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ABSTRACT

Due to its high performance and open standard, InfiniBand is gaining popularity
in the area of high performance computing. In this area, MPI is the de facto standard
for writing parallel applications. One-sided communication (Remote Memory Access)
is one of the major extensions indicated in MPI-2. MPICH2, as a successor of MPICH,
features a completely new design which aims to support MPI-2. In this thesis, we
present a study of implementing MPICH2 one-sided communication for InfiniBand
clusters.

In many existing MPI-2 one-sided communication implementations (including
original MPICH2), one-sided communication are built on top of send/receive func-
tions, and thread based designs are used for implementing passive synchronization.
Although this approach can achieve good portability, it suffers from the overhead and
constraints brought by two-sided communication and threaded implementation.

To address these problems, we propose a new design for MPI-2 one-sided commu-
nication by exploiting features of the InfiniBand Architecture. In our design, MPI-2
one-sided communication functions such as MPI_Put, MPI_Get and MPI_Accumulate
are directly mapped to InfiniBand Remote Direct Memory Access (RDMA) opera-
tions. For synchronization functions, we eliminate the involvement of thread by using

the algorithms that make advantage of InfiniBand remote atomic operations.
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Our design has been implemented based on MPICH2 over InfiniBand. We present
detailed design issues for both our new approaches and original approaches. A set
of micro-benchmarks are performed to characterize different aspects of performance.
The experimental results have shown that, comparing with send/receive based de-
sign, RDMA based design can achieve lower overhead and higher communication
performance. Moreover, the RDMA based design allows for better overlap between
computation and communication and achieves better scalability with multiple num-
ber of origin processes. For synchronization functions, our experimental results show
that the atomic operation based designs can achieve less synchronization overhead,
better concurrency, and consume less computing resource comparing with the thread

based designs.

iii



I dedicate this work to my father Quhu Jiang and my mother Ying Xu

v



ACKNOWLEDGMENTS

I would like to express my sincere appreciation and gratitude to my advisor Dr.
Dhabaleswar K. Panda for his constant guidance and motivation. His valuable sup-
port has gone a long way in the completion of this work.

I am grateful to Dr. Mario Lauria for consenting to serve on my Master’s exami-
nation committee.

For generously sharing their thoughts, ideas and comments, I would like to ac-
knowledge Jiuxing Liu, Hyun-Wook Jin, Jiesheng Wu, Pavan Balaji and Amith Mami-
dala.

I am thankful to Dr. William Gropp, Dr. Darius Buntinas , Dr. Rajeev Thakur
and other MPICH2 group members from Argonne National Laboratory for their in-
volvement in this work.

My heartfelt thanks to my family and friends for their support, love and affection.



VITA

December, 1979 ... ... ... il Born - Fuzhou, China

1998 - 2002 ... B.E. Computer Science and Engineer-
ing,Zhejiang University

Sept 2003 - Present ............ ... ... ..., Graduate Research Associate,

Ohio State University.

PUBLICATIONS

Research Publications

“Efficient Implementation of MPI-2 Passive One-Sided Communication over Infini-
Band Clusters”, Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda,

Darius Buntinas, Rajeev Thakur and William Gropp, Euro PVM/MPI , 2004.

“High Performance MPI-2 One-Sided Communication over InfiniBand”, Weihang
Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda , William Gropp and
Rajeev Thakur, IEEE/ACM International Symposium on Cluster Computing and

the Grid , 2004.

vi



“Design and Implementation of MPICH2 over InfiniBand with RDMA Support”, J.
Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp and B.

Toonen, International Parallel and Distributed Processing Symposium , 2004.

“Performance Comparison of MPI Implementations over InfiniBand, Myrinet and
Quadrics”, Jiuxing Liu, Balasubramanian Chandrasekaran, Jiesheng Wu, Weihang
Jiang, Sushmitha Kini, Weikuan Yu, Darius Buntinas, Pete Wyckoff and D. K. Panda,

Supercomputing Conference , 2003.

FIELDS OF STUDY

Major Field: Computer and Information Science

vii



TABLE OF CONTENTS

List of Figures . . . . . . . . .

Chapters:
1. Imtroduction . . . . . . . . . . .
1.1 Interconnect Technologies and Communication Protocol . . . . ..
1.2 Parallel Programming Models . . . . . . ... ... .. ... ....
1.3 Message Passing Interface-2 . . . . . .. .. ... oL,
1.4 Problem Statement . . . . . . . . ... Lo
2. Background . . . ... Lo
2.1 InfiniBand Architecture . . . . . ... ... ... ... ... ...,
2.1.1 RDMA in InfiniBand Architecture . . .. ... ... .. ..
2.1.2  Atomic Operations in InfiniBand Architecture . . . . . . . .
2.2  MPI-2 One-Sided Communication . . . . . . . ... ... ......
2.2.1 One-Sided Communication with Active Synchronization
2.2.2  One-Sided Communication with Passive Synchronization . .
2.3 MPI-2 Implementation - MPICH2 . . . ... ... ... ......

2.3.1 MPICH2 Structure and RDMA Channel interface . . . . . .
2.3.2 MPICH2 Implementation over InfiniBand . . . ... .. ..

viii

Page
ii

iv

vi

xi

ok W



24 Related Work . . . . . . . . 19

25 Summary . ... ..o e 20
3. MPI-2 One-Sided Communication with Active Synchronization . . . . . . 21
3.1 Motivation . . . . . ..o 21
3.2 Send/Receive Based MPI-2 One-Sided Communication Design . . . 22
3.2.1 Communication Operations . . . . . .. ... ... ..... 22
3.2.2  Active Synchronization Operations . . . . . . ... ... .. 24

3.3 RDMA Based MPI-2 One-Sided Communication Design . . . . . . 25
3.3.1 Communication Operations . . . . ... ... ... ..... 26
3.3.2 Event Driven Accumulate Operations . . . . ... ... .. 27
3.3.3 Active Synchronization Operations . . . . . ... ... ... 29
3.3.4 Other Design Issues . . . . ... ... ... ... ..... 30

3.4 Performance Evaluation . . . . .. ... ... ... ... 31
3.4.1 Experimental Testbed . . . ... .. ... ... ....... 32
342 Latency . . . . . . . . L 32
343 Bandwidth . .. ... ... ... .00 0oL 35
3.4.4 Synchronization Overhead . . . . . . .. ... ... ..... 35
3.4.5 Communication/Computation Overlap . . . . . ... .. .. 36
3.4.6 Impact of Process Skew . . . ... ... ... ........ 37
3.4.7 Performance with Multiple Origin Processes . . . . . . . .. 38
3.4.8 Performance of Accumulate Operation . . . . . ... .. .. 39

3.5 Summary .. o.o.o Lo 40
4.  MPI-2 One-Sided Communication with Passive Synchronization . . . . . 41
4.1 Design Efficient MPI-2 Passive One-Sided Communication . . . . . 42
4.2 Thread Based Designs . . . . . . . .. ... ... ... 43
4.2.1 Dedicated Thread Based Design . . . . ... ... ... .. 44
4.2.2 Event Driven Based Design . . . . . .. ... ... ..... 45

4.3 Atomic Operation Based Design. . . . ... ... ... ... .... 46
4.3.1 Test&Set Based Design . . . . . ... ... ... ...... 47
4.3.2 MCS Based Design . . . . . ... .. ... ... ... 48

4.4 Performance Evaluation . . . . .. ... ... ... .. ... 50
4.4.1 Experimental Testbed . . . .. ... ... ... ....... 50
4.4.2 Synchronization Overhead . . . . . . . . .. ... ... ... 51
4.4.3 Synchronization Delay . . . . . . .. .. ... ... .. 52
444 ConcurrencCy . . . . . . ..o i e 53
4.4.5 Message Complexity . . . . . . ... ... Lo, 95
4.4.6 CPU Utilization . . . . .. .. ... ... ... ... .... 55
447 Discussion . . . . . ... Lo o7

ix



4.5 Summary . .. ... ..

5.  Conclusions and Future Work

Bibliography . . . . ... ... ..



LIST OF FIGURES

Figure

2.1 InfiniBand Communication Architecture . . . . .. ... ... . ...
2.2 InfiniBand Communication Architecture . . . . .. .. ... .. ...
2.3 MPI-2 One-Sided Communication functions . . . . .. .. ... ...
2.4 MPI-2 One-Sided Communication with Active Synchronization . . . .
2.5 MPI-2 One-Sided Communication with Passive Synchronization

2.6 MPICH2 Implementation Structure . . . . .. ... ... ... ....
2.7 Put and Get Operations . . . . . . . ... .. . ... .. ... ...,
2.8 Put and Get Implementation with Globally Shared Memory . . . . .
3.1 Send/Receive Based One-Sided Communication Implementation . . .
3.2 Design Architecture . . . . . . . ... Lo o
3.3 Event Driven Accumulate Operation . . . . .. ... ... .. ....
3.4 RDMA Based One-Sided Communication Implementation . . . . ..
3.5 Ping-Pong Latency . . . .. .. ... ... ... ...
3.6 Bi-Directional Latency . . . . .. . ... ... .. ... ...

