process skew [94].

A common way of managing of collective buffers is to provide a global virtual mem-

ory [73, 96], which is divided into multiple channels to receive packets from multiple

outstanding collective operations. The order in which these channels are used is glob-

ally synchronized across all the NICs when the collective protocol is initialized. At

the end of each collective communication, the packets buffered in a global collective

101

channel (identified with a global collective sequence number) are copied to the appli-

cation buffer if needed. Collective operations with large messages can be divided into

multiple collective operations.

ro
ta

te

#0

#1

Receive CopyingSend Buffering

Operation

Operation

Figure 6.2: Buffer Management for NIC-Based All-to-All Broadcast

With the inherent synchronization of all-to-all broadcast, the completion of an all-to-

all broadcast operation signifies that all the other nodes have at least reached the last

all-to-all broadcast operation. When all-to-all broadcast requests are generated after

the local completion of previous broadcast requests, the following two conditions are

always ensured.

(a) At any moment, there is at most one outstanding all-to-all broadcast operation

for which packets needs to be sent out.

(b) At any moment, there are at most two outstanding all-to-all broadcast operations

for which packets need to be received.

These conditions together simplify the management of all-to-all broadcast buffer chan-

nels. At any moment, only two buffer channels need to be provided for outstanding

102

all-to-all broadcast operations. The use of these channels is inherently synchronized as

operations rotate through them. Figure 6.2 shows the management of all-to-all broad-

cast buffers with two channels. Data to send can be buffered into the channel before it

is actually sent to avoid memory registration. A message may be received in the buffer

channel if it arrives before the corresponding request is posted, or if user applications

choose to use the buffer channel and avoid the memory registration cost. At the end

of the operation, the buffered data is then copied out the channel.

3. Recursive Doubling Algorithm

In the recursive doubling algorithm [79], each process pairs with a peer process through

bit operations and recursively doubles the exchanged message size at each step. It

takes log N steps for a system size of N nodes. This algorithm is well suited for small

messages because it can combine messages into a single packet, thus reducing the

number of packets to be processed, and improving the communication performance.

However, large packets cannot be efficiently buffered and combined at the NIC (due to

slow NIC memory copy speed or insufficient NIC buffers); rather, this algorithm has

to buffer the intermediate data by copying the received data, using DMA, to the host

memory and then copying it back to the NIC for the next step of communication. It

thus does not have the benefit of avoiding round-trip PCI bus traffic. We explore this

algorithm in our design in order to minimize the latency and shed more light on the

NIC communication processing.

4. Concurrent Broadcasting Algorithm

The concurrent broadcasting algorithm broadcasts the data from each node to all the

other nodes. Using the distributively maintained binomial tree topology, each NIC

103

10 10 10 10

10 10

(1,1) (0,1)

i: The original node
(i, j): A two−tuple flag attached to a packet

j: log(distance) of the current hop

0 1

(0,1)(0,0)
(1,0) (1,1)

0 1

Figure 6.3: Concurrent Broadcasting Algorithm for NIC-Based All-to-All Broadcast (show-
ing only two nodes broadcasting)

becomes a root for a different binomial spanning tree and broadcasts its packets to the

other nodes. Having received or completed sending a data packet, a NIC needs to reuse

the data packet for fast forwarding or re-sending. However, packets can come from any

source, and the current NIC has to perform different roles for the broadcasting of

different incoming packets. So the NIC has to decide whether the packet needs to be

sent to a next destination and to which one. This process has to be done efficiently and

with information from the packet. To this purpose, we have created a form of hopping

packets to facilitate the traversal of a packet in its own broadcast spanning tree. Each

packet is attached with a two-tuple flag to identify the broadcast spanning tree and the

position of its traversal in the tree. As shown in Figure 6.3, in a flag (i, j), i denotes the

rank of the original NIC for this packet, and j the log of the distance it has traversed for

the current hop. The distance is measured as the difference between the ranks of NICs.

The current NIC finds out the next destination of a hopping packet as (|rank− i|+2j).

If it is not less than the size of the group, then there is no need for the packet to make

104

any further hops. Figure 6.3 shows how the packets are broadcasted for an all-to-all

broadcast operation with hopping packets (only two broadcast spanning trees for two

NICs and the hopping packets are given, to avoid complicating the graph).

The all-to-all broadcasting algorithm involves numerous packet forwarding and re-

sending and reduces much of the traffic over the PCI bus. However, each NIC has to

maintain the communication state about the amount of data that has arrived from each

peer NIC. This requirement has two disadvantages. First, for small-message all-to-all

broadcast operations, it does not combine the data into larger packets. Thus, for a

system size of N nodes, each NIC has to receive (N − 1) packets, and forward many

received packets. So, for small-message all-to-all broadcast operations, the required

processing time increases linearly with the system size, compared to log N packets with

the recursive doubling algorithm. Second, the resource requirement for maintaining the

communication state increases linearly with the number of peer NICs and can lead to a

scalability constraint. To reduce this resource requirement, we use a status bit-vector

to record the communication state. An additional integer can be used to count the

number of packets arrived. This approach reduces both the memory requirement and

the NIC processing time, because only when all expected packets have not arrived in

time is this bit vector checked to find out the missing packets.

6.6. Results of NIC-Based Barrier

1. Barrier Latency

We tested the latency of our NIC-based barrier operations and compared it to the host-

based barrier operations. Our tests were performed by having the processes execute

consecutive barrier operations. To avoid any possible impact from the network topology

105

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16

La
te

nc
y

(µ
s)

Number of Nodes

NIC-DS
NIC-PE

Host-DS
Host-PE

Figure 6.4: Performance Evaluation of
NIC-based and Host-Based Barrier Oper-
ations with Myrinet LANai-9.1 Cards on a
16-node 700MHz cluster

0

5

10

15

20

25

30

35

40

45

2 4 6 8

La
te

nc
y

(µ
s)

Number of Nodes

NIC-DS
NIC-PE

Host-DS
Host-PE

Figure 6.5: Performance Evaluation of
NIC-based and Host-Based Barrier Oper-
ations with Myrinet LANai-XP Cards on
an 8-node 2.4GHz cluster

and the allocation of nodes, our tests were performed with random permutation of

the nodes. We observed only negligible variations in the performance results. The

first 100 iterations were used to warm up the nodes. Then the average for the next

10,000 iterations was taken as the latency. We compared the performance for both the

pairwise-exchange and dissemination algorithms.

Figure 6.4 shows the barrier latencies of NIC-based and host-based barriers for both

algorithms over the 16-node quad-700MHz cluster with LANai 9.1 cards. With ei-

ther pairwise-exchange (PE) or dissemination (DS) algorithm, the NIC-based barrier

operations reduce the barrier latency, compared to the host-based barrier operations.

The pairwise-exchange algorithm tends to have a larger latency over non-power of two

number of nodes for the extra step it takes. Over this 16-node cluster, a barrier latency

of 25.72µs is achieved with both algorithms. This is a 3.38 factor of improvement over

host-based barrier operations. Using the direct NIC-based barrier scheme on the same

106

cluster, our earlier implementation [20, 21], achieved 1.86 factor of improvement using

LANai 7.2 cards. The earlier work was done over GM-1.2.3 and not maintained as new

versions of GM are released. We believe that the same amount of relative improve-

ment (1.86) would have been achieved if the previous work was reimplemented over

GM-2.0.3 since the NIC-base barrier is mainly dependent on the number of messages

and processing steps to be performed. Although, direct comparisons are not available,

the difference in the improvement factors over the common denominator (host-based

barrier operations) suggests that our new scheme provides a large amount of relative

benefits.

Figure 6.5 shows the barrier latencies of NIC-based and host-based barriers for both

algorithms over the eight-node 2.4GHz Xeon cluster with LANai-XP cards. Similarly,

the NIC-based barrier operation reduces the barrier latency compared to the host-

based barrier operation. Over this eight node cluster, a barrier latency of 14.20µs is

achieved with both algorithms. This is a 2.64 factor of improvement over the host-

based implementation. The reason that the factor of improvement becomes smaller

on this cluster is because this cluster has a much larger ratio of host CPU speed to

NIC CPU speed and also a faster PCI-X bus. Thus the benefits from the reduced host

involvement and I/O bus traffic are smaller.

2. Scalability

As the size of parallel system reaches thousands, it is important for parallel applications

to be able to run over larger size systems and achieve corresponding parallel speedup.

107

0

5

10

15

20

25

30

35

40

2 4 8 16 32 64 128 256 512 1024
La

te
nc

y
(µ

s)
Number of Nodes

Myrinet-Model
Myrinet

Figure 6.6: Modeling of the Barrier Scalability

This requires that the underlying programming models provide scalable communica-

tion, in particular, scalable collective operations. Thus it is important to find out how

the NIC-based barrier operations can scale over larger size systems.

Since the NIC-based barrier operations with the dissemination algorithm exhibits a

consistent behavior as the system size increases, we choose its performance pattern to

model the scalability over different size systems. We formulate the latency for NIC-

based barrier with the following equation.

Tbarrier = Tinit + (dlog2 Ne − 1) ∗ Ttrig + Tadj

In this equation, Tinit is the average NIC-based barrier latency over two nodes, where

each NIC only sends an initial barrier message for the entire barrier operation; Ttrig

is the average time for every other message the NIC needs to trigger when having

received an earlier message; and Tadj is provided as the adjustment factor. The ad-

justment factor is needed to reflect the effects from other aspects of the NIC-based

barrier, e.g., reduced PCI bus traffic and the overhead of bookkeeping. Through math-

ematical analysis, we have derived Myrinet NIC-based barrier latency as Tbarrier =

108

3.60+(dlog2 Ne− 1) ∗ 3.50+3.84 for 2.4GHz Xeon clusters with LANai-XP cards, and

Quadrics NIC-based barrier latency as Tbarrier = 2.25 + (dlog2 Ne− 1) ∗ 2.32− 1.00 for

quad-700MHz clusters with Elan3 cards. As shown in Figure 6.6, the NIC-based bar-

rier operations could achieve a barrier latency of 22.13µs and 38.94µs over a 1024-node

Quadrics and Myrinet cluster of the same kinds, respectively. In addition, it indicates

that the NIC-based barrier has potential for developing high performance and scalable

communication subsystems for next generation clusters.

6.7. Results of NIC-Based Broadcast

Our modification to GM is done by leaving the code for other types of communications

mostly unchanged. Our evaluation indicates that it has no noticeable impact on the perfor-

mance of non-broadcast communications. Here we have discussed its performance results at

both the GM-level and the MPI-level, as well as better tolerance to process skew of parallel

programs.

1. NIC-based multisend

We first evaluated the performance of the NIC-based multisend operation. Our tests

were conducted by having the source node transmit a message to multiple destinations,

and wait for an acknowledgment from the last destination. All destinations received

the message from the source node, and none of them forwarded the message. The first

20 iterations were used to synchronize the nodes. Then the average for the next 10,000

iterations was taken as the latency. Figures 6.7(a) and 6.7(b) show the performance and

the improvement of using the NIC-based multisend operation to transmit messages to 3,

4 and 8 destinations, compared to the same tests conducted using host-based multiple

unicasts. For sending messages ≤ 128 bytes to 4 destinations, an improvement factor

109

0

100

200

300

400

500

600

700

1 4 16 64 256 1024 4096 16384

La
te

nc
y

(µ
s)

Message Size (Bytes)

HB-3
HB-4
HB-8
NB-3
NB-4
NB-8

(a) Latency

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 4 16 64 256 1024 4096 16384

F
ac

to
r

of
 Im

pr
ov

em
en

t

Message Size (Bytes)

3
4
8

(b) The Performance Improvement

Figure 6.7: The performance of the NIC-based (NB) multisend operation, compared to
Host-based (HB) multiple unicasts

up to 2.05 is achieved. This is due to the fact that the NIC-based broadcast was

able to save repeated processing. As the message size gets larger, the improvement

factor decreases and eventually levels off at a little below 1. This is to be expected

because large message sizes leads to longer transmission time. With host-based multiple

unicasts, the request processing is completely overlapped with the transmission of a

previous queued packet, but there is still an overhead each time the packet header is

changed with the NIC-based multisend.

