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ABSTRACT

In the last decade or so, the high performance community is observing a

paradigm shift with interconnection methodology for processing elements. Com-

bining commercial off-the-shelf components to build supercomputers has provided

users with an excellent price-to-performance ratio. At the same time, scientific ap-

plications ranging from molecular dynamics to ocean modeling are being designed

with Message Passing Interface (MPI) being the de facto programming model. The

insatiable computational requirements of the scientific applications has been con-

tinuously pushing the scale of these clusters. Increasing scale of these clusters has

aggravated the occurrence of hot-spots in the network and reduced the mean time

between failures of difference network components. In order to provide the best

performance to the scientific applications, it is imperative that the MPI libraries

are capable of avoiding network hot-spots and resilience to faults in the network.

At the same time, InfiniBand has emerged as a popular interconnect, providing

a plethora of modern features with open standard and high performance. In this

dissertation, we focus on designing a communications and network fault tolerance

layer with InfiniBand, which leverages the presence of multiple paths in the network

for avoidance of hot-spots in the network and network fault tolerance. Much of the

dissertation has been integrated with an open source effort, MVAPICH, which is
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a popular implementation of MPI over InfiniBand and is used by a large number

of supercomputers in the world.
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CHAPTER 1

INTRODUCTION

The computational needs of today’s scientific applications has led to the aug-

mentation of high performance computing. Applications varying from molecular

dynamics [11], ocean modeling [4] to car crash simulations require precision in

accuracy of predictions and minimal execution time. Combining the commercial

off-the-shelf (COTS) processors to solve today’s challenging applications has led to

cluster computing [47], a very effective methodology for excellent cost-performance

ratio. Networks which provide very low latency and excellent bandwidth have been

emerging in the past decade [43, 48, 53]. At the same time, MPI [38, 39] has be-

come the de-facto programming model to write the above applications. However,

the traditional communication protocols such as TCP/IP limit the applications

from realizing the peak potential of the clusters due to their high protocol over-

head, heavy kernel involvement and extra data copies in the communication critical

path [28]. Communication systems have been proposed in the last decade or so to

overcome these limitations [60, 10, 46]. The motivation of these communication

systems is to minimize the interaction with the operating system kernel in the path

of critical execution, and reduction in data copies. The result is the realization
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of higher communication performance to the application layer. Efforts to combine

these communication systems have also been proposed recently [17, 15, 9].

More recently, the need for open standard and high performance led to the

proposition of InfiniBand [26]. The InfiniBand architecture has been proposed as

the next generation interconnect for I/O and inter-process communication. The

current generation of InfiniBand products provide latency as low as 2us and band-

width reaching beyond 30Gb/s. InfiniBand provides a plethora of features which

can be used for designing high performance communication substrate. Features

like Remote Direct Memory Access (RDMA) can be used for data transfer be-

tween end nodes with Kernel bypass. InfiniBand Automatic Path Migration pro-

vides automatic recovery from network failures and completion queue mechanism

can be used for estimation of path bandwidth and reliable delivery of data to the

remote node. Hardware multi-cast can be used for designing efficient collective

communication primitives, and service level-virtual lane mechanism can be used

for providing quality of service to MPI applications. Similarly, the LID Mask

Count (LMC) mechanism can be used to provide multiple paths in the network.

As a result, InfiniBand clusters are becoming increasingly popular, reflected by the

TOP500 [6] supercomputer rankings.

However, increasing scale of these clusters has led to challenges beyond memory

scalability. Hot-spots may occur at the I/O bus, with the increasing multi-way

SMP systems (and the recent multi-core architectures). To make matters worse,

Hot-spots in the network may become prevalent due to the sharing of network links

by multiple communication instances, different jobs and various communication

patterns. In the worst case, reduced mean time between failures (MTBF) of the
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network component may break the existing path(s) of communication, due to the

failure of cables, switches and adapters. In order to overcome the above issues,

multiple paths in the network may be provided. Presence of multiple interconnects

at the end node can alleviate the hot-spots at the I/O bus. Presence of multiple

paths in the network (as an example, Fat Tree, 3-D Torus etc.) with the help of

multiple links between the switches may help the hot-spot avoidance. The presence

of multiple paths and multiple interconnects allows network failover in the presence

of network faults.

In this dissertation, we design a communication sub-system; communications

and network fault tolerance layer, to leverage the presence of multiple paths in

the network for communication performance, avoidance of hot-spots and network

fault tolerance. In designing our communication sub-system, we aim to achieve

the following goals:

1. High Performance With Multi-Pathing: Our design should provide high per-

formance in the presence and absence of hot-spots at the I/O bus. It should

provide efficient scheduling policies for different multi-pathing configurations

(multiple adapters, multiple ports and combinations) for different communi-

cation semantics and heterogeneous networks.

2. Hot-spot Avoidance With Bandwidth Estimation: Our design should pro-

vide hot-spot avoidance in the network using the multi-pathing mechanism

provided by InfiniBand. It should leverage InfiniBand mechanisms for band-

width estimation and efficient usage of multiple paths to avoid hot-spots in

the network.
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3. Network Fault Tolerance: Our design should provide efficient recovery from

network faults with negligible overhead in the absence of faults. It should pro-

vide application transparent recovery from network faults using InfiniBand

mechanisms. It should also handle network partitions and recover from them

without application-restart, in addition to efficiently utilizing the recovered

paths from network faults.

In the dissertation, we will investigate how to leverage InfiniBand mechanisms

for achieving the above goals. Design of efficient scheduling policies, path band-

width estimation, network fault detection; recovery, for different communication

semantics will constitute the design.

The rest of the dissertation is organized as follows. In chapter 2, we present

the background of our work including MPI communication semantics, InfiniBand

and access layers. In chapter 3, we present the problem statement of our disserta-

tion and research approaches we have used for the design of communications and

network fault tolerance layer. In chapter 4, we present the design for supporting

multi-rail InfiniBand clusters for MPI-1 communication semantics. The design for

supporting MPI-2 one-sided communication semantics is discussed in chapter 5.