3.7 MPI_Put Bandwidth . . . . . . . . . . .. ...

xi

Page

12
13
14
16
17
18

24



3.8

3.9

3.10

3.11

3.12

3.13

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

MPI_Get Bandwidth . . . .. ... ... .. 0oL 34

Synchronization Overhead . . . . . . ... ... ... ... ... 36
Overlap Test Results . . . . . . . ... ... ... . ... ....... 37
Process Skew Test Results . . . . . . .. ... ... ... ... ... 38
Aggregated Bandwidth with Multiple Origin Processes . . . . . . .. 39
Performance of Accumulate Operation . . . . ... ... ... .... 40
Dedicated Thread Based Design . . . . . . .. ... ... ... .... 44
Test and Set” Algorithm . . . . . .. .. ... ... ... ....... 47
MCS Algorithm . . . . .. .. .o o 49
Synchronization Overhead . . . . . . ... ... ... .. ....... 51
Synchronization Delay . . . .. . ... ... 0000000 52
Concurrency . . . . . . ..o 53
Message Complexity . . . . . . . .. ..o 54
Computing Thread . . . . . ... .. ... 56
Assignment Mode . . . . . ... Lo o7

xii



CHAPTER 1

INTRODUCTION

One of the important characteristics of advances in computing technology is that
they enable new capabilities to explore science. The development of Network of Work-
stations (NOW) is one example. Network interconnects that offer low latency and
high bandwidth, complementing commodity workstations with boosted processing
power, provide a cost-effective solution with high computational abilities. Significant
cost advantages, combined with better scalability, have made NOW a more attractive
solution for high performance scientific computing than traditional Supercomputers.
In 22nd edition of “Top500” list [46] of world’s fastest supercomputers, the list of
NOW systems in TOP10 has grown impressively to 7 systems.

This chapter starts with a brief overview of modern interconnects and commu-
nication protocols for NOW systems. After that, this chapter describes several pro-
gramming models for writing parallel application on NOW. And then we focus on
Message Passing Interface (MPI)-2, which supports one-sided communication model
(Remote Memory Access). Then we come up with the problem statement, which is
about implementing high performance one-sided communication over InfiniBand. We

finish this chapter with an outline of this thesis.



1.1 Interconnect Technologies and Communication Protocol

Network interconnects significantly affect the scalability of a NOW system to
achieve expected performance. Vendors have invested a lot of resources in devel-
oping interconnect products, which include InfiniBand Architecture (IBA) [22, 5],
Myrinet [9], Gigabit Ethernet [15, 28], 10 Gigabit Ethernet [1], Quadrics [2, 39, 40]
and GigaNet CLAN [13, 14]. Most of these interconnects can deliver low latency
(about several us), and high bandwidth (more than 1 Gbps). Besides that, some of
these network interconnects provide totally new features at hardware level, and open
new avenues to design NOW systems.

In traditional UNIX communication protocols, messages go through the kernel
and involve several copies. As the high-speed interconnects reach Gbps level, the
bottleneck in communication has been shifted from limited bandwidth of network
fabrics to communication protocol software stack. Consequently, various protocols
like U-Net [45], VMMC [8], AM [47], EMP [42, 43|, FM [38], GM [35] etc. with
specified network interfaces have been proposed to bypass the kernel. The U-Net
is the first user-level communication protocol proposed by T. Eicken et al. which
allows user-level access to network interface device to avoid extra copies. The VMMC
is another user-level protocol which separates data transfer from control transfer
(i.e. without receiving node CPU support). Inspired by these research projects,
Compagq, Intel and Microsoft developed the preliminary Virtual Interface Architecture
(VIA) specification [12, 6]. InfiniBand Architecture, which mentioned above, is an

implementation and extension of VIA.



1.2 Parallel Programming Models

Basing on the architecture of the target systems, parallel programs can be written
using various programming models. For NOW systems with distributed memory,
Message Passing and Shared Memory are the standard parallel programming models,
and Remote Memory Access is an new model, which can complement Message Passing
model.

Message Passing Interface (MPI) [31, 44, 20] is the representative of Message Pass-
ing model. An MPI program creates multiple processes, with each process maintains
its local data. The processes are identified by a unique name, and processes cooperate
by sending and receiving messages to and from each others. Message Passing model
can offer scalability and good performance, however explicit communications make it
too complex to code for some applications.

Distributed Shared Memory (DSM) [23] provides a logically Shared Memory Model
over physically distributed memory systems. The processes in a DSM program share
a common address space. From programmers’ point of view, the advantage of this
model is that there is no need to specify communication explicitly. Therefore, DSM
can simplify program development. However, the performance of a DSM program is
hard to be deterministic, for that the locality of data is difficult to understand and
manage.

Combining advantages of both Message Passing and Shared Memory Models, Re-
mote Memory Access model simplifies program development while remains the con-
cept of local memory. MPI-2 (An extension to MPI) [19, 32] and A Portable Remote

Memory Copy Interface (ARMCI) [36] are two standards supporting RMA model.



1.3 Message Passing Interface-2

MPI is the de facto standard for writing parallel applications. As an extension
to MPI, MPI-2 introduces several new features. One-sided communication, dynamic
process management and parallel I/O are the major new functionalities of MPI-2.

In the traditional two-sided communication model, both parties must perform
matching communication operations (e.g., a send and a receive). In one-sided com-
munication model, a matching operation is not required from the remote party. All
parameters for the operation, such as source and destination buffers, are provided
by the initiator of the operation. One-sided communication model can support more
flexible communication patterns and improve performance in certain applications.

In MPI-2, dynamic process model allows processes to be created and terminated
after an MPI application has started. A new mechanism is added to establish commu-
nication between the newly created processes and the existing MPI processes. It also
includes a mechanism to establish communication between separately started MPI
processes.

Different from POSIX interface, MPI-2 parallel I/O interface is a high-level inter-
face that supports partitioning of file data among processes and a collective transfer
interface between process memories and files. Further efficiencies can be achieved by
supporting asynchronous I/0, strided accesses, and control over physical file layout

on storage devices.

1.4 Problem Statement

MPI-2 one-sided communication model decouples synchronization and data trans-

fer. Therefore, explicit synchronization is required to guarantee the completion of



data transfer functions. MPI-2 one-sided communication supports three data trans-
fer functions and two synchronization modes: active and passive. In active mode, the
target is actively involved in synchronization, whereas in passive mode, the target
node is not explicitly involved in synchronization.

To implement one-sided communication with active synchronization, the key is
to implement efficient data transfer functions. One common way to implement data
transfer functions in MPI-2 one-sided communication is to use existing MPI two-
sided communication operations such as send and receive. This approach has been
used in several popular MPI implementations, including the current MPICH2 [3] and
SUN MPI [11]. Although this approach can get good portability, it suffers from the
protocol overhead and progress dependence brought by two-sided communication.

To implement one-sided communication with passive synchronization, the most
important issue is to implement efficient passive synchronization functions. Most
implementations of MPI-2 passive one-sided communication are implemented based
on the thread based designs [11, 33, 34, 48, 30, 4]. The thread based design can
achieve good portability, because it is based on two-sided message passing, which is
supported by all platforms. However, thread based designs can not handle concurrent
communications well. Another problem of thread based designs is that since the
assisting thread keeps running at a target process, CPU cycles are consumed by the
thread even if there is no passive one-sided communication.

Recently, InfiniBand has entered the high performance computing market. In-
finiBand architecture supports Remote Direct Memory Access (RDMA) and remote

atomic operations. RDMA operations enable direct access to the address space of a



remote process and their semantics match quite well with MPI-2 one-sided commu-
nication. The remote atomic operations, which are also supported by InfiniBand at
hardware level, allow us to implement the synchronization algorithms designed for
shared memory environment to distributed private memory environment efficiently.

Therefore, in this work, we aim to provide answers to the following two questions:

1. Can we optimize the MPI-2 one-sided data transfer functions by using schemes

that leverage the RDMA operations in InfiniBand architecture?

2. Instead of using thread based designs, can we improve performance of passive
one-sided communication by using algorithms that take advantage of the remote

atomic operations in InfiniBand architecture?

The rest of this thesis is organized as follows. In Chapter 2 we provide an overview
of the InfiniBand Architecture and the various features it provides. We also take a look
at MPI-2 one-sided communication and the MPICH2 implementation of the MPI-2
standard for InfiniBand clusters. Chapter 3 focuses on the designs and performance
evaluation of MPI-2 one-sided data transfer functions and active synchronization
functions. In Chapter 4, after analyzing the design issues in implementing passive
synchronization functions, we show different designs for passive synchronization and

their performance. In chapter 5 we draw our conclusions and discuss future work.



CHAPTER 2

BACKGROUND

In this chapter we provide an overview of InfiniBand Architecture and the set of
features that can be utilized for the efficient implementation of one-sided communica-
tion. After that, we give a brief overview of MPI-2 one-sided communication model.
Then, we describe an MPI-2 implementation: MPICH2 [3]. As a background of later
work, we also explain how we implement MPICH2 over InfiniBand. Finally, we briefly

describe the related work.