2. NIC-based Multicast

We evaluated the performance of the broadcast with NIC-based forwarding using an

optimal tree. Our tests were conducted by having the root initiate the NIC-based

broadcast operation, and wait for an acknowledgment from one of the leaf nodes in

the spanning tree. The first 20 iterations were used to synchronize the nodes. Then

110

0

100

200

300

400

500

600

700

800

900

1 4 16 64 256 1024 4096 16287

La
te

nc
y

(µ
s)

Message Size (Bytes)

HB-4
HB-8

HB-16
NB-4
NB-8

NB-16

(a) Multicast Latency

0

0.5

1

1.5

2

2.5

3

1 4 16 64 256 1024 4096 16287

F
ac

to
r

of
 Im

pr
ov

em
en

t

Message Size (Bytes)

4
8

16

(b) The Performance Improvement

Figure 6.8: The MPI-level performance of the NIC-based (NB) broadcast, compared to the
host-based broadcast (HB), for 4, 8 and 16 node systems

10,000 iterations were timed to take the average latency. The same test was repeated

with different leaf nodes returning the acknowledgment. The maximum from all the

tests was taken as the broadcast latency. The traditional host-based broadcast was

also evaluated in the same manner using the same version of GM as a comparison.

Figures 6.9(a) and 6.9(b) show the performance of the NIC-based broadcast compared

to the performance of host-based broadcast. For broadcasting messages ≤ 512 bytes

on a 16 node system, the NIC-based broadcast achieves an improvement factor up to

1.48. Because multiple replicas of small messages can be sent out faster with the NIC-

based broadcast, the optimal tree constructed for small messages has a larger average

fan-out degree and so a shallower depth, compared to the same size binomial tree used

in the traditional host-based broadcast. The average fan-out degree is the ratio as

described in Section 6.4, and it imposes little impact on the latency. So the shallower

depth reduces the broadcast latency significantly. As also shown in the figures, when

111

0

100

200

300

400

500

600

700

1 4 16 64 256 1024 4096 16384

La
te

nc
y

(µ
s)

Message Size (Bytes)

HB-4
HB-8

HB-16
NB-4
NB-8

NB-16

(a) Multicast Latency

0.8

1

1.2

1.4

1.6

1.8

2

1 4 16 64 256 1024 4096 16384

F
ac

to
r

of
 Im

pr
ov

em
en

t

Message Size (Bytes)

4
8

16

(b) The Performance Improvement

Figure 6.9: The GM-level performance of the NIC-based (NB) broadcast, compared to the
host-based broadcast (HB), for 4, 8 and 16 node systems

broadcasting a 16KB message on a 16 node system, the NIC-based broadcast achieves

an improvement factor up to 1.86. This is due to the fact that, in the NIC-based

broadcast, intermediate nodes do not have to wait for the arrival of the complete mes-

sage to forward it. Thus the NIC-based broadcast achieves its performance benefits for

the reduced intermediate host involvement and the capability of pipelining messages.

Moreover, Figure 6.9(b) shows dips in the improvement factor curves when broadcast-

ing 2KB and 4KB messages. The drop of improvement for these message is because

these messages do not have the benefit for large multiple packet messages and also they

do not have the benefit for small messages. The maximum packet size in GM is 4096

bytes, therefore ≤ 4096 byte messages do not benefit from message pipelining. On the

other hand, since the NIC-based multisend does not have much improvement for these

≥ 1KB messages (See Figure 6.7(b)), the fan-out degree chosen in the optimal tree is

about 1 and the shape of the resulted optimal tree is not significantly different from

112

the binomial tree used in the host-based approach. Therefore for these messages, the

broadcast latency does not benefit much from the change of the spanning tree shape

either. Taken together, the performance improvement is low for broadcasting these

messages.

3. MPI Level Broadcast

Since our modification to MPICH-GM only uses the NIC-based broadcast support

for the eager mode message passing, the largest message that uses the NIC-based

broadcast is the largest eager mode message, which is 16,287 bytes. We measured

the broadcast latency at the MPI level in the same manner as that at the GM level.

The maximum latency obtained was taken as the broadcast latency. Figures 6.8(a)

and 6.8(b) show the latency performance and the improvement factor of the NIC-

based broadcast at the MPI level, respectively. We observed an improvement factor of

up to 2.02 for broadcasting 8KB messages over 16 node system. Also the trend of the

performance improvements are similar to the trend at the GM-level (Figure 6.9(b)).

However, when broadcasting 16,287 byte messages, there is a dip in the improvement

factor curve. That is due to the larger cost of copying the data to their final locations.

So the broadcast latency for a 16,287 byte message with the NIC-based broadcast is

comparatively high, which leads to a lower improvement factor.

4. Tolerance to Process Skew

Another major benefit of the NIC-based broadcast is the tolerance to process skew.

Typically, with the blocking implementation of MPI Bcast, the host CPU time, the

time spent on performing the MPI Bcast, becomes larger if a process is delayed at

an intermediate node. In reality, all processes skew at random. Some processes call

113

MPI Bcast before the root node does, and others do after the root node. The effects of

the former can not be reduced by a broadcast operation, but those from the latter can

be reduced if possible, because all the processes that have called MPI Bcast inevitably

have to wait for the root process. We evaluate the effects of the delayed processes,

relative to the root processes, to the average host CPU time. We measure the average

host CPU time to perform the MPI Bcast with varying amount of process skew. All

the processes are first synchronized with a MPI Barrier. Then each process, except the

root, chooses a random number between the negative half and the positive half of a

maximum value as the amount of skew they have. The processes with a positive skew

time perform computation for this amount of skew time before calling the MPI Bcast

operation. The average host CPU time from 5,000 iterations was plotted against the

average process skew. The average skew is defined as the expected skew between two

arbitrary non-root processes, which can be considered as the expected distance between

two random distributed points on a given interval [0, max], that is, 1

3
max (See [74],

page 118).

Figure 6.10 shows the average host CPU time for MPI Bcast over 16 nodes with vary-

ing amount of average skew. Figure 6.10(a) shows the average host CPU time for

broadcasting small messages (2, 4 and 8 bytes) over 16 nodes with varying amount of

average skew. The NIC-based broadcast has much smaller host CPU time compared

to the host-based broadcast. With a skew under 40µs, the host CPU time decreases

using either approach. This is to be expected because a small amount of skew time

can overlap with some of the message broadcasting time. When the skew goes beyond

40µs, the host CPU time increases with the host-based approach, while it decreases

with the NIC-based approach. This is to be expected. As the skew increases, more

114

intermediate processes get delayed. With the host-based approach, more processes

wait longer for their ancestors to call MPI Bcast and forward the messages, which

results in longer average host CPU time. In contrast, with the NIC-based approach,

the delayed intermediate processes does not prevent their children from receiving the

message and, on the other hand, their delay have more overlap with the message trans-

mission time. which leads to less average host CPU time. Figure 6.10(b) shows that

the improvement factor of the NIC-based approach over the host-based approach for

small messages. With an average skew of 400µs, the NIC-based broadcast achieves

an improvement factor up to 5.82. We also observed that the improvement factor

becomes greater as the skew increases. When broadcasting large messages (2KB to

8KB), a similar trend of benefits on average host CPU time is also observed when

comparing the NIC-based broadcast to the host-based broadcast. Figure 6.10(c) shows

the similar trend of average host CPU time for large messages (2KB, 4KB and 8KB).

Figure 6.10(d) shows that the factor of improvement of the NIC-based approach over

the host-based approach for large messages. When there is no skew, the host CPU

time is actually similar to the performance of MPI Bcast at the MPI-level, as shown

in Figure 6.8(b). As the skew increases, the benefits from the reduced skew become

more pronounced and greater. For the larger cost of coping larger messages, the im-

provement factors for larger messages are smaller. With an average skew of 400µs, the

NIC-based approach achieves an improvement factor up to 2.9 for 2KB messages, up

to 2.22 for 4KB messages and up to 2.01 for 8KB messages.

We also evaluated the effect of process skew on the average host CPU time for different

size systems. Figure 6.11 shows the factors of improvement on the host CPU time for

broadcasting 4 byte and 4KB messages using the NIC-based broadcast compared to

115

the host-based broadcast, over systems of different sizes. For both sizes of messages,

the improvement factor becomes greater as the system size increases for a fixed amount

of process skew of 400µs. This suggests that a larger size system can benefit more from

the NIC-based broadcast for the reduced effects of process skew.

6.8. Results of NIC-Based All-to-All Broadcast

The NIC-based all-to-all broadcast performance is measured as the time between when

an all-to-all broadcast request is sent to the NIC and when its completion is detected through

a receive event. A microbenchmark is used to measure the average time of 5,000 iterations

after the first 20 warm-up iterations. The bandwidth is taken as the total number of bytes

broadcast by each process divided by the time to perform an all-to-all broadcast operation.

From the two typical host-based all-to-all broadcast algorithms, our experiments indicate

that ring-based pipelining provides better performance than the does recursive doubling.

Thus we choose the recursive doubling algorithm in our microbenchmark for measuring

host-based all-to-all broadcast performance.

1. Latency and Bandwidth

Figure 6.12 shows the latency comparisons between the host-based all-to-all broadcast

operation and the NIC-based all-to-all broadcast with the concurrent broadcasting

(NIC-CB) and recursive doubling (NIC-RD) algorithms. As shown in Figure 6.12(a),

for small messages, NIC-RD provides the best performance, compared to NIC-CB or

the host-based all-to-all broadcast. The reason is that the NIC-RD algorithm can enjoy

the benefits of fast communication processing at the NIC, while, at the same time, it

is able to combine small messages into larger packets and does not suffer from having

to process a linear scaling number of packets from all the other processes, as is the

116

case for NIC-CB. In contrast, for large messages, the NIC-CB algorithm provides the

best performance compared to NIC-RD or the host-based all-to-all broadcast. The

reason is that the combined messages can no longer fit into a single MTU and they

are still fragmented into packets at the NIC, so the recursive doubling algorithm no

longer benefits from message combining, whereas NIC-CB still benefits from fast for-

warding and retransmitting of the received (or transmission completed) packets. Both

NIC-based algorithms perform better than the host-based all-to-all broadcast for large

messages. Figure 6.12(b) shows the latency comparisons for large messages. NIC-based

algorithms can improve performance by a factor of 3.

Figure 6.13 shows the bandwidth comparisons between the host-based and the NIC-

based all-to-all broadcast algorithms. The bandwidth performance for the host-based

all-to-all broadcast drops with multi-packet messages (greater than 4 KB). In contrast,

the NIC-based all-to-all broadcast operations are able to sustain their bandwidth per-

formance. Compared to NIC-RD, NIC-CB can achieve better bandwidth with the

benefits from fast packets forwarding and retransmitting. Figure 6.14 shows the per-

formance improvement factor of the NIC-based all-to-all broadcast algorithms. Over

the 16-node cluster with LANai 9.1 cards, the concurrent broadcasting algorithm pro-

vides an improvement factor of up to 3.01 for large messages, and the recursive doubling

algorithm provides an improvement factor of up to 1.54 for small messages.

2. Scalability

Figure 6.15 shows the scalability comparisons between the host-based and the NIC-

based all-to-all broadcast algorithms with 4 byte small messages and 4 KB large mes-

sages. For small messages, NIC-RD provides the best scalability because it benefits

117

from offloaded communication processing and combining of small messages into larger

packets. In contrast, NIC-CB performs the worst as the system size increases. The

reason is that it does not combine small messages and hence the communication pro-

cessing time for a large number of packets dominates over its benefits of message for-

warding. These results are shown in Figure 6.15(a). For large messages, the NIC-CB

algorithm provides the best scalability because it has the benefits the communication

offloading and also the benefits of fast message forwarding. The other two algorithms

do not have these features and have lower scalability, while the NIC-based all-to-all

broadcast with recursive doubling still provides better scalability than the host-based

all-to-all broadcast because of communication offloading. These results are shown in

Figure 6.15(b).