In chapter 6, we discuss the design challenges for efficient utilization of multiple

send/receive engines with 12x InfiniBand architecture. In chapter 7, we present

the design for avoiding hot-spots in the network using InfiniBand multi-pathing

mechanism. In chapter 8, we present a novel approach to maximize the utiliza-

tion of independent paths in the network using a batch based striping and sorting

methodology. In chapter 9, we present the design for network fault tolerance layer

using InfiniBand Automatic Path Migration (APM). In chapter 10, we use the
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reliable connection semantics for network fault detection and present the design

for recovery from network faults and network partitions. In chapter 11, we present

the overview of MVAPICH [42], which we have used as a research vehicle and

integrated our solutions to be used by high performance community at large. In

chapter 12, we conclude and present our future directions.
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CHAPTER 2

BACKGROUND

In this chapter, we provide the background information of our work. We begin

with a brief introduction of Message Passing Interface (MPI); its communication

semantics and MPI protocols. This is followed by a discussion on the InfiniBand

architecture, the communication and path migration states of a queue pair. We

also provide an introduction to InfiniBand adapters, access layers available for

InfiniBand and other RDMA-enabled interconnects.

2.1 Introduction to Message Passing Interface

Message Passing Interface (MPI) [38, 39] is a programming model for inter-

process communication. In the past decade or so, MPI-1 has been widely used to

write parallel applications ranging from molecular dynamics to car crash simula-

tions. More recently, MPI-2 has been announced with support for advanced fea-

tures like one-sided communication, dynamic process management and advanced

datatype processing. Figure 2.1 represents the communication semantics in MPI.

In the upcoming sections, we explain the two-sided communication semantics (also

known as point-to-point communication) and one-sided communication.
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Two−Sided One−Sided

Communication Semantics

MPI Layer

Figure 2.1: MPI Communication Semantics

2.1.1 MPI Point-to-Point Communication

Message Passing Interface (MPI) defines two types of communication proto-

cols; eager and rendezvous. These protocols are handled by a component in the

MPI implementation called progress engine. In the eager protocol, the message

is pushed to the receiver side regardless of its state. In the rendezvous protocol,

a handshake takes place between the sender and the receiver by control messages

before the data is sent to the receiver side. Usually, the eager protocol is used

for small messages and the rendezvous protocol is used for large messages. Fig-

ure 2.2 explains these protocols. The main communication paradigm of MPI is

message passing. However, MPI is also implemented in systems which support

shared memory [19, 24].

In an MPI program, two processes can communicate using MPI point-to-

point communication functions. One process initiates the communication by using

MPI Send function. The other process receives this message by issuing MPI Recv

function. Destination processes need to be specified in both functions. In addition,

both sides specify a tag. A send function and a receive function match only if they

have compatible tags.
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Figure 2.2: MPI Protocols

MPI Send and MPI Recv are the most frequently used MPI point-to-point

functions. However, they have many variations. MPI point-to-point communica-

tion supports different modes for send and receive. The mode used in MPI Send

and MPI Recv is called standard mode. There are other MPI functions that sup-

port other modes such as synchronous, buffered and ready modes. Communica-

tion buffers specified in MPI Send and MPI Recv must be contiguous. However,

there are also variations of MPI Send and MPI Recv functions that supports non-

contiguous buffers. Finally, any send or receive functions in MPI can be divided

into two parts: one to initiate the operation and the other one to finish the op-

eration. These functions are called non-blocking MPI functions. For example,

MPI Send function can be replaced with two functions: MPI Isend and MPI Wait.

By using MPI non-blocking functions, MPI programmers can potentially overlap

communication with computation, and hence increase the performance of MPI

applications.
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2.1.2 MPI One-Sided Communication

In many parallel scientific applications, the data distribution changes dynami-

cally and the data access pattern is irregular. For such applications, each process

computes the data it needs to access or update on other processes. However, a

process may not know the location of data in its local memory, which needs to

be read or updated by other processe(s). In some cases it may not even know

the identification of the remote processe(s). Hence, in these situations, only one

process in the communication is aware of all the parameters required to transfer

the data. The emerging MPI-2 standard with one-sided communication operations

specifically targets such communication patterns.

In MPI-2 one-sided communication, the sender can access the remote address

space directly. Such one-sided communication is also referred to as Remote Mem-

ory Access (RMA) communication. In this model, the origin process (the process

that issues the RMA operation) provides necessary parameters needed for commu-

nication. The area of memory on the target process accessible by the origin process

is called a Window. MPI-2 specification defines various communication operations:

1. MPI Put operation transfers the data to a window in the target process

2. MPI Get operation transfers the data from a window in the target process

3. MPI Accumulate operation combines the data movement to target with a

reduce operation

As per the semantics of one-sided communication, the return of the one-sided

operation call does not guarantee the completion of the operation. In order to
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guarantee the completion of one-sided operation, explicit synchronization opera-

tions must be used. In MPI-2, synchronization operations are classified as active

and passive. Active synchronization involves both sides of communication while

passive synchronization only involves the origin side.

The period between two synchronization calls is called as access epoch and ex-

posure epoch on the origin and target process, respectively. MPI-2 semantics allows

multiple communication calls during an access epoch. This is done to amortize the

overhead of synchronization over multiple communication operations.

2.2 Overview of InfiniBand Architecture (IBA)

InfiniBand Architecture (IBA) [26] is an industry standard that defines a Sys-

tem Area Network (SAN) to design clusters offering low latency and high band-

width. A typical IBA cluster consists of switched serial links for interconnect-

ing both the processing nodes and the I/O nodes. The IBA specification defines

a communication and management infrastructure for inter-processor communica-

tion. IBA also defines built-in Quality of Service (QoS) mechanisms which provide

virtual lanes on each link and define service levels for individual packets. In an

InfiniBand network, processing nodes are connected to the fabric by Host Channel

Adapters (HCA). HCAs are associated with processing nodes and their seman-

tic interface to consumers is specified in the form of InfiniBand Verbs. Channel

Adapters usually have programmable DMA engines with protection features.