2.1 InfiniBand Architecture

The InfiniBand Architecture (IBA) defines a switched network fabric for inter-
connecting processing nodes and I/O nodes. It provides a communication and man-
agement infrastructure for inter-processor communication and I/O. In an InfiniBand
network, processing nodes and I/O nodes are connected to the fabric by Channel
Adapters (CA). Channel Adapters usually have programmable DMA engines with
protection features. There are two kinds of channel adapters: Host Channel Adapter
(HCA) and Target Channel Adapter (TCA). HCAs sit on processing nodes. Their

semantic interface to consumers is specified in the form of InfiniBand Verbs. TCAs



connect I/O nodes to the fabric. Their interface to consumers are usually implemen-

tation specific and thus not defined in the InfiniBand specification.

Consumer Transactions,

Operations,etc
[ Consumer )4 ------------- REEREEEEEE >( Consumer ]
(IBA Operations)
Channel __| CeE ] CQE
Adapter j— p—
WQE{ 4 A
IBA Operations * A *
* * N (IBA Packets) — | |||
| _ — o
Transport (e g Transport
Layer — L o g Layer
Network IBA Packets o  Network
Layer Transport = Layer
£
Link Layer FRE Rela‘y y S Link Layer
Packet Packet Packet
Y Y Y
PHY Layer Port F’on Port PHY Layer
A A A A
Physical link Physical link
(Symbols) Fabric (Symbols)

Figure 2.1: InfiniBand Communication Architecture

Figure 2.1 shows the InfiniBand communication architecture. The communication
stack consists of different layers. The interface presented by Channel adapters to con-
sumers belongs to the transport layer. A queue-based model is used in this interface.
A Queue Pair in InfiniBand Architecture consists of two queues: a send queue and
a receive queue. The send queue holds instructions to transmit data and the receive
queue holds instructions that describe where received data is to be placed. Commu-
nication operations are described in Work Queue Requests (WQR), or descriptors,
and submitted to the work queue. Once submitted, a Work Queue Request becomes
a Work Queue Element (WQE). WQEs are executed by Channel Adapters. The

completion of work queue elements is reported through Completion Queues (CQs).



Once a work queue element is finished, a completion queue entry is placed in the
associated completion queue. Applications can check the completion queue to see if
any work queue request has been finished. InfiniBand also supports different classes
of transport services.

For communication, InfiniBand Architecture supports both channel and memory
semantics. In channel semantics, send /receive operations are used for communication.
To receive a message, the programmer posts a receive descriptor which describes where
the message should be put at the receiver side. At the sender side, the programmer
initiates the send operation by posting a send descriptor. The send descriptor de-
scribes where the source data is but does not specify the destination address at the
receiver side. When the message arrives at the receiver side, the hardware uses the
information in the receive descriptor to put data in the destination buffer. Multiple
send and receive descriptors can be posted and they are consumed in FIFO order.

The completion of descriptors are reported through CQs.

2.1.1 RDMA in InfiniBand Architecture

‘ Registered ‘

Registered
User-Level Buffer

User-Level Buffer

RDMA descriptor

Q. =

IB Fabric

Figure 2.2: InfiniBand Communication Architecture



InfiniBand also supports memory semantic operations, called Remote Direct Mem-
ory Access (RDMA). RDMA operations are one-sided and do not incur software over-
head at the other side. As shown in Figure 2.2, the sender (initiator) starts RDMA
by posting RDMA descriptors. A descriptor contains both the local data source ad-
dresses (multiple data segments can be specified at the source) and the remote data
destination address. At the sender side, the completion of an RDMA operation can
be reported through CQs. The operation is transparent to the software layer at the
receiver side. Since RDMA operations enable a process to access the address space of
another process directly, they have raised some security concerns. In InfiniBand ar-
chitecture, a key based mechanism is used. A memory buffer must first be registered
before they can be used for communication. Among other things, the registration
generates a remote key. This remote key must be presented when the sender initiates
an RDMA operation to access the buffer.

Compared with send/receive operations, RDMA operations have several advan-
tages. First, RDMA operations themselves are generally faster than send/receive
operations because they are simpler at the hardware level. Second, they do not in-
volve managing and posting descriptors at the receiver side, which incur additional
overheads and reduce the communication performance. However, if we use RDMA,
the destination address and protection key must be known beforehand.

RDMA operations include RDMA write and RDMA read:

1. RDMA Write is a memory semantic operation that allows a process to write
a virtually contiguous buffer on a remote node. This is a one-sided operation

that does not incur a software overhead at the remote host.
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2. RDMA Read is a memory semantic operation that allows a process to read a

virtually contiguous buffer on a remote node and write to a local memory buffer.
2.1.2 Atomic Operations in InfiniBand Architecture

Another emerging feature of InfiniBand Architecture is remote atomic operation.
Two 64-bit atomic operations are supported: Compare-and-Swap and Fetch-and-
Add. The Compare-and-Swap operation reads a 64-bit content from the memory in
an remote process, compares the content with the parameter (compare_value) of this
atomic operation, and puts the value of another parameter (swap_value) into the re-
mote memory if the two compared values are the same. The Fetch-and-Add operation
reads data from the remote memory, makes an addition operation between the data
and the parameter (add_value) of this atomic operation, and updates the result to the
remote memory. Both Compare-and-Swap and Fetch-and-Add operations bring back
the old value of the variable in the remote memory. As the name “atomic operation”
suggests, Compare-and-Swap and Fetch-and-Add operations are handled atomically,
and more importantly, they are processed by the processor on the HCAs, without the

intervention of CPU at the remote side.

2.2 MPI-2 One-Sided Communication

MPI-2 one-sided communication model, which is also called Remote Memory Ac-
cess model, allows only one side to provide all the information for the communica-
tion. Therefore, it allows programmers to use more flexible communication pattern
by avoiding matching send functions with receive functions.

We describe some terms commonly used in one-sided communication here. Then

we give a detailed explanation for it in both active and passive modes.
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Origin Process is the process that performs the one-sided communication func-
tions.

Target Process is the process in which the memory is accessed by an origin process
through one-sided communication functions.

Window is the memory area in target process to which an origin process can access
through the one-sided communication.

Three one-sided communication functions are defined in MPI-2 specification. They

are MPI_Put, MPI_Get and MPI_Accumulate. As showed in Figure 2.3:

Origin Target OoOrigin Target Origin Target

MPI_Put MPI Geot MPI_Accumulate

I ———
Q<’—>/

Figure 2.3: MPI-2 One-Sided Communication functions

MPI_Put is the function that transfers the data from an origin process to a window
at a target process.

MPI_Get is the function that transfers the data from a window at a target process
to an origin process.

MPI_Accumulate is the function that combines the data movement to a target
process with a reduce operation.

In MPI-2, explicit synchronization functions must be used to guarantee the com-

pletion of the communication functions. Synchronization functions are classified as

12



active and passive. The active synchronization involves both sides of communication
while passive synchronization only involves the origin side.
2.2.1 One-Sided Communication with Active Synchroniza-

tion

Origin Target
MPI_Win_post

MPIWin_start (...

one-sided
Access gommunications

Epoch xposure
Epoch

MPI_Win_completg -

T PMPI_Win_wai

Figure 2.4: MPI-2 One-Sided Communication with Active Synchronization

In Figure 2.4, we use an example to explain MPI-2 one-sided communication with
active synchronization. We can see that synchronization is achieved through four MPI
functions: MPI_Win_start, MPI_Win_complete, MPI_Win_post and MPI_Win_wait.
MPI_Win_post and MPI_Win_wait specify an exposure epoch in which other processes
can access a memory window in this process. MPI_Win_start and MPI_Win_complete
specify an access epoch in which the current process can use one-side communication
operations such as MPI_Put to access memory in the target process. Multiple opera-
tions can be issued in the access epoch to amortize the overhead of synchronization.
The completion of these operations are not guaranteed until the MPI_Win_complete

returns. The active synchronization can also be achieved through MPI_Win fence.

13



2.2.2 One-Sided Communication with Passive Synchroniza-
tion

Origin Target

MPI_Win_lock

one-sided

side
e mmt%
focess %
% -

PI_Win_unlock ...

Figure 2.5: MPI-2 One-Sided Communication with Passive Synchronization

Figure 2.5 shows an example of passive one-sided communication. The origin
process uses MPI_WIN_Lock to acquire the access control on the window in the target
process. Then, multiple one-sided communication functions can be issued from the
origin process to access the window protected by the lock, which the origin process
just acquires. Finally, the origin process calls MPI_WIN_Unlock, to guarantee the
completion of data transfer and release the lock.

As we can see, locks are used in passive one-sided communication model to pro-
tect accesses to target window. Only one window can be specified by these functions,
and one or multiple one-sided communication data transfer functions can be issued
to the target window between MPI_Win_lock and MPI_Win_unlock. Shared and ex-
clusive locks are provided by the two functions MPI_Win_lock and MPI_Win_unlock.
Accesses protected by an exclusive lock can not be concurrent at the window with
other accesses to the same widow, while accesses protected by a shared lock can be

14



concurrent at the window with other accesses protected by a shared lock to the same
window , but it can not be concurrent with other accesses protected by an exclusive
lock.