3. Host CPU Utilization

One of the major benefits of NIC-based all-to-all broadcast is that it has low host CPU

utilization. With host-based all-to-all broadcast, the host process must constantly

poll for the arrival of messages and trigger the next step for the all-to-all broadcast

operation. The host CPU is largely occupied during the all-to-all broadcast operation.

Figure 6.16(a) shows the host CPU utilization of host-based all-to-all broadcast over 16

nodes. In contrast, with the NIC-based all-to-all broadcast, once the host process sends

its request to the NIC, it is free to perform other useful computation. To determine the

host CPU utilization for the NIC-based all-to-all broadcast, we measured the effective

time that the host CPU spends on posting the all-to-all broadcast request to the NIC

and processing the arrival of a all-to-all broadcast receive event. Figure 6.16(b) shows

the average host CPU utilization for the NIC-based all-to-all broadcast operations with

both the concurrent broadcasting and the recursive doubling algorithms over various

118

numbers of nodes. For the NIC-based all-to-all broadcast algorithms, the host CPU

utilization is mostly constant over various numbers of nodes and different sizes of

messages. The reason is that the time to post a send request to the NIC and the time

to process a receive event does not vary with respect to the change of message size or

system size. Note that for small messages the CPU utilization is higher. The reason

is that for small messages the last-received data is DMAed into the receiver queue

along with the event, to improve the overall performance. The host process thus has

to perform an additional memory copy to obtain the message. Also note that user

applications can perform nonblocking NIC-based all-to-all broadcast, where processes

do not wait for the result from the NICs after they have posted the requests. Instead,

these processes can perform useful computation that does not depend on the results,

and they read the result from the NICs only when they need the data. Therefore, the

NIC-based all-to-all broadcast allows user applications to achieve high utilization of

the computation resources with its low CPU utilization.

6.9. Summary of NIC-Based Collective Operations over Myrinet

We have characterized general concepts and the benefits of the NIC-based barrier algo-

rithms on top of point-to-point communication. We have then examined the communication

processing for point-to-point operations, and pinpointed the relevant processing we can re-

duce for collective operations. Accordingly we have proposed a general scheme for an efficient

NIC-based barrier operation over Myrinet. Our evaluation has also shown that, over a 16-

node Myrinet cluster with LANai 9.1 cards, the NIC-based barrier operation achieves a

barrier latency of 25.72us, which is a 3.38 factor of improvement compared to the host-based

algorithm. Furthermore, our analytical model suggests that NIC-based barrier operations

119

could achieve a latency of 22.13µs and 38.94µs, respectively over a 1024-node Quadrics and

Myrinet cluster.

By using a NIC-based multisend mechanism, which can enable the transmission of mul-

tiple message replicas to different destinations, and a NIC-based forwarding mechanism,

which allows intermediate NICs to forward the received packets without intermediate host

involvement, we have designed an efficient and reliable NIC-based broadcast operation. At

the GM-level, the NIC-based broadcast scheme provides an improvement factor up to 1.86

for 16KB messages and an improvement factor up to 1.48 for ≤ 512 byte messages over 16

nodes compared to the traditional host-based broadcast. At the MPI-level, the NIC-based

broadcast achieves an improvement factor up to 2.02 for 8KB messages, and an improvement

factor up to 1.78 for small messages ≤ 512 bytes over 16 nodes. In addition, at the MPI-level,

the NIC-based broadcast was shown to have better tolerance to process skew.

We have also designed scalable, high-performance NIC-based all-to-all broadcast with

concurrent broadcasting and recursive doubling algorithms. The resulting NIC-based oper-

ations have been implemented and incorporated into a NIC-based collective protocol [93]

over Myrinet/GM. Compared to the host-based all-to-all broadcast, the NIC-based all-to-all

broadcast operations improves all-to-all broadcast bandwidth over 16 nodes by a factor of

3. The NIC-based all-to-all broadcast with recursive doubling algorithm is more scalable for

small messages, and the concurrent broadcasting algorithm more scalable for large messages.

Furthermore, the NIC-based all-to-all broadcast operations have very low host CPU utiliza-

tion, which allows user applications to achieve high CPU utilization when the operation is

used in a nonblocking manner.

120

All the above NIC-based collective algorithms are designed to achieve their reliability and

efficiency without using a centralized manager and requires minimum memory and processor

resources at the NIC, which promises good scalability.

121

0

40

80

120

160

0 100 200 300 400

A
ve

ra
ge

 C
P

U
 U

til
iz

at
io

n
(µ

s)

Average Skew (µs)

HB 2-Byte
HB 4-Byte
HB 8-Byte
NB 2-Byte
NB 4-Byte
NB 8-Byte

(a) Average Host CPU Time

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 100 200 300 400

F
ac

to
r

of
 Im

pr
ov

em
en

t

Average Skew (µs)

2 Byte
4 Byte
8 Byte

(b) Improvement Factors

0

50

100

150

200

250

300

350

400

450

500

550

0 100 200 300 400

A
ve

ra
ge

 C
P

U
 U

til
iz

at
io

n
(µ

s)

Average Skew (µs)

HB 2KB
HB 4KB
HB 8KB
NB 2KB
NB 4KB
NB 8KB

(c) Large Messages

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 100 200 300 400

F
ac

to
r

of
 Im

pr
ov

em
en

t

Average Skew (µs)

2KB
4KB
8KB

(d) Improvement for Large Messages

Figure 6.10: Average host CPU time on performing MPI Bcast under different amount of
average skew with both the host-based approach (HB) and the NIC-based (NB) approach

122

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

4 8 12 16

F
ac

to
r

of
 Im

pr
ov

em
en

t

Number of Nodes

4-Byte
4-KB

Figure 6.11: The effect of process skew for systems of different sizes

0

100

200

300

400

2 4 8 16 32 64 128

La
te

nc
y

(µ
s)

Message Size (bytes)

NIC-RD 8-node
NIC-RD 16-node

NIC-CB 8-node
NIC-CB 16-node

Host 8-node
Host 16-node

(a) Small Messages

1000

2000

3000

4000

5000

1K 2K 4K 8K

La
te

nc
y

(µ
s)

Message Size (bytes)

NIC-RD 8-node
NIC-RD 16-node

NIC-CB 8-node
NIC-CB 16-node

Host 8-node
Host 16-node

(b) Large Messages

Figure 6.12: All-to-All Broadcast Latency Comparisons of NIC-Based Operations with the
Concurrent-Broadcasting Algorithm (CB) and the Recursive-Doubling (RD) Algorithm to
Host-Based operations

123

0

200

400

600

800

1000

1200

4 16 64 256 1024 4096

B
an

dw
id

th
 (

M
B

/s
ec

)

Message Size (bytes)

NIC-RD 8-node
NIC-RD 16-node

NIC-CB 8-node
NIC-CB 16-node

Host 8-node
Host 16-node

Figure 6.13: Bandwidth Comparisons of
NIC-Based All-to-All Broadcast with the
Concurrent Broadcasting Algorithm (CB)
and the Recursive Doubling Algorithm
(RD) to Host-Based All-to-All Broadcast

 0

 0.6

 1.2

 1.8

 2.4

 3

 4096 1024 256 64 16 4

Im
pr

ov
em

en
t F

ac
to

r

Message Size (bytes)

CB 16-node
RD 16-node

Figure 6.14: Improvement Factor for
NIC-Based All-to-All Broadcast with the
Concurrent Broadcasting Algorithm (CB)
and the Recursive Doubling Algorithm
(RD)

0

50

100

150

2 4 8 16

La
te

nc
y

(µ
s)

Number of Nodes

Host 4-byte
NIC-CB 4-byte
NIC-RD 4-byte

(a) Small Messages

0

500

1000

1500

2000

2 4 8 16

La
te

nc
y

(µ
s)

Number of Nodes

Host 4KB
NIC-CB 4KB
NIC-RD 4KB

(b) Large Messages

Figure 6.15: Scalability Comparisons of the NIC-Based All-to-All Broadcast with Concurrent
Broadcasting Algorithm (CB) and Recursive Doubling Algorithm (RD) to the Host-Based
All-to-All Broadcast

124

0

500

1000

1500

2000

2 4 8 16 32 64 128 256 512 1K 2K 4K

H
os

t C
P

U
 U

til
iz

at
io

n
(µ

s)

Message Size (bytes)

Host 16-node

(a) Host-Based All-to-All Broadcast

0

1

2

3

4

5

2 4 8 16 32 64 128 256 512 1K 2K 4K

H
os

t C
P

U
 U

til
iz

at
io

n
(µ

s)

Message Size (bytes)

NIC-RD 16-node
NIC-CB 16-node

(b) NIC-Based All-to-All Broadcast

Figure 6.16: Host CPU Utilization Comparison of the NIC-Based All-to-All Broadcast with
the Concurrent Broadcasting Algorithm (CB) and the Recursive Doubling (RD) Algorithm
to the Host-Based All-to-All Broadcast

125

CHAPTER 7

High Performance Parallel IO Support over Quadrics

The gap between computer processing power and disk throughput is becoming wider as

the growth of the latter continuously lags behind that of the former [68]. Large I/O-intensive

applications on ultra-scale clusters demand increasingly higher I/O throughput. Correspond-

ingly, scalable parallel I/O needs to be available for these real world applications to perform

well. Both commercial [42, 44, 30] and research projects [61, 40, 2] have been developed to

provide parallel file systems for I/O accesses on such architectures. Among them, the Paral-

lel Virtual File System 2 (PVFS2) [2] has been created with the intention of addressing the

needs of next generation systems using low cost Linux clusters with commodity components.

On the other hand, high performance interconnect technologies such as Myrinet [12], In-

finiBand [43], and Quadrics [7] not only have been deployed into large commodity component-

based clusters to provide higher computing power, but also have been utilized in commodity

storage systems to achieve scalable parallel I/O support. For example, the low-overhead high-

bandwidth user-level communication provided by VI [99], Myrinet [64], and InfiniBand [90]

has been utilized to parallelize I/O accesses to storage servers and increase the performance

of parallel file systems. Quadrics Interconnects [73, 7] provides very low latency (≤ 2µs) and

high bandwidth. It also supports many of the cutting-edge communication features, such

as OS-bypass user-level communication, remote direct memory access (RDMA), as well as

126

hardware atomic and collective operations. Moreover, Quadrics network interface provides a

programmable network co-processor, which offloads much of the communication processing

down to the network interface and contributes greatly to its efficient point-to-point and col-

lective communication. These salient features and their performance advantages of Quadrics

have not been leveraged to support scalable parallel IO throughput at the user-level, though

some of these modern features, like RDMA, are exploited in other interconnects, such as

Myrinet [64] and InfiniBand [90]. Currently, some distributed file systems that exploit the

advantages of Quadrics are developed on top of Quadrics kernel communication library, e.g.,

Lustre [27]. But this approach incurs higher network access overhead because the operating

system is included in the communication path. In addition, as a distributed file system

Lustre is designed to scale the aggregated bandwidth for accesses to files on different servers,

while parallel file accesses from a single parallel job cannot directly take its maximum ben-

efits. For example, concurrent writes from multiple processes in a single parallel job cannot

benefit with Lustre. A typical platform may utilize a parallel file system such as PFS [44] to

export scalable bandwidth to a single job by striping the data of a single parallel file system

over multiple underlying file systems such as Lustre. However, the extra multiplexing process

adds more to the cost in the path of IO accesses.