IBA mainly aims at reducing the system processing overhead by decreasing

the number of copies associated with a message transfer and removing the kernel

from the critical messaging path. The InfiniBand communication stack consists
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of different layers. The interface presented by Channel Adapters to consumers

belongs to the transport layer. A Queue Pair (QP) based model is used in this

interface. Figure 2.3 illustrates the InfiniBand Architecture.
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Figure 2.3: InfiniBand Architecture [26]

2.2.1 Transport Services

InfiniBand Architecture supports multiple classes of communication services at

the transport layer. A queue pair can be configured for the following classes of

services:

• Reliable Connection (RC)

• Reliable Datagram (RD)

• Unreliable Connection (UC)

• Unreliable Datagram (UD)
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• Raw Datagram

In Reliable Connection service, each queue pair can only communicate with one

queue pair at a remote node. Before communication, a connection must be estab-

lished between the local queue pair and the remote queue pair. By using mech-

anisms such as acknowledgment and retransmission, InfiniBand ensures that the

notification is reliable. Unreliable Connection is similar to Reliable Connection

service. The difference is that reliability is not guaranteed.

Reliable Datagram and Unreliable Datagram provide connection-less transport

services. A single queue-pair can communication with multiple queue pairs on

remote nodes. In Reliable Datagram, reliability is provided by using End-to-End

Context. UD service does not guarantee any reliability. Another restriction of

UD is that the length of message size cannot exceed the Maximum Transfer Unit

(MTU) of the InfiniBand network, which is typically 2048 bytes.

The purpose of Raw Datagram service is to provide interoperability of IBA and

other networks. Its usage is out of the scope of this dissertation.

2.2.2 Management Infrastructure

Unlike many other interconnects, InfiniBand Architecture has a comprehen-

sive management infrastructure. InfiniBand networks usually consist of smaller

networks called subnets. From the network management perspective, InfiniBand

defines an entity called subnet manager, which is responsible for discovery, con-

figuration and maintenance of a network. Each InfiniBand port in a network is

identified by one or more local identifiers (LIDs), which are assigned by the subnet

manager. Since InfiniBand supports only destination based routing, each switch in
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the network has a routing table corresponding to the LIDs in the subnet. However,

InfiniBand supports only deterministic routing, and decisions to route messages

adaptively cannot be taken by the intermediate switches. InfiniBand provides a

mechanism, LID Mask Count (LMC), in which each port can be assigned multiple

LIDs, to exploit multiple paths in the network. The current generation of subnet

managers allow us to leverage the multiple paths provided by different topologies

like Fat Tree [31].

2.2.3 Overview of Communication State Transition

As discussed in the previous section, InfiniBand supports different classes of

transport services (Reliable Connection, Unreliable Connection, Reliable Data-

gram and Unreliable Datagram). In the Reliable connection model, each process-

pair creates a unique entity for communication, called Queue Pair (QP). Each

QP consists of two queues; send queue and receive queue. Figure 2.4 shows the

communication state transition sequence for a QP. Each QP has a combination of

communication state and path migration state. Figure 2.4 shows the QP communi-

cation state transition diagram. Figure 2.5 shows a combination of communication

and path migration state transition for the QP. In this section, we focus only on

the communication state. In the next section, we discuss the combinations of these

states.

At the point of QP creation, its communication state is RESET. From this state

it is brought to the INIT state by invoking modify qp function. The modify qp

function is provided by the access layer of InfiniBand for different transition states

provided by InfiniBand specification [26]. During the RESET-INIT transition, the
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Figure 2.4: QP Communication State Diagram

QP is specified with the HCA port to use in addition to the atomic flags. Once in

the INIT state, the QP is specified with the destination LID and the destination

QP from which it will receive the messages. A modify qp call brings it to READY-

TO-RCV (RTR) state. At this point, the QP is ready to receive the data from

the destination QP. Finally, QP is brought to READY-TO-SEND (RTS) state by

specifying associated parameters and making the modify qp call. At this point,

the QP is ready to send and receive data from its destination QP. Should any

error(s) occur on the QP, the QP moves to the ERROR state. At this state, the

QP is broken and cannot communicate with its destination QP. In order to re-use

this QP, it needs to be brought back to the RESET state and the above-mentioned

transition sequence (RESET-RTS) needs to be executed.

The request(s) to send the data to the destination are placed on the send

queue, by using a mechanism called descriptor. A descriptor describes the infor-

mation necessary for a particular operation. For RDMA operation, it specifies
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the local buffer, address of the peer buffer and access rights for manipulation of

remote buffer. The completions of descriptors are posted on a queue called com-

pletion queue. Each entry in the completion queue is called completion queue entry

(CQE). This mechanism allows a sender to know the status of the data transfer

operation. Different mechanisms for notification are also supported (polling and

asynchronous).

2.2.4 Overview of Automatic Path Migration

Automatic Path Migration (APM) is a feature provided by InfiniBand which

enables transparent recovery from network fault(s) by using the alternate path

specified by the user. Automatic path migration is available for Reliable Con-

nected (RC) and Unreliable Connected (UC) QP Service Type. For this feature,

InfiniBand specifies Path Migration States associated with a QP. A valid combi-

nation of communication and path migration states are possible. This is shown

further in Figure 2.5. In the figure, the path migration state of the QP is shown

using oval shape. The possible communication states of the QP are shown using

curly braces. At a point of time, only one of the communication states is applicable

to a QP.

Once the QP is created, the initial path migration state for a QP is set to MI-

GRATED. At this point, the QP can be in RESET, INIT or RTS communication

state. Once the transition sequence (RESET-RTS) is complete, the QP’s path

migration state goes back to MIGRATED. Hence, this state is valid for QPs hav-

ing their communication state as RTS. APM defines a concept of alternate path,

which is used as an escape route, should an error occur on the primary path of
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communication. The alternate path is specified by the user. This specification of

the alternate path can be done at any point, beginning the INIT-RTR transition of

the QP. Once this has been specified, the HCA can be requested to load this path.