Close to a shared memory model, in passive one-sided communication model,
shared data can be accessed by all processes. Different origin processes can commu-
nicate with each other by accessing the same memory inside target window. Target
process can be different from these origin processes, in which case it is not explicitly

involved in the communication or the synchronization.

2.3 MPI-2 Implementation — MPICH2

MPICH [18] is developed at Argonne National Laboratory. It is one of the most
popular MPI implementations. The original MPICH provides supports for MPI-1
standard. As a successor of MPICH, MPICH2 supports not only MPI-1 standard, but
also functionalities such as dynamic process management, one-sided communication
and MPII/O, which are specified in MPI-2 standard. However, MPICH2 is not merely
MPICH with MPI-2 extensions. It is based on a completely new design, aiming to

provide more performance, flexibility and portability than the original MPICH.
2.3.1 MPICH2 Structure and RDMA Channel interface

One of the objectives in MPICH2 design is portability. To facilitate porting
MPICH2 from one platform to another, communication-related functionalities are
encapsulated in an interface call ADI3 (the third generation of Abstract Device Inter-
face). ADI3 contains a large number of functions and it is not a trivial task to port
it from one interconnect to another. To simplify the task, a smaller, channel-based

interface call CH3 (the third generation of the Channel interface) is introduced [41].
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CH3 has many of the performance advantages of ADI3 interface. However, it only
contains about a dozen functions and re-targeting it to a different communication
platform requires considerably less effort.

To take advantage of architectures with globally shared memory or RDMA capa-
bilities and further reduce the porting overhead, MPICH2 introduces another interface

called RDMA Channel interface below the CH3 interface.

|:| ------ MPICH2 Implementation over InfiniBand

MPI-2
ADI3
"""
e
e
.....
e
ot
CH3 Multi-Method
s
Socket SHMEM o
Sys V T
SHMEM Shared Memory InfiniBand

Figure 2.6: MPICH2 Implementation Structure

The hierarchical structure of MPICH2 , as shown in Figure 2.6, gives much flexibil-
ity to implementors. The three interfaces (ADI3, CH3, and RDMA Channel Interface)
provide different tradeoffs between communication performance and ease of porting.
Currently, there exist implementations based on all the three interfaces.

RDMA Channel interface is designed specifically for architectures with globally

shared memory or RDMA capabilities. It contains five functions, among which only
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two are central to communication. (Other functions deal with process management,
initialization and finalization.) These two functions are called put and get.

Both put and get functions accept a connection structure and a list of buffers as
parameters. They return to the caller the number of bytes that have been successfully
put or got. If the bytes completed is less than the total length of buffers, the caller

shall retry the same get or put operation later.

Put Get

— | AFO | —

] Put/Get Operations

Buffers

@)

—» Buffer Painters

Figure 2.7: Put and Get Operations

Figure 2.7 illustrates the semantics of put and get. Logically, a pipe is shared
between the sender and the receiver. The put operation writes to the pipe and the get
operation reads from it. The data in the pipe is consumed in FIFO order. Both op-
erations are non-blocking in the sense that they return immediately with the number
of bytes completed instead of waiting for the entire operation to finish.

Put and get operations can be implemented on architectures with globally shared
memory in a straightforward manner. Figure 2.8 shows one example. In this imple-
mentation, a shared buffer (organized logically as a ring) is placed in shared memory,
together with a head pointer and a tail pointer. The put operation writes the buffer
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Figure 2.8: Put and Get Implementation with Globally Shared Memory

to the shared buffer and adjust the head pointer. The get operation involves reading
from the shared buffer and adjusting the tail pointer. In the case of buffer overflow
or underflow (detected by comparing head and tail pointers), the operations return

immediately and the caller will retry them.

2.3.2 MPICH2 Implementation over InfiniBand

Because of the the hierarchical structure of MPICH2, we can port MPICH2 to In-
finiBand cluster by implementing RDMA Channel Interface with the communication
operations supported by InfiniBand.

In our previous work [27], we present a study of using RDMA operations to im-
plement MPICH2 over InfiniBand. Our work takes advantage of the RDMA Channel
interface provided by MPICH2.

As we mentioned above, the RDMA Channel interface provides a very small set of
functions to encapsulate the underlying communication layer upon which the whole
MPICH2 implementation is built. Consisting of only five functions, the RDMA Chan-

nel Interface is easy to implement for different communication architectures. However,
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the question arises whether this abstraction is powerful enough so that one can still
achieve good performance.

Our study has shown that the RDMA Channel interface still provides the imple-
mentors with much flexibility. With optimizations such as piggybacking, pipelining
and zero-copy, MPICH2 is able to deliver good performance to the application layer.
For example, one of our designs achieves 7.6us latency and 857MB /s peak bandwidth,

which come quite close to the raw performance of InfiniBand.

2.4 Related Work

Besides MPI-2, there are other programming models that uses one-sided commu-
nication. Some of the examples are ARMCI [36], BSP [17] and GASNET [10]. These
programming models use one-sided communication as the primary communication
approach while in MPI, both one-sided and two-sided communication are supported.

There have been studies regarding implementing one-sided communication in
MPI-2. Similar to the current MPICH2, work in MPI-SUN [11] describes an im-
plementation based on MPI two-sided communication. MPI-2 one-sided communica-
tion has also been implemented by taking advantage of globally shared memory in
some architectures such as NEC SX [24]. For distributed memory systems, some of
the existing studies, such as Fujitsu MPI, MPICH-SCI, LAM/MPI over VIA, have
exploited the ability of remotely accessing another process’s address space provided
by the interconnect to implement MPI-2 one-sided operations [4, 48, 7]. For passive
synchronization functions, most implementations mentioned above are implemented
based on thread based designs [11, 33, 34, 48, 30, 4]. Work in [24, 29] describe a non-

threaded NEC MPI/SX implementation of MPI-2 passive one-sided communication,
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where the progress engine takes charge of performing synchronization. This design
does not satisfy the requirements we have defined in Section 3. The latest version of
LAM/MPI [26] supports a part of MPI-2 functions that do not include the passive
one-sided communication yet.

In this thesis, our target architecture is InfiniBand, which provides very flexible
RDMA as well as atomic operations. We focus on the performance improvement
of using these operations compared with the send/receive based approach for data
transfer and the thread based approach for synchronization.

Work in [16] provides a performance comparison of several existing MPI-2 im-
plementations. They have used a ping-pong benchmark to evaluate one-sided com-
munication. However, their results do not include the MPICH2 implementation.
In our work, we focus on MPICH2 and introduce a suite of micro-benchmarks which
provide a more comprehensive analysis of MPI-2 one-sided operations, including com-
munication and synchronization performance, communication/computation overlap,

dependency on remote process and scalability.

2.5 Summary

In this chapter we provided an overview of the features and architecture of Infini-
Band based clusters. We also provided an overview of the MPI-2 One-Sided Com-
munication model. We described the architecture of MPICH2, an implementation of
MPI-2, and show how we implement it over InfiniBand. Finally, we briefly introduce

the related work about one-sided communication and our contribution.
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CHAPTER 3

MPI-2 ONE-SIDED COMMUNICATION WITH ACTIVE
SYNCHRONIZATION

3.1 Motivation

One common way to implement MPI-2 one-sided communication is to use existing
MPI two-sided communication operations such as MPI_Send and MPI_Recv. This ap-
proach has been used in several popular MPI implementations, including the current
MPICH2 and SUN MPI [11]. Although this approach can improve portability, it has

some potential problems:

e Protocol overhead: Two-sided communication operations incur many overheads
such as memory copy, matching of send and receive operations and handshake
in Rendezvous protocol. These overheads decrease communication performance

for one-sided communication.

e Dependency on remote process: The communication progress of one-sided com-
munication operations are dependent on the remote process in this approach. As

a result, process skew may significantly degrade communication performance.

As we have introduced, InfiniBand architecture supports Remote Direct Memory
Access (RDMA). RDMA operations enable direct access to the address space of a
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remote process and their semantics match quite well with MPI-2 one-sided commu-
nication. In our recent work [27], we have proposed a design which uses RDMA
to implement MPI two-sided communication. However, since its MPI-2 one-sided
communication operations are implemented on top of two-sided communication, this
implementation still suffers from the problems mentioned above.

Therefore, we want to see if we can optimize the MPI-2 one-sided communication
with active synchronization by using the design that leverages the RDMA operations
in InfiniBand architecture instead of using the existing MPI point-to-point operations.