We have examined the feasibility of supporting parallel file systems with Quadrics user-

level communication and RDMA operations. PVFS2 [2] is used as a parallel file system in

this work. We first characterize the challenges of supporting PVFS2 on top of Quadrics

interconnects, focusing on: (a) constructing a client-server model over Quadrics at the user-

level, (b) mapping an efficient PVFS2 transport layer over Quadrics, and (c) optimizing

the performance of PVFS2 over Quadrics such as efficient non-contiguous communication

support. Accordingly, we implement PVFS2 over Quadrics by taking advantage of Quadrics

127

RDMA and event mechanisms. We then evaluate the implementation using PVFS2 and

MPI-IO [54] benchmarks. The performance of our implementation is compared to that

of PVFS2 over TCP. Quadrics IP implementation on top of its interconnect is used in

the TCP implementation to avoid network differences. Our work demonstrates that: (a) a

client/server process model necessary for file system communication is feasible with Quadrics

interconnects; (b) the transport layer of a parallel file system can be efficiently layered on top

of Quadrics; and (c) the performance of PVFS2 can be significantly improved with Quadrics

user-level protocols and RDMA capabilities. Compared to a PVFS implementation over

TCP/IP over Quadrics, our implementation increases the aggregated read performance of

PVFS2 by 140%. It is also able to deliver significant performance improvement in terms

of IO access to application benchmarks such as mpi-tile-io [75] and BT-IO [88]. To the

best of our knowledge, this is the first work in the literature to report the design of a high

performance parallel file system over Quadrics user-level communication protocols.

7.1. Related Work for Parallel IO over Quadrics

Previous research have studied the benefits of using user-level communication protocols

to parallelize IO accesses to storage servers. Zhou et. al. [99] have studied the benefits of

VIA networks in database storage. Wu et. al. [90] have described their work on InfiniBand

over PVFS1 [64]. DeBergalis et. al. [31] have further described a file system, DAFS, built on

top of networks with VIA-like semantics. Our work is designed for Quadrics Interconnects

over PVFS2 [2].

Models to support client/server communication and provide generic abstractions for

transport layer over different networks have been described in [98, 50, 25]. Our work explores

128

the ways to overcome Quadrics static process/communication model and optimize the trans-

port protocols with Quadrics event mechanisms. Ching et. al [26] have implemented list IO

in PVFS1 and evaluated its performance over TCP/IP. Wu et. al [91] have studied the bene-

fits of leveraging InfiniBand hardware scatter/gather operations to optimize non-contiguous

IO access in PVFS1. Our work exploits a communication mechanism with a single event

chained to multiple RDMA to support zero-copy non-contiguous network IO over Quadrics.

7.2. Challenges in Designing PVFS2 over Quadrics/Elan4

Little is known about how to leverage Quadrics high performance user-level communi-

cation to support high performance parallel file system. In this section, we provide a brief

overview of PVFS2 and discuss challenging issues in designing PVFS2 over Quadrics/Elan4.

7.2.1. Overview of PVFS2

PVFS2 [2] is the second generation parallel file system from the Parallel Virtual File

System (PVFS) project team. It incorporates the design of the original PVFS [64] to pro-

vide parallel and aggregated I/O performance. A client/server architecture is designed in

PVFS2. Both the server and client side libraries can reside completely in user space. Clients

communicate with one of the servers for file data accesses, while the actual file IO is striped

across a number of file servers. Metadata accesses can also be distributed across multiple

servers. Storage spaces of PVFS2 are managed by and exported from individual servers

using native file systems available on the local nodes. More information about PVFS2 can

be found in [2].

129

7.2.2. Challenges for Enabling PVFS2 over Quadrics

PVFS2 provides a network abstraction layer to encapsulate all the functionalities needed

for communication support. The resulting component is called Buffered Message Interface

(BMI), which interacts with other components in the software architecture to support low-

level IO accesses. Figure 7.1 shows a diagram of PVFS2 components on both the client side

and the server side. As shown in the figure, BMI functionalities can be further classified

into three categories: connection management between processes, message passing activities

for interprocess communication (IPC) and the memory management needed for IPC. In par-

ticular, Quadrics user-level programming libraries has a unique design for running Higher

Performance Computing (HPC) applications. All parallel jobs over Quadrics need to start

from a static pool of application processes [73]. This is rather incompatible to the needs of

file systems, which start servers first and deliver IO services to incoming clients. In addi-

tion, PVFS2 interprocess communication between servers and clients needs to be properly

layered over Quadrics communication mechanisms to expose the best capability of Quadrics

hardware. In this work, we take on the following issues to design PVFS2 over Quadrics: (a)

constructing a client/server communication model in terms of connection management, (b)

designing PVFS2 basic transport protocol to appropriate Quadrics communication mecha-

nisms for message transmission, and (c) optimizing PVFS2 performance over Quadrics.

7.3. Designing a Client/Server Communication Model

As described in Section 7.2.1, PVFS2 is designed as a client/server architecture. In con-

trast, a parallel job over Quadrics libraries runs as a static pool of application processes [73].

All of these processes join or leave the Quadrics network in a synchronized manner. In addi-

tion, to facilitate this process, Quadrics requires a resource management framework such as

130

Network (Ethernet, Myrinet, InfiniBand, ...)

Job Interface

Server

Operation State Machine

flowBMI

System Interface

Client

Job Interface

flow Trove
BMI connection

mesgmemory memory

Storage

Figure 7.1: The Architecture of PVFS2 Components

RMS [73] to launch the parallel applications. To provide a PVFS2 client/server architecture

over Quadrics, it is necessary to break the model of static process pool used in Quadrics

parallel jobs and eliminate the need of a resource management framework.

7.3.1. Allocating a Dynamic Pool of Processes over Quadrics

Each process must acquire a unique Virtual Process ID (VPID) and use it as an identity

for network addressing before the communication starts over Quadrics. VPID is an abstract

representation of Quadrics capability, which describes the network node ID and context ID

owned by a process, and the range of network nodes and the range of contexts all processes

have. Typically, Quadrics utilizes RMS [73] to allocate appropriate capabilities for all ap-

plication processes before launching a parallel job. The capabilities from all processes share

the same range of network nodes and the same range of contexts. Together with the network

node ID and a context ID, each process can determine its VPID based on the capability. In

this way, a static pool of application processes is launched over Quadrics network.

131

To allocate a dynamic pool of processes over Quadrics, we change the aforementioned

allocation scheme. First, we expand the range of nodes to include every node in the network.

Second, a large range of contexts is provided on each node. Table 7.1 shows the format of

Elan4 capability for all PVFS2 processes. On each node, the first context is dedicated to the

server process, if present, and the rest of the contexts are left for the client processes. The

VPID is needed to identify an elan4 process is calculated with this formula: node id∗(j− i+

1) + (ctx− i). A client process obtains the corresponding parameters from the PVFS2 fstab

entry as shown on the third row of Table 7.1. Clients connect to a server on a dynamic basis,

and notify the server when they leave. Servers allocate communicating resources as new

clients join in, and deallocate when they disconnect or timeout. There are no restrictions

for processes to synchronize memory allocation and synchronized startup.

Setting Value
Capability node{0..N}ctx{i..j}

VPID node id ∗ (j − i + 1) + (ctx − i)
fstab elan4://server id:server ctx/pvfs2-fs

Table 7.1: Elan4 Capability Allocation for Dynamic Processes

7.3.2. Fast Connection Management

A process over Quadrics needs to know both the VPID and an exposed memory loca-

tion of a remote process before sending a message. Parallel jobs built from default Quadrics

libraries, typically use a global memory address to initiate communication because the mem-

ory allocation is synchronized and a global virtual memory [73] is available. Without the use

132

of a global memory, we design two different schemes for clients to initiate communication to

PVFS2 servers over Quadrics/Elan4. Initially, a basic scheme utilizes TCP/IP-based socket.

A server opens a known TCP port and polls for incoming communication requests from time

to time. Clients connect to this known TCP port and establish a temporal connection to

exchange VPID and memory addresses.

Because establishing and tearing down the connections between clients and servers is so

common for file I/O services, it is desirable to design a fast connection management scheme

to achieve scalable IO access. In another scheme, we use native communication over Quadrics

for communication initiation. All servers start with a known node ID and context ID, which

together determine the VPID according to the allocation scheme described earlier earlier in

this section. A set of receive queue slots are also allocated, which start at a unified memory

address across all the servers. Servers then poll on this receive queue for new connection

requests (and also IO service), using a Queue-based Direct Memory Access model. The

QDMA model is described in more detail in Section 7.4.1. Because this memory for the

receive queue (a portion of the NIC memory mapped to the host address space) is allocated

dynamically at run time in the current Quadrics implementation, one constraint here is that

the server needs to report its address at the startup time. We pass this address to clients as

an environmental parameter. Further investigation will study the feasibility and impact of

mapping Quadrics NIC memory to a fixed memory space.

As shown in Figure 7.2, a client process that is initiating the connection with a server.

The client obtains the VPID of the server based on the pvfs2 fstab file and the memory

address of the server’s receive queue through an environmental variable, SERVER ADDR. Using

the known memory address and the known VPID, a client can initiate a message to the

server, which includes its own VPID and address of its exposed memory location. When a

133

connection is initiated, the corresponding network addressing information is recorded into

a global address list. Lists to record all the outstanding operations are also created. This

address information and associated resources are removed when a connection is finalized as

if no connection has been established earlier.

ENV: SERVER_ADDR

server_addr

client:

server:

elan4://server:ctx/pvfs2−fs

Figure 7.2: Connection Initiation over Native Elan4 Communication

7.4. Designing PVFS2 Basic Transport Layer over Quadrics/Elan4

All PVFS2 [2] network message transmission functionalities are included in the BMI

interface [25]. Two models of message transmission, matched and unexpected, are included.

All network operations are designed in a nonblocking manner to allow multiple of them

in service concurrently. Several test APIs are specified for the completion of outstanding

messages. Quadrics provides two basic interprocess communication models: Queue-based

Direct Memory Access (QDMA) and Remote Direct Memory Access (RDMA) [73]. QDMA

can only transmit messages up to 2KB. The other model, RDMA read/write, supports

transmission of arbitrary messages over Quadrics network. Using these two models, the

transport layer of PVFS2 over Quadrics/Elan4 is designed with two protocols, eager and

rendezvous, to handle different size messages.

134

7.4.1. Short and Unexpected Messages with Eager Protocol

The QDMA model allows a process to check incoming QDMA messages posted by any

process into its receive queue. An eager protocol is designed with this model to transmit

short and unexpected messages. As mentioned in Section 7.3.2, this QDMA model is used

in initiating dynamic client/server connection scheme with Quadrics native communication.

recv slots

� � � �� � � �
� � �� � � � � � �� � � �

� � �� � �

short/unexpted

Send Recv

se
co

nd
ar

y
bu

ff
er

 z
on

e

send slots

Figure 7.3: Eager Protocol for Short and Unexpected Messages

As shown in Figure 7.3, in the eager protocol, a number of sender buffers are allocated on

the sender side to form a send queue, and a fixed number of receive queue slots are created

on the receiver side to form a receive queue. In addition, a secondary receive buffer zone is

created with another set of receive buffers. The number of receive buffers in the secondary

zone can grow or shrink on an on-demand basis. In this eager protocol, a new message is

first copied into a sender queue slot, sent over the network, and eventually received into

a receive queue slot. If the message is an unexpected message, it is then copied into a

receiver buffer immediately without waiting for a matching receive operation to be posted.

The receive queue slot is then recycled to receive new messages. For a message that needs

135

to be matched, it remains in the receive queue slot until a matching receive operation is

posted. This can save an extra message copy if the operations is posted in time. However, if

the number of receive queue slots becomes low under various situations, these messages are

copied into the receive buffers in the secondary buffer zone to free up receive slots for more

incoming messages. When the messages are eventually matched, the receive buffers are also

recycled into the secondary buffer zone. If there are relatively a large number of free receive

buffers in the secondary zone, they are deallocated to reduce the memory usage.

7.4.2. Long Messages with Rendezvous Protocol

Quadrics RDMA (read/write) communication model can transmit arbitrary size mes-

sages [73]. A rendezvous protocol is designed with this model for long messages. Two

schemes are proposed to take advantage of RDMA read and write, respectively. As shown

in Figure 7.4 left diagram, RDMA write is utilized in the first scheme. A rendezvous mes-

sage is first initiated from the sender to the receiver in both schemes. The receiver returns

an acknowledgment to the sender when it detects a rendezvous message. The sender then

sends the full message with a RDMA write operation. At the completion of RDMA write,

a control fragment, typed as FIN, is sent to the receiver for the completion notification of

the full message. The right diagram in Figure 7.4 shows the second scheme with RDMA

read. When the rendezvous message arrives at the receiver, instead of returning an acknowl-

edgment to the sender, the receiver initiates RDMA read operations to get the data. When

these RDMA read operations complete, a different control message, typed as FIN ACK, is

sent to the sender, both for acknowledging the arrival of the earlier rendezvous fragment and

notifying the completion of the whole message.