This is done by specifying the QP’s path migration state to REARM. Once the

path has been loaded, the path migration state of a QP is ARMED. During this

state, the alternate path can be switched over to function as a primary path. This

can be done by HCA automatically, should an error occur on the primary path of

communication. This is shown with dotted line in Figure 2.5. As an alternative,

a user can manually request the alternate path to be used as the primary path of

communication. This is shown with solid line in Figure 2.5.
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2.2.5 Quality-of-Service Support

InfiniBand has built-in Quality-of-Service support that consists of three compo-

nents: Virtual Lanes (VLs), Service Levels (SLs), and Service Level to Virtual Lane

(SL-VL) mapping. In an InfiniBand network, each physical link is divided into up

to 16 Virtual Lanes. Each VL has different QoS characteristics. At end-points, SLs

are assigned to communication and packets are marked with their service levels.

As packets travel through the network, they are assigned to different VLs on each

link according to SL-VL mapping.

2.2.6 Hardware Support for Congestion Notification

InfiniBand provides hardware support for congestion notification. This mech-

anism uses simple switch based Explicit congestion notification (ECN) mecha-

nism and source response mechanism using rate control combined with a window

limit [62, 20, 52]. Using Forward-Backward and Explicit congestion notification

mechanisms, the end nodes and intermediate hops can be notified of congestion.

Mechanisms from congestion recovery are beyond the scope of the InfiniBand spec-

ification.

2.3 Overview of InfiniBand Adapters and Access Layers

As discussed in the previous sections, the InfiniBand Architecture (IBA) [26]

defines a System Area Network with a switched, channel-based interconnection fab-

ric. IBA 4x can provide bandwidth up to 10 Gbps. Switches and Adapters with

capabilities of 12x bandwidth have also become available in the market, provid-

ing performance upto 30Gb/s. InfiniBand defines Verbs for user-level applications
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to leverage its capabilities. Verbs API (VAPI) by Mellanox [3] has been widely

used for powering large scale clusters. In addition, an open source effort, OpenFab-

rics [44] has also become available. The Ammasso interconnect is a RDMA-enabled

Gigabit Ethernet adapter [25]. It is a full duplex 1Gbps Ethernet Adapter also

provides the interface for vanilla sockets based applications. Ammasso defines a

CCIL interface, for applications to leverage its RDMA capabilities.

2.3.1 Overview of InfiniBand Adapters

In this section, we provide an overview of the InfiniBand Adapters we have

used for evaluation during the preliminray work.

Overview of Mellanox Dual-Port Adapters

The first generation InfiniBand Adapters were designed by Mellanox Corpo-

ration [3]. The first adapters were dual-port based on the PCI-X bus based I/O

interface. Each InfiniBand port was capable of providing a theoritical 10Gb/s in

each direction. However, due to the limitations of PCI-X interface, a peak exchange

bandwidth of only 10Gb/s could be achieved. Motherboards with support for mul-

tiple independent PCI-X interfaces could allow the usage of multiple adapters on

a single node.

With the advent of PCI-Express, the peak theoritical bandwidth in each di-

rection has increased to 20Gb/s. Mellanox Adapters with support of PCI-Express

interface have also become available. Since each port still provided 10Gb/s, mul-

tiple ports can be used together to achieve the peak bandwidth. Recently, the
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support for Double Data Rate (DDR) mechanism has been announced, which al-

lows a 20Gb/s bandwidth to be achieved using a single port. In future, the support

for Quad Data Rate (QDR) is being planned.

Overview of IBM 12x Dual-Port InfiniBand Adapter

Each IBM 12x HCA comprises of two ports. The local I/O interconnect used

is GX+, which can run over different clock rates of 633 MHz-950 MHz. Figure 2.6

shows the block diagram of the IBM 12x InfiniBand HCA. In this dissertation, we

have used GX+ bus with 950MHz frequency. As a result, a theoritical bandwidth of

7.6GB/s can be provided. However, each port can provide an aggregate theoritical

bandwidth of 12x (3GB/s). Each 12x HCA port has multiple send and receive

DMA engines. The aggregate link bandwidth of the send DMA engines and receive

DMA engines is 12x in each direction, respectively. However, the peak bandwidth

of each send/recv engine varies with different implementations.

IBM 12x Dual Port HCA

GX+ Bus
To GX+

To Network

Figure 2.6: IBM 12x InfiniBand HCA Block Diagram
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To schedule the data on a send engine, the hardware send scheduler looks at

the send queues of different queue pairs with send descriptors, which are not being

serviced currently. Given equal priority, the queue pairs are serviced in a round

robin fashion. In the presence of traffic sufficient to keep the scheduling engines

busy, an aggregate bandwidth of 12x can be achieved in each direction.

2.3.2 Overview of Access Layers

In this section, we discuss the access layers provided for InfiniBand and other

RDMA enabled interconnects. Some of the access layers are specific to InfiniBand,

however other layers are more generic. Figure 2.7 shows a relation between between

these layers. uDAPL (user direct access provide library) is a generic layer providing

a common interface for all RDMA-enabled interconnects. We discuss these layers

in the upcoming section.

uDAPL

InfiniBand Verbs iWARP CCIL

Transport Interfaces

Figure 2.7: Access Layers for InfiniBand and Other RDMA-enabled Interconnects

InfiniBand and iWARP Specific Access Layers:

As mentioned in the previous sections, InfiniBand provides a plethora of hard-

ware features for designing programming models and other user applications. APIs

to leverage these features have emerged. Verbs API (VAPI) from Mellanox [3] has
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become available for the last couple of years. Recently, an open source effort for

design and development of API supporting InfiniBand and iWARP (Internet Wide

Area RDMA protocols) [1] has emerged [44]. MPI implementations supporting

iWARP interface have also become available [41].