3.2 Send/Receive Based MPI-2 One-Sided Communication
Design

As we have mentioned, MPI-2 one-sided communication can be implemented us-
ing MPI two-sided communication operations such as MPI_Send, MPI_Recv and their
variations (MPI Isend, MPI Irecv, MPI_Wait, etc.). (In the following discussions, we
use “send” and “receive” to refer to different forms of MPI_Send and MPI_Recv,
respectively.) We call this send/receive based approach. The current MPICH2 im-
plementation uses such an approach. In this section, we will discuss MPICH2 as

an implementation example of one-sided communication. The discussion is based on

MPICH2 over InfiniBand (MVAPICH2)' [27].
3.2.1 Communication Operations

For the MPI_Put operation, the origin process first sends information about this
operation to the target. This information includes target address, data type informa-

tion, etc. Then the data itself is also sent to the target. After receiving the operation

1The current MVAPICH2 implementation is based on MPICH2 version 0.96p1. MVAPICH?2 is
available from [37].
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information, the target uses another receive operation for the data. In order to per-
form the MPI_Get operation, first the origin process sends a request to the target,
which informs it the data location, data type and length. After receiving the request,
the target process sends the requested data to the origin process. The origin finishes
the operation by receiving the data to its local buffer. For MPI_Accumulate, the
origin process uses a similar approach to send the data to the target process. Then
the target receives the data and performs a local reduce operation.

The send /receive based approach has very good portability. Since it only depends
on MPI two-sided communication, its implementation is completely platform inde-
pendent. However, it also has many drawbacks. First, it suffers from high protocol
overhead in MPI send/receive operations. For example, MPI send/receive operations
use Rendezvous protocol for large messages. In order to achieve zero-copy, the current
MPICH2 uses a handshake in the Rendezvous protocol to exchange buffer addresses.
However, since in one-sided communication, target buffer address information is avail-
able at the origin process, this handshake is unnecessary and brings degradation of
communication performance. In addition, MPI send/receive may involve other over-
heads such as send/receive matching and extra copies.

Since the target is actively involved in the send/receive based approach, the over-
head at the target process increases. The target process may become a performance
bottleneck because of this increased overhead.

The send/receive based approach also makes the origin process and the target
process tightly coupled in communication. The communication of origin process de-
pends heavily on the target to make progress. As a result, process skew between the

target and the origin may significantly degrade communication performance.
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Figure 3.1: Send/Receive Based One-Sided Communication Implementation

3.2.2 Active Synchronization Operations

In MPI-2 one-sided communication, synchronization can be done using MPI_Win _start,
MPI_Win_complete, MPI_Win_post and MPI_Win_wait. At the origin side, commu-
nication is guaranteed to finish only after MPI_Complete. Therefore, implementors
have a lot of flexibility with respect to when to carry out the actual communication. In
the send/receive based approach, communication involves both sides. Since the infor-
mation about the communication is only available at the origin side, the target needs
to be explicitly informed about this information. One way to address this problem in
send /receive based approaches is to delay communication until MPT_Win_complete.

Within this function, the origin sends information about all possible operations. In
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MPI_Win_wait, the target receives this information and takes appropriate actions.
An example of send/receive based implementation is shown in Figure 3.1.

Delayed communication used in send/receive based approach allows for certain
optimizations such as combining of small messages to reduce per-message overhead.
However, since the actual communication does not start until MPI_Complete, the
communication cannot be overlapped with computation done in the access epoch.
This may lead to degraded overall application performance.

In the current MPICH2 design, the actual communication starts when there are
enough one-sided communication operations posted to cover the cost of synchroniza-
tion. This design can potentially take advantage of the optimization opportunities
in delayed communication and also allow for communication/computation overlap.
However, since one-sided communication is built on top of send/receive, the actual
overlap depends on how the underlying send/receive operations are implemented. In
many MPI implementations, sending/receiving a large message goes through Ren-
dezvous protocol, which needs host intervention for a handshake process before the
data transfer. In these cases, good communication/computation overlap is difficult

to achieve.

3.3 RDMA Based MPI-2 One-Sided Communication Design

As we have described, one-sided communication in MPICH2 is currently imple-
mented based on send/receive operations. Therefore, it still suffers from the limita-
tion of the two-sided communication design even though the MVAPICH?2 [27]. In this
section, we discuss how to utilize InfiniBand features such as RDMA operations to

address these potential problems.
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Figure 3.2: Design Architecture

MPICH2 has a flexible layered architecture in which implementations can be done
at different levels. Our MVAPICH2 implementation over InfiniBand [27] [37] was
done using the RDMA Channel Interface. However, this interface currently does not
provide us with direct access to all the RDMA and atomic functions in InfiniBand.
To address this issue, we use a customized interface CH3 extension to expose these
functionalities to the upper layer and implement our design directly over this interface.

The basic structures of our design and the original design are shown in Figure 3.2.
3.3.1 Communication Operations

We implement the MPI_Put operation with RDMA write. Through exchanging
memory addresses at window creation time, we can keep record of all target memory
addresses on all origin processes. When MPI_Put is called, an RDMA write operation

is used, which directly transfers data from memory in the origin process to remote
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memory in the target process, without involving the target process. The MPI_Get
operation is implemented with the RDMA read operation in InfiniBand. Based on
InfiniBand RDMA and atomic operations, we have designed the accumulate operation
as follows: The origin fetches the remote data from target using RDMA read, performs
a reduce operation, and updates remote data by using RDMA write. Since there may
be more than one origins, we use the Compare-and-Swap atomic operation to ensure
mutual exclusive access.

By using RDMA, we can avoid protocol overhead of two-sided communication.
For example, the handshake in Rendezvous protocol is avoided. Also, the matching
between send and receive operations is no longer needed. So the overhead associated
with unexpected/expected message queue maintenance, tag matching and flow control
is eliminated.

More importantly, the dependency on remote process for communication progress
is reduced. Unlike the send/receive based approach, using RDMA operations directly
does not involve the remote process. Therefore, the communication can make progress
even when the remote process is doing computation. As a result, our implementation
suffers much less from process skew. Moreover, our design exploiting RDMA op-
erations can make implementation of passive one-sided communication much easier

because the target is not required to respond to one-sided communication operations.
3.3.2 Event Driven Accumulate Operations

One potential problem in RDMA based design is that an accumulate operation
needs to fetch the remote operand and then write back the result, while in send /receive

based design, an accumulate operation only transfers the local operand to remote
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Figure 3.3: Event Driven Accumulate Operation

process. If the size of operand is large, this may cause significant overhead. Here we
investigate an event driven based solution to see if it can optimize the performance
of accumulate operation.

As we have mentioned in the background chapter, InfiniBand provides both chan-
nel and memory semantics. By using channel semantics, one process can generate
a signal at a remote process. Also, InfiniBand HCA supports event handlers, which
can be driven by signal.

Combining these features, we propose an event driven based design for accumulate
operation. As shown in Figure 3.3, at the very beginning, a pre-defined event handler
which can handle reduction functions is registered to HCA, and a receive descriptor
is also posted. If a process wants to execute an accumulate operation on a remote

process, it first posts a send descriptor matching with the pre-post receive descriptor
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at the remote party, to trigger the preregistered function. Then it sends the local
operand to the remote party trough RDMA Write. Then the function at the remote
side will execute reduce operation, and update the local memory. At the end, an
acknowledgment message must be sent back to indicate the completion of accumulate
function.

As we will see, Event Driven Accumulate Operation can achieve better perfor-
mance when the size of the operand is very large. More details will be discussed

later.
3.3.3 Active Synchronization Operations

In some send/receive based designs, actual communication is delayed until MPI
_Win_complete is called. In our design, the one-sided communication will start as soon
as the post operation is called. In our implementation, the origin process maintains
a bit vector. Each bit represents the status of a target. A target uses RDMA write
to change the corresponding bit. By checking the bits, the origin process can get
synchronization information and start communications.

Targets can not leave MPI_Win_wait until communication has been finished. There-
fore origin processes need to inform the targets after they have completed commu-
nication. For this purpose we also use RDMA write to achieve better performance.
Before leaving the MPI_Win_wait operation, the targets check to make sure all origin
processes have completed communication. An example of this RDMA based imple-

mentation is shown in Figure 3.4.
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Figure 3.4: RDMA Based One-Sided Communication Implementation

3.3.4 Other Design Issues

By using RDMA, we potentially can achieve better performance. However, it also
introduces several design challenges.

An important issue we should consider in exploiting RDMA operations is the
memory registration. Before performing any RDMA operation, both source and des-
tination data buffers need to be registered. The memory registration is an expensive
operation. Therefore, it can degrade communication performance significantly if done
in the critical path. All memory buffers for the one-sided communication on the tar-
get processes are declared when the window is created. Thus, we can avoid memory
registration overheads by registering the memory buffers at the window creation time.

For memory buffers at the origin side, pin-down cache [21] is used to avoid registration
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overhead for large messages. For small messages, we copy them to a pre-registered
buffer to avoid registration cost.

Another important issue is to handle user-defined data type. The original ap-
proach requires data type processing at the target side. With RDMA operations,
we can avoid this overhead by initiating multiple RDMA operations. Currently, our
design only deals with simple data types. For complicated non-contiguous data types,

we fall back on the original send/receive based implementation.