136

a) RDMA Write

−Rendezvous

RDMA Write

FIN
FIN_ACK

RDMA Read

−Rendezvous

b) RDMA Read

Figure 7.4: Rendezvous Protocol for Long Messages

7.5. Optimizing the Performance of PVFS2 over Quadrics

To improve the basic design discussed in Section 7.4, we have explored several further

design issues including zero-copy non-contiguous network IO access, adaptive rendezvous

message transfer with RDMA read/write and optimization on completion notification.

7.5.1. Adaptive Rendezvous with RDMA Read and RDMA Write

As discussed in Section 7.4.2, RDMA read and write are both utilized in the rendezvous

protocol. This achieves zero-copy transmission of long messages. File systems, such as

DAFS [31], also take advantage of similar RDMA-based message transmission. Typically

the server decides to use RDMA read or write based on whether the client is performing a

read or write operation: a read operation is implemented as RDMA write from the server,

and a write operation as a RDMA read. Thus a server process can be potentially over-

loaded with a large number of outstanding RDMA operations, which can lead to suboptimal

137

performance due to the bandwidth drop-off [13]. Therefore a basic throttling mechanism is

needed to control the number of concurrent outstanding RDMA operations. We introduce

an adaptive throttling mechanism to regulate the number of RDMA operations at any given

time. Under a light load, the sender initiates a long message operation to the receiver, which

in turn pulls the message from the sender through RDMA read. If either side has a large

number of outstanding RDMA operations, the receiver gathers this knowledge from its lo-

cal communicate state and the information passed from the sender in the initial rendezvous

packet. When the receiver is heavily loaded, it notifies the sender accordingly and the sender

completes the operation through RDMA write. For the reason of fairness to multiple clients,

if both the sender and the receiver are heavily loaded, the priority is given to the server and

have the client carry out the RDMA operations. It does not matter whether it is a sender or

a receiver. Table 7.2 provides a sample receiver’s decision table for the RDMA rendezvous

protocol.

load: sender <> receiver loaded server? RDMA
greater yes write
greater no read
equal yes write
equal no read
less yes write
less no read

Table 7.2: Receiver’s Decision Table for Adaptive RDMA Rendezvous Protocol

138

7.5.2. Optimizing Completion Notification

Event mechanisms that enable both local and remote completion notification are available

in Quadrics communication models. In particular, this mechanism can be used to enable no-

tification of message completion along with RDMA read/write operations. In the rendezvous

protocol, so long as the control information contained in the last control message is available

to the remote process, the completion of a full message can be safely notified through an

enabled remote event. We have designed this as an optimization to the rendezvous protocol.

A sender process allocates a completion event and encodes the address of this event in the

first rendezvous message. When the receiver pulls the message via RDMA read, it also trig-

gers a remote event to the sender using the provided event address. Similarly, in the case of

RDMA write, the receiver provides the address of such an event in its acknowledgment to

the sender. The receiver detects the completion of a full message through the remote event

triggered by a RDMA write operation. In either case, both sides notice the completion of

data transmission without the need of an extra control message.

7.6. Designing Zero-Copy Quadrics Scatter/Gather for PVFS2 List
IO

Noncontiguous IO access is the main access pattern in scientific applications. Thakur

et. al. [82] noted that it is important to achieve high performance MPI-IO with native non-

contiguous access support in file systems. PVFS2 provides list IO interface to support such

noncontiguous IO accesses. Figure 7.5 shows an example of noncontiguous IO with PVFS2.

In PVFS2 list IO, communication between clients and servers over noncontiguous memory

regions are supported over list IO so long as the combined destination memory is larger

than the combined source memory. List IO can be built on top of interconnects with native

139

scatter/gather communication support, otherwise, it often resorts to memory packing and

unpacking for converting noncontiguous memory fragments to contiguous memory. An alter-

native is to perform multiple send and receive operations. This can lead to more processing

and more communication in small data chunks, resulting in performance degradation.

� �
� �
� �
� � � �

� �
�
�� �

� �
� �
� � � �

� �
�
� � �

� �
	
	

�
�

� �� �

 � �

� �
� �� � � �

� �
� �� � � �

� �
��� �� �

� �� �� �� �
� �� �

� �� �
� �� � ���� � �� �

� �� � � �� �
� �� �

! !! ! " "" "
##

Client

Server

Disk

List IO

Trove

Figure 7.5: An Example of PVFS2 List IO

There is a unique chain DMA mechanism over Quadrics. In this mechanism, one or more

DMA operations can be configured as chained operations with a single NIC-based event.

When the event is fired, all the DMA operations will be posted to Quadrics DMA engine.

Based on this mechanism, the default Quadrics software release provides noncontiguous com-

munication operations in the form of elan putv and elan getv. However, these operations are

specifically designed for the shared memory programming model (SHMEM) over Quadrics.

The final placement of the data still requires a memory copy from the global memory to the

application destination memory.

To support zero-copy PVFS2 list IO, we propose a software zero-copy scatter/gather

mechanism with a single event chained to multiple RDMA operations. Figure 7.6 shows

140

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

�
�
�
�

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

	 	
	 	
	 	
	 	

� �
� �
� �
� �

�
�
�
�

� �
� �
� �
� �

� �
� �
� �
� �

N

single event

Host Event

4

1

2 3

destination NICMultiple RDMA

Command Port

Destination MemorySource Memory

Figure 7.6: Zero-Copy Noncontiguous Communication with RDMA and Chained Event

a diagram about how it can be used to support PVFS2 list IO with RDMA read and/or

write. As the communication on either side could be noncontiguous, a message first needs to

be exchanged for information about the list of memory address/length pairs. The receiver

can decide to fetch all data through RDMA read, or it can inform the sender to push

the data using RDMA write. With either RDMA read or write, the number of required

contiguous RDMA operations, N , needs to be decided first. Then the same number of RDMA

descriptors are constructed in the host memory and written together into the Quadrics Elan4

command port (a command queue to the NIC formed by a memory-mapped user accessible

NIC memory) through programmed IO. An Elan4 event is created to wait on the completion

of N RDMA operations. As this event is triggered, the completion of list IO operation is

detected through a host-side event. Over Quadrics, a separate message or an event can be

chained to this Elan4 event and notify the remote process. Note that, with this design,

multiple RDMA operations are issued without calling extra sender or receiver routines. The

141

data is communicated in a zero-copy fashion, directly from the source memory regions to

the destination memory regions.

7.7. Implementation

With the design of client/server connection model and the transport layer over Quadrics

communication mechanisms, we have implemented PVFS2 over Quadrics/Elan4. The im-

plementation is based on the recent release of PVFS2-1.1-pre1. Due to the compatibility

issue of PVFS2 and Quadrics RedHat Linux kernel distribution, we have utilized a patched

stock kernel linux-2.4.26-4.23qsnet. Our implementation is layered on top of Quadrics li-

brary, libelan4, and completely resides in the user space. We include the following choices

in our implementation: short messages are transmitted in the eager protocol along with the

chained control message; long messages are transmitted through the adaptive rendezvous

protocol using zero-copy RDMA read and write; zero-copy non-contiguous IO is supported

using multiple RDMA and a single chained event; a throttling mechanism is enforced to

regulate the number of concurrent RDMA read and write operations.

7.8. Performance Evaluation of Parallel IO over Quadrics

In this section, we describe the performance evaluation of our implementation of PVFS2

over Quadrics/Elan4. The experiments were conducted on a cluster of eight SuperMicro

SUPER X5DL8-GG nodes: each with dual Intel Xeon 3.0 GHz processors, 512 KB L2 cache,

PCI-X 64-bit 133 MHz bus, 533MHz Front Side Bus (FSB) and a total of 2GB PC2100 DDR-

SDRAM physical memory. All eight nodes are connected to a QsNetII network [73, 7], with

a dimension one quaternary fat-tree [32] QS-8A switch and eight Elan4 QM-500 cards. Each

node has a 40GB, 7200 RPM, ATA/100 hard disk Western Digital WD400JB. The operating

142

system is RedHat 9.0 Linux. To minimize the impact in network capacity, we used the TCP

implementation of PVFS2 as a comparison. Quadrics provides an IP implementation on top

of its kernel communication library.

7.8.1. Performance Comparisons of Different Communication Op-

erations

Table 7.3 shows the comparisons of the latency and bandwidth between TCP/IP over

Quadrics and Quadrics native communication operations, including QDMA and RDMA

read/write. Quadrics IP implementation is often referred to as EIP based on the name of

its Ethernet module. The performance of TCP stream over Quadrics is obtained using the

netperf [3] benchmark. The performance of Quadrics native operations is obtained using mi-

crobenchmark programs, pgping and qping, available from standard Quadrics releases [73].

Operations Latency Bandwidth
TCP/EIP 23.92µs 482.26MB/s
Quadrics RDMA/Write 1.93µs 910.1MB/s
Quadrics RDMA/Read 3.19µs 911.1MB/s
Quadrics QDMA 3.02 µs 368.2MB/s

Table 7.3: Network Performance over Quadrics

As shown in the table, Quadrics native operations provide better performance in terms of

both latency and bandwidth compared to the performance of TCP over Quadrics. Moreover,

the host CPU has less involvement in the communication processing when using Quadrics

RDMA operations because of its zero-copy message delivery. More CPU cycles can be used

143

to handle computation in other components and contribute to better overall file system per-

formance. To demonstrate the potential and effectiveness of leveraging Quadrics capabilities,

we focus on the following aspects: the performance of bandwidth-bound data transfer oper-

ations, the performance of the latency-bound management operations, and the performance

benefits to application benchmarks, such as MPI-Tile-IO [75] and BT-IO [88].

7.8.2. Performance of Data Transfer Operations

To evaluate the data transfer performance of PVFS2 file system, we have used a parallel

program that iteratively performs the following operations: create a new PVFS2 file, con-

currently write data blocks to disjoint regions of the file, flush the data, concurrently read

the same data blocks back from the file, and then remove the file. MPI collective operations

are used to synchronize application processes before and after each I/O operation. In our

program, each process writes and then reads a contiguous 4MB block of data at disjoint

offsets of a common file based on its rank in the MPI job. At the end of each iteration,

the average time to perform the read/write operations among all processes is computed and

recorded. Seven iterations are performed, and the lowest and highest values are discarded.

Finally, the average values from the remaining iterations are taken as the performance for

the read and write operations.

We have divided the eight-node cluster into two groups: servers and clients. Up to four

nodes are configured as PVFS2 servers, and the remaining nodes are running as clients.

Experimental results are labeled as NS for a configuration with N servers. Figure 7.7 shows

the read performance of PVFS2 over Elan4 compared to the PVFS2 over TCP. PVFS2 over

Elan4 improves the aggregated read bandwidth by more than 140% compared to that of

PVFS2 over TCP. This suggests that the read performance of PVFS2 is much limited by the

144

 0

 300

 600

 900

 1200

 1500

 1800

 1 2 3 4 5 6 7

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Number of Clients

Elan4 1S
Elan4 2S
Elan4 3S
Elan4 4S

TCP 1S
TCP 2S
TCP 3S
TCP 4S

Figure 7.7: Performance Comparisons of PVFS2 Concurrent Read

network communication and can significantly benefit from the improvement in the network

performance.

We have also performed experiments to evaluate the write performance of PVFS2/Elan4.