Overview of uDAPL Interface:

As mentioned in the previous section, multiple interconnects have emerged that

provide RDMA capabilities. However, these interconnects do not provide a com-

mon set of Application Programming Interfaces (APIs). In addition, upcoming

interconnects face a similar challenge and the turn-around time for developing

MPI [38, 39] on these adapters can be prohibitive. To alleviate this situation,

Direct Access Transport (DAT) Collaborative [16] has defined a DAPL interface,

providing a common interface for different interconnects. User Direct Access Pro-

gramming Library (uDAPL) is a lightweight, transport-independent, platform-

independent user-level library, potentially capable of providing high productivity

for upcoming and existing interconnects.

uDAPL allows processes to communicate by defining End Points (EPs). EPs

need to be connected to each other, before communication can take place. Work

Requests or descriptors can be posted on the EPs for sending or receiving data from

other processes. uDAPL supports memory semantics by leveraging RDMA and

channel semantics by providing send/receive mechanism. The completion status

of the previously posted descriptors can be ascertained by using completion queue

mechanism. Completion queue returns status of the posted descriptor, in terms of

success/failure and the error code.
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CHAPTER 3

PROBLEM STATEMENT AND RESEARCH
APPROACHES

As discussed in the previous chapter, InfiniBand provides mechanisms for cre-

ation of multiple paths, hardware based error detection using Automatic Path

Migration and mechanisms for data delivery notification, as discussed in the back-

ground section. However, a unified communications and network fault tolerance

layer, which semantically abides the MPI layer with the InfiniBand features, is

imperative for alleviating network and I/O hot-spots, and providing network fault

tolerance. Hence, the question we address in this dissertation is:

How to design an efficient communications and network fault toler-

ance layer over multi-pathing leveraging the novel InfiniBand features?

Figure 3.1 shows the communications and network fault tolerance layer and its

interactions with MPI and InfiniBand layers. The communications and network

fault tolerance layer itself should comprise of multiple functionalties. It should

provide efficient utilization of multi-rail configurations in the absence of hot-spots

and network faults. In the presence of hot-spots and congestion, it should utilize

the hot-spot free paths efficiently. In the presence of network faults, this layer

should do error detection and recovery from the network faults. This leads us to

the following challenges, which are addressed in this dissertation:
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Two−Sided One−Sided

Communication Semantics

MPI Layer

Multi−Rail Clusters (Multiple Ports, Adapters, QPs and Combinations)

uDAPL

InfiniBand Verbs iWARP CCIL

Communication and Network Fault Tolerance Layer

AbstractionMulti−Network

Communications Layer Network Fault
Tolerance Layer

Transport Interfaces

Figure 3.1: Overall Interaction of Communications and Network Fault Tolerance
Layer

23



• How to design an efficient communications layer for various multi-rail con-

figurations with different access layers?

• How to leverage InfiniBand features for avoiding hot-spots in the network

and the end nodes?

• How to design efficient error detection and recovery, modules for fault toler-

ance layer using InfiniBand mechanisms?

Figure 3.2 shows the scope of the dissertation showing the relationship between

the communications and network fault tolerance layer with InfiniBand networking

mechanisms. In the upcoming sections, we present the design components associ-

ated with each of the above functionalities. The objective of the framework is to

leverage the InfiniBand features efficiently, with minimal overhead and achieving

optimal performance. We present the problem statement in detail as follows:

• Can we design a communications layer which provides efficient data transfer

for MPI-1 two-sided communication semantics? - Multi-rail configurations

comprising of multiple ports, multiple adapters, multiple send/recv engines

per port are emerging with combinations. Efficient utilization of these multi-

rail configurations is imperative to provide the best performance to MPI

applications. The MPI library should provide an equivalent abstraction for

such configurations and provide efficient scheduling policies for transfer with

eager and rendezvous protocols. In addition, the benefits of using multi-

rail configurations should provide benefits to point-to-point and collective

communication primitives.
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Transport

INFINIBAND PHYSICAL LAYER

APM
Semantics

Multi−Pathing

Configurations

INFINIBAND NETWORKING MECHANISMS
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MPI APPLICATION
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One−sided

Access Layers
Subnet

Manager

Figure 3.2: Proposed Mapping of Multi-Pathing MPI Design Components with
InfiniBand Features

• Can we design efficient communications layer for one-sided communication

semantics? - Different communication semantics employ different commu-

nication protocols. Traditional two-sided semantics require rendezvous pro-

tocol for communication of large messages as discussed in the background

section. However, such protocols may be inefficient for one-sided communi-

cation. Out-of-ordering relaxation also makes it imperative to re-visit the

discussion on scheduling policies. Unlike two-sided communication protocols

which typically use either RDMA Write or Read, One-sided communication

primitives map directly to RDMA Write and Read for MPI Put and MPI Get

respectively. Efficient scheduling of these requests for utilizing peak band-

width brings additional challenges to one-sided communication. The MPI
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library should provide efficient scheduling policies for one-sided communica-

tion, taking advantage of ordering relaxation, absence of rendezvous protocol

• Can we design an MPI functionality for efficient utilization of network paths

and providing hot-spot avoidance? - Looking at the TOP500 [6] list, a ma-

jority of InfiniBand clusters use fat tree [31] has become a popular inter-

connection topology for these clusters, since it allows multiple paths to be

available in between a pair of nodes. However, even with fat tree, hot-spots

may occur in the network depending upon the route configuration between

end nodes and communication patterns in the application. To make matters

worse, the deterministic routing nature of InfiniBand limits the application

from effective use of multiple paths transparently and avoid the hot-spots in

the network.

To explain the problem, we take a cluster with a fat-tree switch and execute

an MPI program using this switch to understand the contention and occur-

rence of hot-spots in the network. Figure 3.3 represents the switch topology

used for our experimentation. Each switch block consists of 24 ports. The

leaf switches (referred to as leaf blocks from here onwards) have 12 ports

available to be used by the end nodes, the other 12 ports are connected to

the spine switches (referred to as spine blocks from here onwards). In the

figure, blocks 1 - 12 are leaf blocks; blocks 13 - 24 are spine blocks. The com-

plete switch has 144 ports available for end nodes. Each block is a crossbar

in itself.
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Figure 3.3: 144-port InfiniBand Switch
Block Diagram

Step1

Step2

Figure 3.4: Communication Steps in
Displaced Ring Communication

To demonstrate the contention, we take a simple MPI program, which per-

forms ring communication with neighbor rank increasing at every step. The

communication pattern is further illustrated in the Figure 3.4 (only step1

and step2 are shown for clarity). Executing the program with n processes

takes n-1 steps. Let ranki denote the rank of the ith process in the program.

and stepj denote the jth step during execution. At stepj , an MPI process

with ranki communicates with MPI process ranki+j. This communication

pattern is referred to as DRC (Displaced Ring Communication).