3.4 Performance Evaluation

In this section, we perform a set of micro-benchmarks to evaluate the performance
of our RDMA based MPI-2 one-sided communication design and compare them with
the original design in MPICH2. We have considered various aspects of MPI-2 one-
sided communication such as synchronization overhead, data transfer performance,
communication and computation overlap, dependency on remote process and scala-

bility with multiple origin processes.
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We focus on active one-sided communication in the performance evaluation. Our
tests use MPI_Win_start, MPI_Win_complete, MPI_Win_post and MPI_Win_wait func-
tions for synchronization. However, most of the conclusions in this section are also

applicable to programs using MPI_Win_fence.
3.4.1 Experimental Testbed

Our experimental testbed consists of a cluster system with 8 SuperMicro SUPER
P4DL6 nodes. Each node has dual Intel Xeon 2.40 GHz processors with a 512K
L2 cache and a 400 MHz front side bus. The machines are connected by Mellanox
InfiniHost MT23108 DualPort 4X HCA adapter through an InfiniScale MT43132
Eight 4x Port InfiniBand Switch. The HCA adapters work under the PCI-X 64-bit
133MHz interfaces. We used the Linux Red Hat 7.2 operating system with 2.4.7

kernel. The compilers we used were GNU GCC 2.96 and GNU FORTRAN 0.5.26.
3.4.2 Latency

For MPI two-sided communication, a ping-pong latency test is often used to char-
acterize its performance. In this subsection, we use a similar test for MPI-2 one-side
communication. The test consists of multiple iterations using two processes. Each
iteration consists of two epochs. In the first epoch, the first process does an MPI_Put
operation. In the second epoch, the second process does an MPI_Put operation. We
then report the time taken for each epoch.

Figure 3.5 compares the ping-pong latency of our RDMA based design with the

original MPICH2. We can see that the RDMA based approach can improve the
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latency. For small messages, it reduces latency from 15.6us to 12.6us (19% improve-
ment). For large messages, since the handshake in Rendezvous protocol is avoided,

it also gives better performance. The improvement is up to 17us.

45 — ,
Original —+— i

40 RDMA A

Two-Sided -

e
7 30| ,
o 25t -
IS X
20 ¢ %
e e A
15 |

10 B i S ¥

4 16 64 256 1024 4096
Message Size (Bytes)

Figure 3.6: Bi-Directional Latency

A bi-directional latency test is often used to compare the performance of one-sided
communication to two-sided communication. In this test, both sides send a message
to the other side. In the one-sided version, the test is done using MPI_Put and
MPI_Win _fence. In the two-sided version, the test is done using MPI_Isend, MPI_Irecv
and MPI_Waitall. Figure 3.6 shows the performance results. We can observe that for
very small messages, two-sided communication performs better because it does not
use explicit synchronization. For one-sided communication, our RDMA based design
always performs better than the original design. For messages larger than 4KB, it

even outperforms two-sided communication.
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3.4.3 Bandwidth

In applications using MPI-2 one sided operations, usually multiple communication
operations are issued in each epoch to amortize the synchronization overhead. Our
bandwidth test can be used to characterize performance in this scenario. This test
consists of multiple epochs. In each epoch, W MPI_Put or MPI_Get operations are
issued where W is a pre-defined burst size.

Figures 3.7 and 3.8 show the bandwidth results of MPI_Put and MPI_Get with
a burst size( W) of 16. We can see that the RDMA based approach always performs
better for MPI_Put. The improvement can be up to 77% for certain message size.
For 256KB messages, it delivers a bandwidth of 865MB/s. (Note that unless stated
otherwise, the unit MB in this paper is an abbreviation for 10° bytes.)

However, we also observe that the RDMA based approach does not perform as well
as the original approach for MPI_Get with small messages. This is because RDMA
read is used in our new design for MPI_Get while the original approach uses RDMA
write. The bandwidth drop is due to the performance difference between InfiniBand

RDMA read and RDMA write.
3.4.4 Synchronization Overhead

In MPI-2 one-sided communication, synchronization must be done explicitly to
make sure data transfer has been finished. Therefore, the overhead of synchronization
has great impact on communication performance. To characterize this overhead, we
use a simple test which calls only MPI-2 synchronization functions (MPI_Win_start,

MPI_Win_complete, MPI_Win_post and MPI_Win_wait) for multiple iterations.
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Figure 3.9 shows the time taken for each iteration for the original design and
our RDMA based design. We can see that our new design slightly reduces synchro-
nization time. When there is one origin, synchronization time is reduced from 16.52
microseconds to 14.78 microseconds (13% improvement). This is because we use In-
finiBand level RDMA operations instead of calling MPI send and receive functions
for synchronization. We have also done the test for one origin process with multiple

target processes and the results are similar to Figure 3.9.
3.4.5 Communication/Computation Overlap

As we have mentioned, by using RDMA, we can possibly achieve better over-
lapping of communication and computation, which may lead to improved application
performance. In this subsection, we have designed an overlap test to measure the abil-
ity to overlap communication and computation for different one-sided communication

implementations.
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Figure 3.10: Overlap Test Results

The overlap test is very similar to the bandwidth test. The difference is that we
have inserted a number of computation loops after each communication operation.
Each computation loop increases a counter for 1,000 times. Figure 3.10 shows how
the average time for one iteration of the test changes when we increase the number
of computation loops for 64KB messages. We can see that the RDMA based design
allows overlap of communication and computation and therefore its performance is
not affected by increasing computation time. However, the original design shows

lower performance when the computation increases.
3.4.6 Impact of Process Skew

As we have discussed, one of the advantages of using InfiniBand RDMA to imple-
ment MPI-2 one-sided communication is that the communication can make progress
without depending on the target process. Therefore, skew between the origin and the

target process will have less impact on the communication performance. Our process
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Figure 3.11: Process Skew Test Results

skew test is based on the bandwidth test. Process skew is emulated by adding dif-
ferent number of computation loops (with each loop increasing a counter for 10,000
times) between MPI_ Win_post and MPI_Win_wait in the target process.

Figure 3.11 shows the performance results for 64KB messages. We can see that
process skew does not affect the RDMA based approach at all. However, the perfor-

mance of the original design drops significantly with the increase of process skew.
3.4.7 Performance with Multiple Origin Processes

Scalability is very important for MPI-2 designs. In MPI-2 one-sided communica-
tion, it is possible for multiple origin processes to communicate with a single target
process. Figure 3.12 shows the aggregated bandwidth of all origin processes in this
scenario. Here we use 64KB as message size and 16 as burst size (W). We should
note that the aggregated bandwidth is limited by the PCI-X bus at the target node.

We can observe that since the RDMA based design incurs very little overhead at the
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target process, it reaches a peak bandwidth of over 920MB/s even with a small num-

ber of origin processes. The original design can only deliver a maximum bandwidth

of 895MB/s.
3.4.8 Performance of Accumulate Operation

As we mentioned above, event driven accumulate operation can avoid moving the
result of the reduce function. Figure 3.13 shows the time spent on one accumulate
operation with different operand sizes. We can see that the event driven accumu-
late operation outperforms RDMA based accumulate operation when the number of
integers in the operand is larger than 512 (2k Bytes). The reason for such a large
crosspoint is that currently, it takes around 20 microseconds to trigger a preregistered

function, and the acknowledgment message also takes some time.
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3.5 Summary

In this chapter, we have proposed a design of MPI-2 one-sided communication
with active synchronization over InfiniBand. This design eliminates the involvement
of targets in one-sided communication completely by utilizing InfiniBand RDMA op-
erations. Through performance evaluation, we have shown that our design can achieve
lower overhead and higher communication performance. Moreover, experimental re-
sults have shown that the RDMA based approach allows for better overlap between
computation and communication. It also achieves better scalability with multiple

number of origin processes.
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CHAPTER 4

MPI-2 ONE-SIDED COMMUNICATION WITH PASSIVE
SYNCHRONIZATION

We have previously implemented MPI-2 active mode one-sided communication
using DMA-based communication. In this chapter we extend this implementation
to allow passive mode one-sided communication. The main challenge in extending
active mode to passive mode is in designing an efficient synchronization mechanism,
which allows one-sided operations to be performed at the target node independently
of what the target process is doing.

We implement and evaluate four designs for passive mode synchronization. Since
thread based design has been used in some MPI implementations, such as [11] and [34],
to support MPI-2 one-sided communication, we do a complete study to examine
thread based designs for passive synchronization functions. First, we use a dedi-
cated thread, which uses a separate thread at the target process to handle incoming
one-sided operations. We also evaluated a thread-based design using event driven
blocking. In this design, we use the event handler and completion signal features of
InfiniBand to allow the thread to block while idle to reduce its CPU utilization.

In the other two designs we use the remote atomic memory operations provided

by InfiniBand. InfiniBand provides remote atomic Compare&Swap and Fetch&Add
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operations. Many algorithms have been proposed for synchronization functions in
shared memory machines. ”Test and Set” may be the most widely used algorithm.
Another algorithm is the MCS [25] algorithm proposed by John Mellor-Crummey
and Michael Scott, which has been thought of as a classic scalable synchronization
algorithm for shared memory multiprocessors platform. We evaluate designs based
on these two algorithms.

All these designs are implemented in our MPI-2 implementation over InfiniBand,
MVAPICH2 [27], which is based on MPICH2 developed by Argonne National Labo-
ratory [3].

4.1 Design Efficient MPI-2 Passive One-Sided Communica-
tion

In this section we discuss the challenges in implementing efficient MPI-2 passive
one-sided communication. Then in the following two sections, we will describe thread
based designs and atomic operations based designs for passive one-sided communica-
tion.