We have observed less than 10% performance improvement compared to PVFS2/TCP (data

not shown). This is because the network bandwidth of both Elan4 and TCP are more

than 350MB/s, which is much higher than the performance of the local IDE disk in the

order of 40MB/s. Instead, we have used a memory-resident file system, ramfs, to avoid

the bottleneck of disk access. This is shown in Figure7.8. With varying numbers of clients

concurrently writing to the file system, PVFS2 over Elan4 improves the aggregated write

bandwidth by up to 82% compared to that of PVFS2 over TCP. This suggests that PVFS2

145

write bandwidth can also benefit from Quadrics communication mechanisms, though it is

relatively less bounded by the network communication compared to the read performance.

 0

 250

 500

 750

 1000

 1250

 1 2 3 4 5 6 7

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Number of Clients

Elan4 1S
Elan4 2S
Elan4 3S
Elan4 4S

TCP 1S
TCP 2S
TCP 3S
TCP 4S

Figure 7.8: Performance Comparisons of PVFS2 Concurrent Write

7.8.3. Performance of Management Operations

PVFS2 parallel file system is designed to provide scalable parallel IO operations that

match MPI-IO semantics. For example, management operations, such as MPI File open and

MPI File set size, are shown to be very scalable in [48]. These management operations

typically do not involve massive data transfer. To evaluate the benefits of Quadrics low

latency communication to these management operations, we have performed the following

experiments using a microbenchmark program available in the PVFS2 distribution.

146

No. of clients TCP Elan4
Create (milliseconds)

1 28.114 27.669
2 28.401 28.248
3 28.875 28.750
4 28.892 28.710
5 29.481 29.123
6 29.611 29.410

Resize (milliseconds)
1 0.192 0.141
2 0.248 0.187
3 0.330 0.201
4 0.274 0.180
5 0.331 0.226
6 0.338 0.213

Table 7.4: Comparison of the Scalability of Management Operations

With the eight-node cluster, a PVFS2 file system is configured with two servers, both

act as metadata and IO servers. The first experiment measures the average time to create a

file using collective MPI File open with different numbers of clients. The second experiment

measures the average time to perform a resize operation using collective MPI File set size

with different numbers of clients. As shown in Table 7.4, our PVFS2 implementation over

Elan4 improves the time to resize a file by as much as 125µs (37%) for up to 6 clients.

However, the improvement on the time to create a file is just marginal compared to the total

time. This is because the time in allocating the storage spaces at the PVFS2 server for the

new file, though small, still dominates over the communication between the client and the

server. On the other hand, once the file is created, the time for the operations that update

the file metadata, as represented by the resize operation, can be reduced by the PVFS2

147

implementation over Elan4. Therefore PVFS2 implementation over Elan4 is also beneficial

to the scalability of MPI-IO management operations.

7.8.4. Performance of MPI-Tile-IO

MPI-Tile-IO [75] is a tile reading MPI-IO application. It tests the performance of tiled

access to a two dimensional dense dataset, simulating the type of workload that exists in

some visualization applications and numerical applications. Four of eight nodes are used as

server nodes and the other four as client nodes running MPI-tile-IO processes. Each process

renders a 2× 2 array of displays, each with 1024× 768 pixels. The size of each element is 32

bytes, leading to a file size of 96MB.

PVFS2 provides two different modes for its IO servers: trovesync and notrovesync. The

former is the default mode in which IO servers perform fsync operations to flush its un-

derlying file system buffer cache; the latter allows the IO servers to take the cache effects

of the local file system for better performance. We have evaluated both the read and write

performance of mpi-tile-io over PVFS2/Elan4 under both modes. As shown in Figure 7.9,

compared to PVFS2/TCP, PVFS2/Elan4 improves MPI-Tile-IO write bandwidth by 170%

with server side caching effects (under notrovesync mode, W/N), and 12% without caching

effects (under trovesync mode, W/T). On the other hand, MPI-Tile-IO read bandwidth is

improved by about 240% with or without server side caching effects. These results indi-

cate our implementation is indeed able to leverage the performance benefits of Quadrics

mechanisms into PVFS2: when the server disk access is a bottleneck, it improves the write

performance with its zero-copy user-level communication which competes less with the disk

access for CPU time; when the server disk access is not a primary bottleneck, it improves

both the read and write bandwidth significantly.

148

Write W/T Read W/T Write W/N Read W/N
0

50

100

150

200

250

300

350

400

B
an

dw
id

th
 (

M
B

/s
)

PVFS2/TCP
PVFS2/Elan4

Figure 7.9: Performance of MPI-Tile-IO Benchmark

7.8.5. Benefits of Zero-copy Scatter/Gather

To evaluate the benefits fo zero-copy scatter/gather support, we also have compared

the performance of PVFS2 over Quadrics with an implementation of PVFS2 over Infini-

Band from the release PVFS2-1.1.0. MPI-Tile-IO achieves less aggregated read and write

bandwidth over InfiniBand (labeled as IB-LIO), compared to our Quadrics-based PVFS2

implementation, with or without zero-copy scatter/gather. This is because of two reasons.

First, memory registration is needed over InfiniBand for communication and the current

implementation of PVFS2 over InfiniBand does not take advantage of memory registration

cache to save registration costs. In contrast, memory registration is not needed over Quadrics

with its NIC-based MMU. The other reason is that PVFS2/IB utilizes InfiniBand RDMA

149

write-gather and read-scatter mechanisms for non-contiguous IO. These RDMA-based scat-

ter/gather mechanisms over InfiniBand can only avoid one local memory copy. On the remote

side, memory packing/unpacking is still needed. So it does not support true zero-copy list

IO for PVFS2. As shown in Figure 7.10, with Quadrics scatter/gather support, MPI-Tile-IO

write bandwidth can be improved by 66%. On the other hand, MPI-Tile-IO read bandwidth

can be improved by up to 113%. These results indicate zero-copy scatter/gather support

can bring significant benefits to noncontiguous IO of a parallel file system. It would be de-

sirable to exploit ways to integrate InfiniBand scatter/gather capabilities into PVFS2 while

overcoming the concern for memory registration.

Write Read
0

50

100

150

200

250

300

350

400

B
an

dw
id

th
 (

M
B

/s
)

LIO
SG−LIO
IB−LIO

Figure 7.10: Benefits of Zero-Copy Scatter/Gather to MPI-Tile-IO

150

7.8.6. Performance of NAS BT-IO

The BT-IO benchmarks are developed at NASA Ames Research Center based on the

Block-Tridiagonal problem of the NAS Parallel Benchmark suite. These benchmarks test

the speed of parallel IO capability of high performance computing applications. The entire

data set undergoes complex decomposition and partition, eventually distributed among many

processes, more details available in [88]. We have used four of eight nodes used as server

nodes and the other four as client nodes. The BT-IO problem size class A is evaluated.

Table 7.5 shows the BT-IO performance of PVFS2/Elan4 and PVFS2/TCP, along with the

performance of BT benchmark without IO access. Compared to pure BT benchmark, the

BT-IO benchmark has only 2.12 seconds extra IO time when accessing a PVFS2/Elan4

file system, but 5.38 seconds IO time when accessing a PVFS2/TCP file system. With

PVFS2/Elan4, the IO time of BT-IO is reduced by 60% compared to PVFS2/TCP.

Type Duration IO Time
No IO 61.71 −−
BT/IO Elan4 63.83 2.12
BT/IO TCP 67.09 5.38

Table 7.5: Performance of BT-IO Benchmark (seconds)

7.9. Summary of Parallel IO over Quadrics

We have examined the feasibility of designing a parallel file system over Quadrics [73] to

take advantage of its user-level communication and RDMA operations. PVFS2 [2] is used as

the parallel file system platform in this work. The challenging issues in supporting PVFS2 on

151

top of Quadrics interconnects are identified. Accordingly, strategies have been designed to

overcome these challenges, such as constructing a client-server connection model, designing

the PVFS2 transport layer over Quadrics RDMA read and write, and providing efficient non-

contiguous network IO support. The performance of our implementation is compared to that

of PVFS2/TCP over Quadrics IP implementation. Our experimental results indicate that:

the performance of PVFS2 can be significantly improved with Quadrics user-level protocols

and RDMA capabilities. Compared to a PVFS2 implementation over TCP/IP over Quadrics,

our implementation improves the aggregated read performance by more than 140%. It is

also able to deliver significant performance improvement in terms of IO access to application

benchmarks such as mpi-tile-io [75] and BT-IO [88]. To the best of our knowledge, this is the

first high performance design and implementation of a user-level parallel file system, PVFS2,

over Quadrics interconnects.

152

CHAPTER 8

Conclusions and Future Research Directions

In this dissertation, we have addressed the criticality of leveraging modern networking

mechanisms for the benefits of cluster-based high-end computing environments. We have

shown that the HEC component functionalities, such as resource management, parallel com-

munication, and parallel IO, are highly dependent on the performance of the underlying

interconnects. Different state-of-the-art mechanisms such as OS-bypass user-level protocols,

RDMA, hardware broadcast, hardware atomic operations and NIC-based programmable

processors over contemporary interconnects can be utilized to enhance the performance of

different components of a HEC environment.

By designing a mechanism for parallel and pipelined connection setup using InfiniBand

user-level protocol, we have demonstrated that the startup scalability of MPI programs can

be significantly improved. On top of that, we have presented an adaptive connection manage-

ment (ACM) scheme that utilizes native InfiniBand communication management (IBCM)

and transport services, and set up new InfiniBand connections based on communication

statistics. ACM is shown to provide further benefits to the startup scalability besides its

contribution to scalable resource usage. In addition, we have designed an initial check-

point/restart framework

153

High performance and scalable MPI collective operations are also important to HEC envi-

ronments. We have demonstrated Quadrics hardware broadcast can be leveraged to provide

high performance, highly scalable and end-to-end reliable broadcast support to LA-MPI.

We have also demonstrated that, over Myrinet, NIC-based algorithms can be designed for

scalable, high-performance collective operations including barrier, broadcast and all-to-all

broadcast by carefully offloading light-weight communication processing to NIC processors,

reducing the redundant data copies across IO buses, and minimizing the host CPU involve-

ment. These algorithms are also shown to augment the tolerance of parallel jobs to process

skew in a large-scale environment.

In view of the lack of parallel IO support over Quadrics, we have presented our design and

implementation of a Quadrics-capable version of a parallel file system (PVFS2). We have

presented our design of zero-copy noncontiguous PVFS2 IO using a software scatter/gather

mechanism over Quadrics. By comparing to similar studies on other interconnects, we have

shown the integration of Quadrics RDMA capability and zero-copy noncontiguous IO mech-

anism is able to enable high performance parallel IO, whose benefits are demonstrated for

both benchmarks and applications.

8.1. Summary of Research Contributions

We summarize our research results and contributions in this dissertation.

8.1.1. Scalable Startup for MPI Programs over InfiniBand Clusters

With MVAPICH as the platform of study, we have characterized the startup of MPI

jobs into two phases: process initiation and connection setup. To speed up connection

setup phase, we have developed two approaches, one with queue pair data reassembly at the

launcher and the other with a bootstrap channel. In addition, we have exploited a process

154

management framework, Multi-Purpose Daemons (MPD) system, to improve the process

initiation phase. The performance limitations in the MPD’s ring-based data exchange model,

such as exponentially increased communication time and numerous process context switches,

are eliminated by using the proposed bootstrap channel. We have implemented these schemes

in MVAPICH [60]. Our experimental results show that, for 128-process jobs, the startup

time has been reduced by more than 4 times. We have also developed an analytical model

to project the scalability of the startup schemes. The derived models suggest that the

improvement can be more than two orders of magnitudes for the startup of 2048-process

jobs with the MPD-BC startup scheme. The enhanced startup scheme has been integrated

into MVAPICH 0.9.2 release onward.

8.1.2. Adaptive Connection Management for Scalable MPI over

InfiniBand

We have explored different connection management algorithms for parallel programs over

InfiniBand clusters. We have introduced adaptive connection management to establish and

maintain InfiniBand services based on communication frequency between a pair of processes.

Two different mechanisms have been designed to establish new connections: an unreliable

datagram-based mechanism and an InfiniBand connection management-based mechanism.