We take an instance of this program with 24 processes and schedule MPI pro-

cesses with rank0 - rank11 on nodes connected to block 1 and rank12 - rank23

on block 2. Since each block is a crossbar in itself, no contention is observed

for intra-block communication. However, as the step iteration increases, the

inter-block communication increases and a significant link contention is ob-

served. The link contention observed during the step 12 (each process doing
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inter-block communication) is shown in Figure 3.5, with thicker solid lines

representing more contentions.

1

144 Port Switch

rank0 − rank11 rank12 − rank23

14 15 16 17 18

Un−used Link

Used Link

13

12

24

2 3 4 5 6

Figure 3.5: Link Usage with Displaced Ring Communication

From Figure 3.5, we can see that some links are over-used to a degree from

four to zero. As the degree of link usage increases, the bandwidth is split

amongst the communication instances using the link(s), making them hot

spots. In our example, paths using block 13 split bandwidth for four different

communication instances making the set of links using this block hot-spots.

Even though, there are sufficient links for an independent path of communi-

cation between block 1 and 2 (using spine blocks), DRC is not able to utilize

them in a contention free manner. The usage of these links is highly depen-

dent upon the path configuration done by the subnet manager. This route

configuration done by the subnet manager may benefit one communication

pattern and show contention for other patterns, leaving un-utilized links in
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the network. Under such a scenario, the utilization of the links is the re-

sponsibility of the MPI implementation. Hence, designing an efficient MPI

library, with effective use of multiple paths is critical to hot-spot avoidance.

As discussed in the previous section, reliable connection transport semantics

provides notification of data delivery. This mechanism may be used in the

estimation of the path bandwidth. At the same time, LMC mechanism may

be used for the creation of multiple paths in the network. Using the LMC

mechanism and reliable connection semantics, different methods of notifica-

tion (polling and asynchronous) can be used for the determination of path

bandwidth. Congestion notification mechanisms proposed in InfiniBand with

window rate control can also be combined with the above mechanisms for

controlling congestion and using hot-spot free paths.

• Can we design an efficient network fault tolerance layer with advance Infini-

Band mechanisms and minimal performance penalty?

Increasing scale of InfiniBand clusters has reduced the Mean Time Between

Failures (MTBF) of components. Network component is one such compo-

nent of clusters, where failures of network interface cards (NICs), cables or

switches breaks the existing path(s) of communication. In the worst case,

network partitions may be created. However, network failures should not

lead to application abort. InfiniBand provides hardware and software based

mechanisms for network fault detection and recovery. InfiniBand provides a

hardware mechanism, Automatic Path Migration (APM), which allows user

transparent detection and recovery from network fault(s). In addition, the
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completion queue based mechanism can be used for the completion status of

data transfer requests. The Network fault tolerance layer should comprise

of modules for network fault detection and network failover. The completion

queue mechanism discussed in the previous section can be used for detection

of network faults. Alternatively, the hardware mechanism may also be used

for detection of network faults transparent to the user. As discussed in the

previous section, the hardware mechanism, APM requires specification of an

alternate path. Hence, selecting a maximal independent path can be used

as the alternate path. For software based aproach, efficient detection of net-

work faults, efficient re-transmission of data transfre requests and handling

of network partitions without application restart.

3.1 Dissertation Overview

In this section, we present the overview of the dissertation. In next couple of

chapters, we explain each of these approaches in detail.

In chapter 4, we present an in-depth study of designing high performance multi-

rail InfiniBand clusters for MPI-1 primitives. We discuss various ways of setting

up multi-rail networks with InfiniBand and propose a unified MPI-1 design that

can support all these approaches. By taking advantage of RDMA operations in In-

finiBand and integrating the multi-rail design with MPI communication protocols,

our design supports multi-rail networks with very low overhead. Our performance

results show that the multi-rail MPI can significantly improve MPI communication

performance. With a two-rail InfiniBand network, we can achieve almost twice the

bandwidth and half the latency for large messages compared with the original MPI.
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In chapter 5, we present the challenges (Multiple synchronization messages,

handling multiple HCAs, scheduling policies, ordering relaxation) associated with

designing MPI-2 one-sided communication over multi-rail InfiniBand networks.

We implement our design and presented the performance evaluation for micro-

benchmarks. We observe that multi-rail InfiniBand clusters can significantly im-

prove the performance for one-sided communication. Using a two rail cluster, we

can achieve almost double the throughput and reduce the latency to half with

MPI Put and MPI Get operations for large messages.

In chapter 6, we focus on designing an MPI substrate for IBM 12x InfiniBand

Architecture. We discuss with the introduction of overall design, and present the

limitations of previously proposed designs in achieving the peak performance of

IBM 12x InfiniBand architecture. We present the need for re-visiting the schedul-

ing policies, depending upon the communication pattern in the application. We

present communication marker module, which resides in the ADI layer and differ-

entiates between communication patterns.

Large scale InfiniBand clusters are becoming increasingly popular, as reflected

by the TOP 500 [6] Supercomputer rankings. At the same time, fat tree [31] has

become a popular interconnection topology for these clusters, since it allows mul-

tiple paths to be available in between a pair of nodes. However, even with fat tree,

hot-spots may occur in the network depending upon the route configuration be-

tween end nodes and communication patterns in the application. In chapter 7, we

present the design for an MPI functionality, Hot-Spot Avoidance with MVAPICH

(HSAM) which provides hot-spot avoidance for different communication patterns,

without apriori knowledge of the pattern. We leverage LMC (LID Mask Count)
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mechanism of InfiniBand to create multiple paths in the network, and study its

efficiency in creation of contention free routes.