Synchronization Performance: When the contention for synchronization func-
tions is low, low synchronization overhead is important for overall performance. When
the contention is high, low synchronization delay is also desirable. At the same time,
the number of messages exchanged for synchronization functions should be small.

Independent Progress: In MPI-2 passive one-sided communication, target pro-
cess does not make any MPI call to cooperate with origin process for communication
or synchronization. Therefore, the implementation can not rely on calling progress
engine in MPI functions, which is the strategy commonly used for two-sided commu-
nication.
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Handle Concurrent Communication: In MPI-2, one-sided communication
and two-sided communication may happen concurrently. The one-sided communica-
tion from different origin processes to disjoint windows at a target process may also
happen concurrently. Hence we need to handle this situation in our design.

Non-blocking MPI Win lock(): When MPI Win lock() is called if the lock
at the target process is held by other processes, lock can not be acquired until the
lock is released. Non-blocking MPI_Win_lock allows the current process to continue
without waiting for the lock. However, the lock must be acquired before the first
communication operation takes effect.

Shared Lock and Exclusive Lock: In MPI-2, both shared lock and exclusive
lock are supported.

Utilize RDMA for Data Transfer: As we concluded in the last chapter, Mod-
ern network interfaces, such as InfiniBand, offer RDMA based operations, which can
be utilized for high performance data transfer in one-sided communication. Therefore,
synchronization mechanisms must work correctly with RDMA based communication
implementation.

In following sections, we address these issues and describe thread-based and atomic

operation-based designs for MPI-2 passive mode synchronization.

4.2 Thread Based Designs

Thread based design is widely used in MPI implementations to support one-sided
communication. In our MPI-2 implementation over InfiniBand, we use RDMA feature
to transfer data, while we still use a thread running at target process to handle

some special cases such as non-contiguous data transfer and accumulate function.
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Therefore, we would like to examine whether we can use this thread to handle passive

synchronization efficiently or not.

main main

thread
e . thread
assisting

thread
create MPI_Win_create

thread

MPI_Win_lock

Tecejye

e

One-Sideq
Communication

Tecejye
\. Join thread

MPI_Win_unlock]|

MPI_Win_free

Figure 4.1: Dedicated Thread Based Design

4.2.1 Dedicated Thread Based Design

As shown in Figure 4.1, in Dedicated Thread Based design, an assisting thread
runs at the target side in a dedicated manner, and handles all passive synchronization
requests from origin processes. To achieve low latency, the thread is always active
and uses polling to process communication. The characteristics of the thread guaran-
tees the independent progress of synchronization process. Since before using RDMA
operations to transfer data, we need to know when the lock is acquired, a round-trip
time is used to acquire a lock, and another control message is used to release the
lock. To implement non-blocking MPI_Win_lock(), after starting the lock request,

origin process continues its work. Since in thread based design, target process knows
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whether the request message is for shared lock or exclusive lock, target process can
coordinate between shared lock requests and exclusive lock requests to support both
of them. In this implementation, passive synchronization messages and two sided
messages are handled by different threads. Therefore, mutual exclusion mechanisms
are needed before MPICH2 eventually becomes thread safe.

The dedicated thread based design can achieve good portability, because it is
based on two-sided message passing, which is supported by all platforms. However,
there are some shortcomings in its performance. One problem is related to concurrent
communication. In addition to concurrent two-sided communication, one-sided com-
munication can also happen concurrently with one-sided communication. When there
are multiple windows at a target process, different origin processes may access them,
hence using a single thread does not allow concurrent accesses. A simple solution is to
use multiple threads, one thread per window. However, in the thread based designs,
as long as all the threads are sharing the same progress engine, the time spent on the
progress engine can not be overlapped, due to locking. Therefore, compared with the
dedicated thread based design, using multiple threads can not improve performance.
Performance of using multiple threads will be shown in Section 4.4. Another problem
is that since the dedicated thread keeps running at a target process, CPU cycles are
consumed by the thread even if there is no passive one-sided communication. In the

next section, we introduce event driven based design to solve this problem.
4.2.2 Event Driven Based Design

As we showed in last chapter, we can use event driven feature to optimize accumu-

lation operation. Here we propose an event driven based design to reduce the CPU
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utilization of thread. At the very beginning, a pre-defined event handler which can
resume a blocked thread, is registered to HCA. When the assisting thread is created,
the process posts a receive operation and blocks the thread. If a process wants to
communicate with a remote process, it first posts a send operation matching with the
pre-post receive operation at the remote party, to generate a signal. Then the event
will wake up the thread. The remaining steps are similar to dedicated thread based
design. Finally, before the thread is blocked again, another receive operation will be
posted.

In the event driven based design, a thread can be blocked while idle to reduce
the CPU utilization. However, compared with the dedicated thread based design,
extra time is spent on generating the signal and waking up the thread. Performance

numbers of the event driven based design will be shown in section 4.4.

4.3 Atomic Operation Based Design

As we described, hardware level remote atomic operations are supported in Infini-
Band. This gives us the opportunity to exploit some well known algorithms proposed
for shared-memory synchronization. In this section, we present two designs based on
“Test&Set” and MCS lock algorithms.

By using hardware level atomic operations, there is no control messages between
the origin process and the target process for the passive synchronization functions
any more. Therefore, the assisting thread at the target process is not needed to make
progress for the communication of control messages.

Eliminating the assisting thread can significantly reduce CPU utilization, while

we also lose the support of send/receive based one-sided communication, which is
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relying on the assisting thread to make progress. Our solution is to use the RDMA
based designs, which has been introduced in the last chapter. In some special cases,
such as transferring data with datatype, the assisting thread could be beneficial. This

would be a direction to explore in the future.

. main
main -
thread NIC thread

Compare & allocate | MPI_Win_create
MPI_Win_lock Swap (0,-1) Tock
One-Sided
Compare &
Swap (-1,0)
MPI_Win_unlock \
- | free | MPL Win_free
T ock

Figure 4.2: Test and Set” Algorithm

4.3.1 Test&Set Based Design

In this algorithm, a flag is used to indicate whether the lock is held or not. As
shown in Figure 4.2, to acquire a lock, a processor makes effort to change the flag from
false to true by executing a ”Test and Set” instruction. A processor releases the lock
by changing the flag back to true. To build up the MPI-2 synchronization functions
with “Test and Set” lock algorithm, we can use the atomic operation Compare-and-

Swap.
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Since the atomic operations are handled by HCA and the MPI library at target
process is not involved, the progress of passive synchronization is independent of
the progress of the target process. To utilize RDMA for data transfer, when the
Compare-and-Swap for acquiring lock succeeds, the process can start using RDMA
to transfer data. To implement nonblocking MPI Win_lock, a process only issues
the first Compare-and-Swap operation in MPI_Win lock(), without waiting for its
success. The waiting is delayed until the first communication operation.

We can easily extend Test&Set algorithm to support both shared lock and exclu-
sive lock, by checking the value returned by Compare-and-Swap operation. To request
an exclusive lock, a process uses one or multiple Compare-and-Swap operations with
compared_value 0 and swap_value -1 to get the lock. To requests a shared lock, a pro-
cess uses one Compare-and-Swap operation with compared_value 0 and swap_value 1.
If it succeeds, the process acquires the lock. Otherwise, following Compare-and-Swap
operations will be issued with compared_value equal to the last returned value and
swap_value equal to that of the value plus one. To release the control, a process can
use a Fetch-and-Add operation to increase(exclusive lock) or decrease(shared lock)
the value of the flag.

The problem of “Test and Set” based design is the high network traffic caused
by repeated issue of Compare-and-Swap operations. Using an exponential back off

mechanism can alleviate this problem.
4.3.2 MCS Based Design

MCS is proposed as a scalable synchronization algorithm for shared memory mul-

tiprocessors platform [25]. The main idea of MCS is to maintain a distributed queue
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Figure 4.3: MCS Algorithm

for processes that are competing for the lock. Scalability is achieved by avoiding
spinning on the remote memory.

For each window, each origin process maintains three data structures: flag, pre-
wous and nert, and each target process maintains one data structure, called lock.
When an origin process A requests for the lock on the target process, it swaps its
process id with the value of lock,which is indicated by line 1 in Figure 4.3. Then an
origin process B requests for the same lock by swapping (indicated by line 2). Based
on the value swapped back, the origin process B knows that the origin process A is
queued before it. Thus, it updates the value of next in origin process A (indicated
by line 3). When the origin process A releases the lock, basing on the value of nezt,
origin process A updates the value of flag in the origin process B (indicated by line 4).

Finally, when the origin process B releases the lock, it resets lock at target process to

49



null (indicated by line 5). We use Compare-and-Swap to update the data with atomic
requirement and use RDMA Write to update the data without this requirement.
Compared with other atomic operation based synchronization algorithms, MCS
has advantage in terms of scalability. However, since InfiniBand does not support
atomic Swap operation, emulating it with Compare-and-Swap operations will lose
its advantage. In Section4.4, we will show that when there are multiple processes
competing for the same lock, the number of messages exchanged in MCS based design

is no longer constant.