The resulting adaptive connection management algorithms have been implemented in MVA-

PICH to support parallel programs over InfiniBand. Our algorithms have been evaluated

with respect to their abilities in reducing the process initiation time, the number of active

connections, and the communication resource usage. Experimental evaluation with NAS ap-

plication benchmarks indicates that our connection management algorithms can significantly

reduce the average number of connections per process.

155

8.1.3. Transparent Checkpoint/Restart Support for MPI over In-
finiBand

We have presented our design of checkpoint/restart framework for MPI over InfiniBand.

Our design enables application-transparent, coordinated checkpointing to save the state of

the whole MPI program into checkpoints stored in reliable storage for future restart. We

evaluated our design using NAS benchmarks and HPL. Experimental results indicate that

our design impose a low overhead for checkpointing.

8.1.4. High Performance End-to-End Broadcast for LA-MPI over
Quadrics

We have incorporated Quadrics hardware broadcast communication into LA-MPI to pro-

vide an efficient broadcast operation. We then describe the benefits and limitations of the

hardware broadcast communication and possible strategies to overcome them. Accordingly,

a broadcast algorithm is designed and implemented with the best suitable strategies. Our

evaluation shows that the new broadcast algorithm achieves significant performance benefits

compared to the original generic broadcast algorithm in LA-MPI. It is also highly scalable as

the system size increases. Moreover, it outperforms the broadcast algorithms implemented

by Quadrics [73] MPICH, and HP’s for Alaska MPI. Furthermore, instead of leaving the

reliability of message passing to the Quadrics hardware, this new algorithm can ensure the

end-to-end reliable data delivery.

8.1.5. Scalable NIC-based Collective Communication over Myrinet

We have examined the communication processing for point-to-point operations, and pin-

pointed the relevant processing A NIC-based multisend primitive is designed to enable the

156

transmission of multiple message replicas to different destinations; and a NIC-based for-

warding primitive is provided to intermediate NICs to forward the received packets without

intermediate host involvement. We have carefully examined the pros and cons of dividing

the functionalities between the NIC and the host processors. Pair-wise exhange and dissemi-

nation algorithms are designed for barrier operation. Concurrent broadcasting and recursive

doubling algorithms are proposed for all-to-all broadcast. Optimal spanning tree-based for-

warding is designed for broadcast operations. Our results indicate that these algorithms have

achieved their goals in offloading communication processing, reducing IO buses transactions,

minimizing host CPU involvement, as well as increasing process skew tolerance.

8.1.6. High Performance Parallel IO over Quadrics

We have demonstrated that it is feasible of designing a parallel file system over Quadrics [73]

to take advantage of its user-level communication and RDMA operations. PVFS2 [2] is used

as the parallel file system platform in this work. We have designed approaches to constructing

a client-server connection model, providing an efficient PVFS2 transport layer over Quadrics

RDMA read and write, and achieving zero-copy non-contiguous network IO support. To

the best of our knowledge, this is the first high performance design and implementation

of a user-level parallel file system, PVFS2, over Quadrics interconnects. Experimental re-

sults indicate that: the performance of PVFS2 can be significantly improved with Quadrics

user-level protocols and RDMA capabilities for both IO benchmarks and real applications.

8.2. Future Research Directions

MPI Resource Management The increasing size of the clusters and the demand of ultra-

scale problem size will continue pushing the edge of high end computing. So the prob-

lem of managing limited resource within or accessible to a single process for the needs

157

of ever-increasing number of peer processes will continue to be present in the following

angles: scalable startup and teardown of a parallel job, dynamic migration and concen-

tration processes for network locality within a cluster; fault tolerant managing of MPI

communication at all levels. Scalable startup and teardown can be further pursed in

the angle of hypercube-based process startup and pipeplined image distribution. With

the large scale clusters be populated within multiple parallel jobs or a single parallel

job sparsely spreaded across distant corners of a cluster, it could be desirable to inves-

tigate how the process/node distribution pattern can affect the parallel communication

performance of a single job or the aggregated productivity of an entire cluster. Process

migration and concentration efforts will be indispensable to this study. In addition,

fault tolerant MPI resource management needs to enable error recovery at all-levels

incuding packet delivery, message retransmission, connection re-establishment, process

reinitiation and even reconstruction of MPI communicator group. With network tech-

nologies continue to provide interconnects with lower error rates and high bandwidth,

providing error recovery on a per-packet or per-message basis will beome less desirable,

rather counter-productive methods, especially taking into account of the scale of mem-

ory and CPU resources that will be needed for recording and locating the individual

bookkeeping entries. Future research shall pay more attention on managing clustered

recovery of message transmissions and grouped recovery of threads, processes and MPI

communicators.

MPI Collective Communication Numerous studies have been accumulated in literature

for enhancing the performance of collective communication and synchronization. How-

ever, there is relatively less study on how the applications can benefit from optimized

collective operations. So some of the future research directions would be to investigate:

158

(a) how the applications can be better designed for leveraging the benefits of enhanced

collective operations; (b) how the collective operations can be better designed for the

diverse communication pattern of applications; (c) what additional mechanism can be

leveraged for further enhancements of collective operations. For both (a) and (b), it

is our belief that process skew is one of main reasons that applications are not able

to benefit much from enhanced collective operations. Further research efforts shall be

put on providing better synchronization tools for parallel applications, such as global

interrupt (a way to interrupt all processes in an instant manner for concurrent task

processing), as well as on reducing the inherent synchronization of collective operations.

Scalable MPI-IO In the same manner, the scale of clusters will pose new challenges on

the IO angle in terms of how to support tens of thousands clients whose IO requests

fall on the same IO device, the same partition, the same directory or even the same

block of the same file. Added to the fact is that many of the random IO pattern

could be non-aligned, non-contiguous, small IO requests. Further efforts need to be

put forth on (a) adaptive distribution of parallel prefetch and writeback; and (b) zero-

copy IO data placement [24]. While data sieving and two-phase IO techniques are

successful in re-ordering and re-organizing the IO distribution within a parallel job,

few research has done on how to achieve adaptive distribution of parallel IO prefetch

and writeback, for example, how to establish and correlate parallel prefetch/writeback

with application IO request pattern and how to have clients cooperatively performing

prefetch and writeback of better overlapped IO and communication. Due the depth of

IO processing stacks, true zero-copy data placement from source to destination storage

(or just memory) is still a challenging issue for many disk and networked file systems.

159

Research in this direction shall shed light on how the current file system can be better

designed for zero-copy data placement.

160

BIBLIOGRAPHY

[1] RDMA Consortium. http://www.rdmaconsortium.org/home.

[2] The Parallel Virtual File System, version 2. http://www.pvfs.org/pvfs2.

[3] The Public Netperf Homepage. http://www.netperf.org/netperf/NetperfPage.html.

[4] TOP 500 Supercomputers. http://www.top500.org/.

[5] A. Petitet and R. C. Whaley and J. Dongarra and A. Cleary. http://www.netlib.org/

benchmark/hpl/.

[6] Amotz Bar-Noy and Shlomo Kipnis. Designing broadcasting algorithms in the postal

model for message-passing systems. In SPAA, 1992.

[7] J. Beecroft, D. Addison, F. Petrini, and Moray McLaren. QsNet-II: An Interconnect
for Supercomputing Applications. In the Proceedings of Hot Chips ’03, Stanford, CA,

August 2003.

[8] R.A.F. Bhoedjang, T. Ruhl, and H.E. Bal. LFC: A Communication Substrate for
Myrinet. In Proceedings of the Fourth Annual Conference of the Advanced School for

Computing and Imaging, pages 31–37, June 1998.

[9] Raoul A.F. Bhoedjang, Tim Ruhl, and Henri E. Bal. Efficient Multicast on Myrinet
Using Link-Level Flow Control. In 27th International Conference on Parallel Processing,

1998.

[10] Raoul A.F. Bhoedjang, Tim Ruhl, and Henri E. Bal. Efficient Multicast on Myrinet
Using Link-Level Flow Control. In 27th International Conference on Parallel Processing,

1998.

[11] M. Blumrich, C. Dubnicki, E. W. Felten, K. Li, and M. R. Mesarina. Virtual-Memory-
Mapped Network Interfaces. In IEEE Micro, pages 21–28, Feb. 1995.

[12] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.
Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area

Network. IEEE Micro, 15(1):29–36, 1995.

161

[13] Dan Bonachea, Christian Bell, Paul Hargrove, and Mike Welcome. GASNet 2: An
Alternative High-Performance Communication Interface, November 2004.

[14] R. Brightwell and A. Maccabe. Scalability limitations of via-based technologies in sup-
porting mpi. March 2000.

[15] Ron Brightwell and Lee Ann Fisk. Scalable parallel application launch on Cplant. In
Proceedings of Supercomputing, 2001, Denver, Colorado, November 2001.

[16] D. Buntinas and D. K. Panda. NIC-Based Reduction in Myrinet Clusters: Is It Bene-
ficial? In SAN-02 Workshop (in conjunction with HPCA), Feb. 2003.

[17] D. Buntinas, D. K. Panda, J. Duato, and P. Sadayappan. Broadcast/Multicast over

Myrinet Using NIC-Assisted Multidestination Messages. In CANPC, 2000.

[18] D. Buntinas, D. K. Panda, J. Duato, and P. Sadayappan. Broadcast/Multicast over

Myrinet Using NIC-Assisted Multidestination Messages. In Communication, Architec-
ture, and Applications for Network-Based Parallel Computing, pages 115–129, 2000.

[19] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-Level Barrier over
Myrinet/GM. In Proceedings of International Parallel and Distributed Processing Sym-

posium, 2001.

[20] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-Level Barrier over

Myrinet/GM. In IPDPS, 2001.

[21] D. Buntinas, D. K. Panda, and P. Sadayappan. Performance benefits of NIC-based

barrier on Myrinet/GM. In CAC ’01 Workshop (in conjunction with IPDPS), April
2001.

[22] G. Burns, R. Daoud, and J. Vaigl. LAM: an Open Cluster Environment for MPI. In

Proceedings of Supercomputing Symposium, Toronto, Canada, 1994.

[23] Ralph Butler, William Gropp, and Ewing Lusk. Components and interfaces of a process

management system for parallel programs. Parallel Computing, 27(11):1417–1429, 2001.

[24] Brent Callaghan and Tom Talpey. NFS Direct Data Placement. http://www.ietf.org/

internet-drafts/draft-ietf-nfsv4-nfsdirect-02.txt.

[25] Philip H. Carns, Walter B. Ligon III, Robert Ross, and Pete Wyckoff. BMI: A Network

Abstraction Layer for Parallel I/O, 2004.

[26] A. Ching, A. Choudhary, W.-K. Liao, R. Ross, and W. Gropp. Noncontiguous I/O

through PVFS. In Proceedings of the IEEE International Conference on Cluster Com-
puting, Chicago, IL, September 2002.

162

[27] Cluster File System, Inc. Lustre: A Scalable, High Performance File System.
http://www.lustre.org/docs.html.

[28] Salvador Coll, Jose Duato, FAbrizio Petrini, and Franscisco J. Mora. Scalable Hardware-
Based Multicast Trees. In Proceedings of Supercomputing ’03, November 2003.

[29] Compaq, Intel, and Microsoft. The Virtual Interface Architecture (VIA) Specification.
available at http://www.viarch.org.

[30] Abbie Matthews David Nagle, Denis Serenyi. The Panasas ActiveScale Storage Cluster
– Delivering Scalable High Bandwidth Storage. In Proceedings of Supercomputing ’04,

November 2004.

[31] Matt DeBergalis, Peter Corbett, Steve Kleiman, Arthur Lent, Dave Noveck, Tom
Talpey, and Mark Wittle. The Direct Access File System. In Proceedings of Second

USENIX Conference on File and Storage Technologies (FAST ’03), 2003.

[32] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineering Ap-

proach. The IEEE Computer Society Press, 1997.

[33] J. Duell, P. Hargrove, and E. Roman. The Design and Implementation of Berkeley

Lab’s Linux Checkpoint/Restart. Technical Report LBNL-54941, Berkeley Lab, 2002.