In chapter 8, we re-visit the approach presented in the previous chapter for

a better utilization of multiple independent paths in the network. To efficiently

utilize physically independent paths, we propose a novel scheduling policy, which

performs Batch-based Striping and Sorting (BSS) during the application execution

to adaptively eliminate the path(s) with low bandwidth. Using MPI Alltoall, we

achieve an improvement of 27% and 32% in latency with different BSS policy

configurations compared to the best configuration of the HSAM scheme on 32 and

64 processes, respectively.

In chapter 9, we design a set of modules; alternate path specification module,

path loading request module and path migration module, which work together for

providing network fault tolerance for user level applications. We integrate these

modules for simple micro-benchmarks at the Verbs Layer, the user access layer

for InfiniBand, and study the impact of different state transitions associated with

APM. We also integrate these modules at the MPI [38, 39] (Message Passing

Interface) layer to provide network fault tolerance for MPI applications. Our per-

formance evaluation shows that APM incurs negligible overhead in the absence of

faults in the system.

In chapter 10, we design a network fault tolerant MPI using uDAPL interface,

making this design portable for existing and upcoming interconnects. Our design

provides failover to available paths, asynchronous recovery of the previous failed

paths and recovery from network partitions without application restart. In addi-

tion, the design is able to handle network heterogeneity, making it suitable for the
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current state of the art clusters. To achieve these goals, we design a set of low

overhead modules completion filter and error-detection, message (re)-transmission

and path recovery and network partition handling which perform completion filter

and detection, (re)-transmission and recovery from network partitions respectively.
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CHAPTER 4

EFFICIENT MPI-1 DESIGN FOR MULTI-RAIL
INFINIBAND CLUSTERS

One of the primary reasons for InfiniBand success is its high performance, in

addition to the presence of a plethora of advance features. However, even with

InfiniBand, network bandwidth can become the performance bottleneck for some

of today’s most demanding applications. This is especially the case for clusters

built with multi-way SMP machines, in which multiple processes may run on a

single node and must share the node bandwidth. Many-core machines proposed

by chip makers including Intel and AMD are likely to aggravate this situation

further. An important mechanism to overcome the bandwidth bottleneck is to

use multi-rail networks. The basic idea is to have multiple independent networks

(rails) to connect nodes in a cluster. With multi-rail networks, communication

traffic can be distributed among different rails. There are two ways of distributing

communication traffic. In multiplexing, messages are sent through different rails

in a round robin fashion. In striping, messages are divided into several chunks

and sent out simultaneously using multiple rails. By using these techniques, the

bandwidth bottleneck can be alleviated [7, 21].
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In this chapter, we present a detailed study in designing high performance

MPI-1 with multi-rail InfiniBand clusters. We discuss various ways of setting up

multi-rail networks with InfiniBand and propose a unified MPI design that can

support these approaches. Our design achieves low overhead by taking advantage

of RDMA operations in InfiniBand and integrating the multi-rail design with MPI

communication protocols [42, 45]. Our design also features a very flexible architec-

ture that supports different policies of using multiple rails. We provide an in-depth

discussion of different policies (even and weighted striping) and study their impact

on performance.

The rest of the chapter is organized as follows: In section 4.1, we present the

basic architecture for supporting multi-rail InfiniBand networks. We discuss some

of the implementation details in Section 4.2. In section 4.3, we present performance

results of our multi-rail MPI. In section 4.4, we summarize the results and impact

of this work.

4.1 Basic MPI Design for Multi-Rail Networks

The basic architecture of our design to support multi-rail networks is shown

in Figure 4.1. We focus on the architecture of the sender side. In the figure, we

can see that besides MPI Protocol Layer and InfiniBand Layer, our design consists

of three major components: Communication Scheduler, Scheduling Policies, and

Completion Filter.

The Communication Scheduler is the central part of our design. It accepts

protocol messages from the MPI Protocol Layer, and stripes (or multiplexes) them
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Figure 4.1: Basic Architecture

across multiple virtual subchannels. (Details of virtual subchannels will be de-

scribed later.) In order to decide how to stripe or multiplex, the Communication

Scheduler uses the information provided by the Scheduling Policies component.

Since a single message may be striped and sent as multiple messages through the

InfiniBand Layer, we use the Completion Filter to process completion notifications

and to inform the MPI Protocol Layer about completions only when necessary.

4.1.1 Virtual Subchannel Abstraction

Multi-rail networks can be built by using multiple Adapters on a single node,

or by using multiple ports in a single HCA [14]. It is desirable to have a single

implementation to handle all these cases instead of dealing with them separately.

In MPI applications, every two processes can communicate with each other.

This is implemented in many MPI designs by a data structure called virtual chan-

nel (or virtual connection). A virtual channel can be regarded as an abstract
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communication channel between two processes. It may not necessarily correspond

to a physical connection of the underlying communication layer.

In this work, we use an enhanced virtual channel abstraction to provide a

unified solution to support multiple Adapters and multiple ports. In our design, a

virtual channel can consist of multiple virtual subchannels (referred as subchannels

from here onwards). Since our MPI implementation mainly takes advantage of

the InfiniBand Reliable Connection (RC) service, each subchannel corresponds to

a reliable connection at the InfiniBand Layer. At the virtual channel level, we

maintain various data structures to coordinate between the subchannels.

It is easy to see how this enhanced abstraction can deal with different multi-rail

configurations, including multiple adapters and multiple ports. In the case of each

node having multiple Adapters, subchannels for a virtual channel correspond to

connections that go through different Adapters. In presence of multiple ports of

the Adapters, subchannels can be set to have one connection for each port. Once

all the connections are initialized, the same subchannel abstraction is used for

communication in all cases. This idea is further illustrated in Figure 4.2.

Subchannels

Subchannels

HCA

HCA

HCA HCA

HCA

HCA
Port1

Port1

Port1

Port2

Port1

Port2

Port1

Port1

Process 1

Node 1

Process 2

Node 2

Process 1 Process 2

Node 1 Node 2

Figure 4.2: Virtual Subchannel Abstraction
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4.1.2 Scheduling Policies

Different scheduling policies can be used by the Communication Scheduler to

decide which subchannels to use for transferring each message.