4.4 Performance Evaluation

The performance of MPI-2 passive synchronization functions can be evaluated
with respect to the following metrics.

1) Synchronization Overhead: Time spent on synchronization functions.

2) Synchronization Delay: Amount of time required after one origin process
releases a lock on a remote window and another origin process acquires the same lock.

3) Concurrency: The capability to handle multiple concurrent passive synchro-
nization functions.

4) Message Complexity: The number of messages exchanged for synchroniza-
tion functions.

5) CPU Utilization: The CPU cycles involved in the synchronization process.

The relationship between synchronization performance and CPU cycles used.

4.4.1 Experimental Testbed

Our experimental testbed consists of a cluster of 8 SuperMicro SUPER X5DL&-

GG nodes, each with dual Intel Xeon 3.0 GHz processors, 512 KB L2 cache, PCI-X
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64-bit 133 MHz bus, and connected to Mellanox InfiniHost M'T23108 DualPort 4x
HCAs. The nodes are connected using the Mellanox InfiniScale 24 port switch MTS
2400. The kernel version used is Linux 2.4.22smp. The InfiniHost SDK version is
3.0.1 and HCA firmware version is 3.0.1. The Front Side Bus (FSB) runs at 533MHz.

The physical memory is 1 GB of PC2100 DDR-SDRAM memory.
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Figure 4.4: Synchronization Overhead

4.4.2 Synchronization Overhead

In this subsection, we use a simple approach to measure synchronization over-
head. In this test, one process calls only MPI-2 passive synchronization functions
(MPI_Win_lock and MPI_Win_unlock) on a window at the other process for multi-
ple iterations. We then report the time taken for each iteration. Figure 4.4 shows
the synchronization overhead for all the four designs. We also report time spent on

lock acquiring and time spent on lock releasing separately. We can see that “Test
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and Set” based design shows the best performance with around 12.83 microseconds.
Releasing a lock is cheaper for this design because processes do not need to wait for
the completion of unlock. We also see that using a dedicated thread can achieve bet-
ter performance than using atomic operations with MCS. The event driven approach

shows the worst performance.
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Figure 4.5: Synchronization Delay

4.4.3 Synchronization Delay

Synchronization Delay is the delay between one origin process releasing a lock
on a remote window and another origin process acquiring the same lock. It is an
important performance metric for lock algorithm, especially when the competition
between different origin processes for a given lock is heavy. The test for measuring
synchronization delay consists of multiple iterations, using two origin processes and

one target process. In the even numbered iterations, origin process 1 requests lock
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earlier than origin process 2, and in the odd numbered iterations, origin process 2
requests lock earlier than origin process 1. After acquiring the lock, each process holds
the lock for time E, and then releases the lock. The value of E we used is always
longer than the synchronization overhead of all designs. As we can see in Figure 4.5,
the designs based on atomic operations out performs thread based designs. The MCS
based design shows the best synchronization delay because locks can be transferred
to the next process using a single message. In all other designs, at least a round-trip

time is required.
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Figure 4.6: Concurrency

4.4.4 Concurrency

For some MPI-2 applications, the target process may have a large volume of data
to be accessed by multiple origin processes. One way to improve the application per-

formance is use multiple windows and let different origin processes concurrently access
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the data in different windows. To evaluate how different designs handle concurrent
accesses, we used a test with multiple origin processes and one target process. In the
target process, multiple windows are created, and the number of windows is equal
to the number of origin processes. In each iteration, each origin process calls only
MPI_Win_lock and MPI_Win_unlock on the corresponding target window. We then
report the average time spent on each iteration. Figure 4.6 shows that for Test&Set
based design and MCS based design, the time spent on synchronization functions does
not change. This indicates that they can handle concurrent accesses in an efficient
manner. However, for thread based design, the time increases when the number of
origin processes increases. Further, we can see that even by using multiple threads,

we can not achieve better concurrency.
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Figure 4.7: Message Complexity
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4.4.5 Message Complexity

Message complexity shows the number of messages exchanged for synchronization
functions and a good design should have low message complexity. The test uses
multiple origin processes and one target process, and all the origin processes compete
for the same lock on a target window. Then we calculate the average number of
messages exchanged between one origin process and one target process.

As we can see in Figure 4.7, with increase of the number of origin processes, the
number of messages of both thread based designs does not change. For Test&Set
based design, exponential back off mechanism can reduce the number of messages
from 9 to 3 when the number of origin processes is 7. Although MCS algorithm is
proposed as a scalable algorithm, without SWAP operation support, the number of

messages increases to around 7, when the number of origin processes is 7.
4.4.6 CPU Utilization

As we have mentioned, one shortcoming of the thread based designs is that the as-
sisting thread consumes significant amount of CPU cycles. We evaluate this problem
in two scenarios.

Computing Thread:

In MPI-2 application, each process may have multiple computing threads running
in it. This test is to evaluate the performance of synchronization functions under
this scenario. This test uses two processes: one origin process and one target pro-
cess. The target process spawns several computing threads, and the origin process
calls synchronization functions MPI_Win_lock and MPI_Win_lock on a window at the

target process for multiple iterations. We then report the time for each iteration.
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Figure 4.8 shows that for both atomic based designs, the time remains almost un-
changed, while for the dedicated thread based design, the time increases with the
increase of the number of the computing threads. For the event driven based design,
since the assisting thread is waken up by a signal, the time almost remains constant
too.

SMP Mode:

Until now, all our evaluations are done under UniProcessor mode, which means we
assign one MPI application process on each node. But many scientific applications are
computation-intensive, and running them in SMP mode is more suitable. To evaluate
this aspect, we proposed a test which is based on synchronization overhead test we
used before. The SMP version test allows for running two origin processes (A and B)
on one dual-CPU workstation, and running two target processes (C and D) on the

other dual-CPU workstation. The origin process A calls synchronization functions to
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the target process C, while the origin process B does the same thing to the target
process D. Figure 4.9 shows that, both atomic operation based designs can deliver
similar performance in both modes. However, the dedicated thread based design does
not work well in one process per processor mode due to the polling of communication

threads.
4.4.7 Discussion

From the performance results we can see that in general, atomic operation based
designs outperform thread based designs. By taking advantage of atomic operations
in InfiniBand, we can achieve better synchronization overhead and synchronization
delay. Atomic operation based designs can also achieve better concurrency and inde-
pendent communication progress. One possible drawback of atomic operation based
design is that the number of messages to acquire a lock increases when there is high

contention for the lock. For Test&Set based design, this problem can be solved by
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using exponential backoff. For MCS based design, the problem is due to the lack of

an atomic SWAP operation in the current InfiniBand implementation.

4.5 Summary

In this chapter, we analyzed issues and concerns related to designing a high per-
formance MPI-2 passive synchronization mechanisms on InfiniBand clusters. We pro-
posed, implemented and evaluated two thread based designs (i.e., Dedicated Thread
and Event Driven Blocking Thread based designs) and two atomic operation based
designs (i.e., Test&Set and MCS based design). We demonstrated that by taking
advantage of InfiniBand atomic operations, we can achieve efficient synchronization

and deliver good performance.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed some novel designs for MPI-2 one-sided communication
model. We made an attempt to leverage the fast and scalable primitives offered by
the IBA software and hardware to improve the performance of the one-sided data
transfer and synchronization functions.

Many existing MPI-2 one-sided communication implementations are built on top
of MPI send/receive operations. Although this approach can achieve good portabil-
ity, it suffers from high communication overhead and dependency on remote process
for communication progress. To address these problems, we propose a high perfor-
mance MPI-2 one-sided communication design over the InfiniBand Architecture. In
our design, MPI-2 one-sided communication operations such as MPI_Put, MPI_Get
and MPI_Accumulate are directly mapped to InfiniBand Remote Direct Memory Ac-
cess (RDMA) operations. Our design has been implemented based on MPICH2 over
InfiniBand. We present detailed design issues for this approach and perform a set of
micro-benchmarks to characterize different aspects of its performance. Our perfor-
mance evaluation shows that compared with the design based on MPI send/receive,
our design can improve throughput up to 77%, and reduce lantency and synchroniza-
tion overhead up to 19% and 13%, respectively. Under certain process skew, the bad
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impact can be significantly reduced by new design, from 41% to nearly 0%. It also
can achieve better overlap of communication and computation.

Further, we compare various design alternatives for passive synchronization in
MPI-2 one-sided communication on InfiniBand clusters. We discuss several require-
ments for synchronization in passive one-sided communication. Based on these re-
quirements, we present four design alternatives, which can be classified into two cat-
egories: thread-based and atomic operation based. In thread-based designs, syn-
chronization is achieved with the help of extra threads. In atomic operation based
designs, we exploit InfiniBand atomic operations such as Compare-and-Swap and
Fetch-and-Add. Our performance evaluation results show that the atomic operation
based design can achieve less synchronization overhead, better concurrency, and less
computing resource consumption comparing with the thread based design.

In future, we plan to use real applications to study the impact of our InfiniBand
enabled approach. We also plan to investigate how to handle datatype efficiently in

MPI-2 one-sided communication.
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