[34] Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, Scott Pakin, and Salvador Coll.

STORM: Lightning-Fast Resource Management. In Proceedings of the Supercomputing
’02, Baltimore, MD, November 2002.

[35] Andrew Gallatin, Jeff Chase, and Ken Yocum. Trapeze/IP: TCP/IP at Near-Gigabit
Speeds. In 1999 USENIX Technical Conference (Freenix Track), June 1999.

[36] Richard L. Graham, Sung-Eun Choi, David J. Daniel, Nehal N. Desai, Ronald Minnich,

Craig E. Rasmussen, L. Dean Risinger, and Mitchel W. Sukalski. A Network-Failure-
tolerant Message-Passing system for Terascale Clusters. In Proceedings of the 2002

International Conference on Supercomputing, June 2002.

[37] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Im-

plementation of the MPI Message Passing Interface Standard. Parallel Computing,
22(6):789–828, 1996.

[38] Manish Gupta. Challenges in Developing Scalable Scalable Software for BlueGene/L.
In Scaling to New Heights Workshop, Pittsburgh, PA, May 2002.

[39] Eric Hendriks. Bproc: The beowulf distributed process space. In Proceedings of the
International Conference on Supercomputing, New York, New York, June 2002.

163

[40] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and David S.
Blumenthal. PPFS: A High Performance Portable Parallel File System. In Proceedings

of the 9th ACM International Conference on Supercomputing, pages 385–394, Barcelona,
Spain, July 1995. ACM Press.

[41] IBM. Parallel Environment for AIX 5L V4.1.1 MPI Programming Guide.
http://publib.boulder.ibm.com/clresctr/, 2004.

[42] IBM Corp. IBM AIX Parallel I/O File System: Installation, Administration, and Use.
Document Number SH34-6065-01, August 1995.

[43] Infiniband Trade Association. http://www.infinibandta.org.

[44] Intel Scalable Systems Division. Paragon System User’s Guide, May 1995.

[45] Morris Jette and Mark Grondona. SLURM: Simple Linux Utility for Resource Manage-

ment. In Proceedings of the International Conference on Linux Clusters, San Jose, CA,
June 2003.

[46] Avi Kavas, David Er-El, and Dror G. Feitelson. Using Multicast to Pre-Load Jobs on
the ParPar Cluster. Parallel Computing, 27(3):315–327, 2001.

[47] Jiantao Kong and Karsten Schwan. Kstreams: Kernel support for efficient end-to-end
data streaming, 2004.

[48] Rob Latham, Rob Ross, and Rajeev Thakur. The impact of file systems on mpi-io
scalability. In Proceedings of the 11th European PVM/MPI Users’ Group Meeting (Euro

PVM/MPI 2004), pages 87–96, September 2004.

[49] Lawrence Berkeley National Laboratory. MVICH: MPI for Virtual Interface Architec-

ture. http://www.nersc.gov/research/FTG/mvich/index.html, August 2001.

[50] J. Liu, M. Banikazemi, B. Abali, and D. K. Panda. A Portable Client/Server Commu-
nication Middleware over SANs: Design and Performance Evaluation with InfiniBand.

In In SAN-02 Workshop (in conjunction with HPCA), February 2003.

[51] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. P. Kini, P. Wyckoff, and

D. K. Panda. Micro-Benchmark Level Performance Comparison of High-Speed Cluster
Interconnects. In Proceedings of Hot Interconnects 10, August 2003.

[52] Message Passing Interface Forum. MPI: A message-passing interface standard. The
International Journal of Supercomputer Applications, 8(3–4):159–416, 1994.

[53] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Mar
1994.

164

[54] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface,
Jul 1997.

[55] Adam Moody, Juan Fernandez, Fabrizio Petrini, and Dhabaleswar Panda. Scalable
NIC-based Reduction on Large-Scale Clusters. In SC ’03, November 2003.

[56] MPI Forum. MPI: A Message Passing Interface. In Proceedings of Supercomputing ’93,
November 1993.

[57] MPICH2, Argonne. http://www-unix.mcs.anl.gov/mpi/mpich2/.

[58] Myricom. Myrinet Software and Customer Support. http://www.myri.

com/scs/GM/doc/, 2003.

[59] Myricom Corporations. The GM Message Passing Systems.

[60] Network-Based Computing Laboratory. MVAPICH: MPI for InfiniBand on VAPI Layer.
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/index.html.

[61] Nils Nieuwejaar and David Kotz. The Galley Parallel File System. Parallel Computing,
(4):447–476, June 1997.

[62] Open Infiniband Alliance. http://www.openib.org.

[63] OpenPBS Documentation. http://www.openpbs.org/docs.html, 2004.

[64] P. H. Carns and W. B. Ligon III and R. B. Ross and R. Thakur. PVFS: A Parallel

File System For Linux Clusters. In Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317–327, Atlanta, GA, October 2000.

[65] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Io-lite: A unified i/o buffering
and caching system. ACM Transactions on Computer Systems, 18(1):37–66, February

2000.

[66] S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Workstations:

Illinois Fast Messages (FM). In Proceedings of the Supercomputing ’95, 1995.

[67] Joseph Pasquale, Eric W. Anderson, and Keith Muller. Container shipping: Operating

system support for i/o-intensive applications. IEEE Computer, 27(3):84–93, 1994.

[68] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of

Inexpensive Disks. In Proceedings of the 1988 ACM SIGMOD International Conference
on Management of Data, Chicago, IL, 1988.

[69] Gang Peng, Srikant Sharma, and Tzi cker Chiueh. Network-Centric Buffer Cache Or-
ganization. In Proceedings of The 25th IEEE International Conference on Distributed

Computing Systems, May 2005.

165

[70] Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg, and Adolfy Hoisie. Hardware-
and Software-Based Collective Communication on the Quadrics Network. In IEEE

International Symposium on Network Computing and Applications 2001, (NCA 2001),
Boston, MA, February 2002.

[71] Fabrizio Petrini, Wu-Chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachten-
berg. The Quadrics Network: High Performance Clustering Technology. IEEE Micro,

22(1):46–57, January-February 2002.

[72] Fabrizio Petrini, Darren Kerbyson, and Scott Pakin. The Case of the Missing Supercom-

puter Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI
Q. In SC ’03, November 2003.

[73] Quadrics Supercomputers World, Ltd. Quadrics Documentation Collection.

http://www.quadrics.com/onlinedocs/Linux/html/index.html.

[74] John A. Rice. Mathematical Statics and Data Analysis. Duxbury Press, Belmont,

California, 1995.

[75] Rob B. Ross. Parallel i/o benchmarking consortium. http://www-unix.

mcs.anl.gov/rross/pio-benchmark/html/.

[76] S. J. Sistare and C. J. Jackson. Ultra-High Performance Communication with MPI and

the Sun Fire Link Interconnect. In Proceedings of the Supercomputing, 2002.

[77] T. Sterling, D. Becker, M. Warren, T. Cwik, J. Salmon, and B. Nitzberg. An assessment

of beowulfclass computing for nasa requirements: Initial findings from the first nasa
workshop on beowulf-class clustered computing, 1998.

[78] Hiroshi Tezuka, Atsushi Hori, Yutaka Ishikawa, and Mitsuhisa Sato. PM: An operating

system coordinated high performance communication library. In HPCN Europe, pages
708–717, 1997.

[79] Rajeev Thakur and William Gropp. Improving the Performance of Collective Operations
in MPICH. In Proceedings of EuroPVM/MPI ’03, September 2003.

[80] Rajeev Thakur, William Gropp, and Ewing Lusk. An Abstract-Device Interface for
Implementing Portable Parallel-I/O Interfaces. In Proceedings of Frontiers ’96: The

Sixth Symposium on the Frontiers of Massively Parallel Computation. IEEE Computer
Society, Oct 1996.

[81] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and Collective I/O in
ROMIO. In Proceedings of the 7th Symposium on the Frontiers of Massively Parallel

Computation, pages 182–189, February 1999.

166

[82] Rajeev Thakur, William Gropp, and Ewing Lusk. On Implementing MPI-IO Portably
and with High Performance. In Proceedings of the 6th Workshop on I/O in Parallel and

Distributed Systems, pages 23–32. ACM Press, May 1999.

[83] The BlueGene/L Team. An Overview of the BlueGene/L Supercomputer. In Proceedings

of the Supercomputing ’02, Baltimore, MD, November 2002.

[84] Kees Verstoep, Koen Langendoen, and Henri E. Bal. Efficient Reliable Multicast on

Myrinet. In ICPP, 1996.

[85] Jeffrey. S. Vetter and Frank Mueller. Communication Characteristics of Large-Scale

Scientific Applications for Contemporary Cluster Architectures. In IPDPS, April 2002.

[86] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: A
Mechanism for Integrated Communication and Computation. In International Sympo-

sium on Computer Architecture, pages 256-266, 1992.

[87] F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E. Culler. Architectural

Requirements and Scalability of the NAS Parallel Benchmarks. In Proceedings of Su-
percomputing, 1999.

[88] Parkson Wong and Rob F. Van der Wijngaart. NAS Parallel Benchmarks I/O Version
2.4. Technical Report NAS-03-002, Computer Sciences Corporation, NASA Advanced

Supercomputing (NAS) Division.

[89] Jiesheng Wu, Jiuxing Liu, Pete Wyckoff, and Dhabaleswar K. Panda. Impact of On-

Demand Connection Management in MPI over VIA. In Proceedings of the International
Conference on Cluster Com puting, 2002.

[90] Jiesheng Wu, Pete Wychoff, and Dhabaleswar K. Panda. PVFS over InfiniBand: Design

and Performance Evaluation. In Proceedings of the International Conference on Parallel
Processing ’03, Kaohsiung, Taiwan, October 2003.

[91] Jiesheng Wu, Pete Wychoff, and Dhabaleswar K. Panda. Supporting Efficient Non-
contiguous Access in PVFS over InfiniBand. In Proceedings of Cluster Computing ’03,

Hong Kong, December 2004.

[92] Hyong youb Kim, Vijay S. Pai, and Scott Rixner. Increasing web server throughput with

network interface data caching. In Proceedings of the Tenth International Conference
on Architectural Support for Programming Languages and Operating Systems, October

2002.

[93] Weikuan Yu, Darius Buntinas, Rich L. Graham, and Dhabaleswar K. Panda. Efficient

and Scalable Barrier over Quadrics and Myrinet with a New NIC-Based Collective
Message Passing Protocol. In Workshop on Communication Architecture for Clusters,

167

in Conjunction with International Parallel and Distributed Processing Symposium ’04,
April 2004.

[94] Weikuan Yu, Darius Buntinas, and Dhabaleswar K. Panda. High Performance and
Reliable NIC-Based Multicast over Myrinet/GM-2. In Proceedings of the International

Conference on Parallel Processing ’03, October 2003.

[95] Weikuan Yu, Qi Gao, and Dhabaleswar K. Panda. Adaptive Connection Management

for Scalable MPI over InfiniBand. In International Parallel and Distributed Processing
Symposium, Rhodes Island, Greece, April 2006.

[96] Weikuan Yu, Sayantan Sur, Dhabaleswar K. Panda, Rob T. Aulwes, and Rich L. Gra-
ham. High Performance Broadcast Support in LA-MPI over Quadrics. In Los Alamos

Computer Science Institute Symposium, October 2003.

[97] Weikuan Yu, Jiesheng Wu, and Dhabaleswar K. Panda. Fast and Scalable Startup of
MPI Programs In InfiniBand Clusters. In Proceedings of the International Conference

on High Performance Computing ’04, Banglore, India, December 2004.

[98] Rumi Zahir. Lustre Storage Networking Transport Layer.

http://www.lustre.org/docs.html.

[99] Yuanyuan Zhou, Angelos Bilas, Suresh Jagannathan, Cezary Dubnicki, James F.

Philbin, and Kai Li. Experiences with VI Communication for Database Storage. In
Proceedings of the 29th Annual International Symposium on Computer Architecture,

pages 257–268. IEEE Computer Society, 2002.

168