For multiplexing schemes, a simple solution is binding, in which only one sub-

channel is used for all messages. This scheme has the least overhead. And it can

take advantage of multiple subchannels if there are multiple processes on a single

node. In the case of utilizing multiple subchannels for a single process, schemes

similar to Weighted Fair Queuing (WFQ) and Generalized Processor Scheduling

(GPS) have been proposed in the networking area [7]. These schemes take into

consideration the length of a message. In InfiniBand, the per operation cost usu-

ally dominates for small messages. Therefore, we choose to ignore the message

size for small messages. As a result, simple round robin or weighted round robin

schemes can be used for multiplexing. In some cases, different subchannels may

have different latencies. This will result in many out-of-order messages for round

robin schemes. To alleviate this problem, a variation of round robin called window

based round robin can be used. In this scheme, a window size W is given and a sub-

channel is used to send W messages before the Communication Scheduler switches

to another subchannel. Since W consecutive messages travel the same subchannel,

the number of out-of-order messages can be significantly reduced for subchannels

with different latencies.

For striping schemes, the most important factor we need to consider is the

bandwidth of each subchannel. It should be noted that we should consider path

bandwidth instead of link bandwidth, although they can sometimes be the same de-

pending on the switch configuration and the communication pattern. Even striping
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can be used for subchannels with equal bandwidth, while weighted striping can be

used for subchannels with different bandwidths. Similar to multiplexing, binding

can be used when there are multiple processes on a single node.

4.2 Implementation Details

In this section, we present the implementation issues associated with our work.

We begin with the discussion on handling multiple adapters, out-of-order messages

and multiple RDMA completion notifications.

4.2.1 Handling Multiple Adapters

In the design section, we described how we can provide a unified design for

multiple adapters and multiple ports. The key idea is to use the subchannel ab-

straction. Once subchannels are established, there is essentially no difference in

dealing with all the different cases. Due to some restrictions in InfiniBand, there

are two situations that must be handled differently for multiple Adapters:

• completion queue (CQ) polling

• buffer registration.

Our MPI implementation uses mostly RDMA to transfer messages and we have

designed special mechanisms at the receiver to detect incoming messages [34, 32, 22,

13, 36]. However, CQs are still used at the sender side for completion notification.

Although multiple connections can be associated with a single CQ, InfiniBand

requires all these connections to be physically linked to a single Adapter. Hence,

we need to use multiple CQs for multiple Adapters. This results in slightly higher
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overhead due to the extra polling of CQs. However, for bulk data transfer, this

cost can be ignored.

Buffer registration also needs different handling for multiple Adapters. In In-

finiBand, buffer registration serves two purposes. Firstly, it ensures the buffer will

be pinned down in physical memory so that it can be safely accessed by Infini-

Band hardware using DMA. Second, it provides the InfiniBand HCA with address

translation information so that buffers can be accessed through virtual addresses.

Hence, if a buffer is to be sent through multiple Adapters, it must be registered

with each one of them. Currently, we have used a simple approach of register-

ing the complete buffer with all Adapters. Although this approach increases the

registration overhead, this overhead can be largely avoided by using a registration

cache [54].

4.2.2 Out-of-Order Message Processing

In order to maintain correctness, applications require messages to be processed

in a sequential order. Since we use Reliable Connection (RC) transport service

provided by InfiniBand for each subchannel, messages are not lost and delivered

in order for a single subchannel. However, there is no ordering guaranteed for

multiple physical subchannels of the same virtual channel. To address this problem,

we introduce a Packet Sequence Number (PSN) variable for each virtual channel.

This variable is shared by all virtual subchannels of a virtual channel. Every

message sent through this virtual channel will carry current PSN and increment

it. Each receiver also maintains an Expected Sequence Number (ESN) for every
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virtual channel. When an out-of-order message arrives, it is en queued on a out-

of-order queue associated with this virtual channel and its processing is deferred.

This queue is checked at proper times when a message in the queue may be the

next expected packet.

The basic operations on the out-of-order queue are en queue, de queue, and

search. To improve performance, it is desirable to optimize these operations. In

practice we have found that when appropriate communication scheduling policies

are used, out-of-order messages are very rare. As a result, very little overhead is

spent in out-of-order message handling.

4.2.3 Multiple RDMA Completion Notifications

In our design, large messages which use the rendezvous protocol are striped into

multiple smaller messages. Hence, multiple completion notifications are generated

for each striped message at the sender side. The Completion Filter component

in our design notifies the MPI Protocol Layer only after it has collected all the

notifications.

At the receiver, the MPI protocol Layer also needs to know when the data

message has been placed into the destination buffer. In our original design, this is

achieved by using an rendezvous finish control message. This message is received

after the RDMA data messages are received, since ordering is guaranteed for a

single physical subchannel. However, this scheme is not enough for multiple sub-

channels. In this case, we have to use multiple rendezvous finish messages – one per

each physical subchannel used for RDMA data transfer. The receiver will notify

the MPI Protocol Layer only after it has received all the RDMA finish messages.

41



It should be noted that these rendezvous finish messages are sent in parallel and

their transfer times are overlapped. Therefore, in general they have very small

extra overhead.

4.3 Performance Benefits with Multi-Rail Design on MPI-
1 Benchmarks

In this section, we evaluate the performance of our multi-rail MPI design over

InfiniBand. We show the performance benefit we can achieve compared with the

original MPI implementation. Due to the limitation of our testbed, we focus

on multi-rail networks with multiple Adapters in the section. The performance

evaluation is done with two different configurations: Uni-Processor (UP) Mode

and Shared Memory (SMP) Mode. In the former configuration, only one process

is used per node. In the second configuration, two or more processes are used on

every node. For the SMP mode, loopback is used for performance evaluation.

We use a set of MPI benchmarks for evaluation. We use a ping-pong MPI

Latency Test, a Uni-directional Bandwidth Test and Bi-directional Bandwidth

Test. In all of these tests, two processes are involved. A detailed description of

these benchmarks is present at the MVAPICH homepage [42].

4.3.1 Experimental Testbed

Our testbed cluster of 8 SuperMicro SUPER X5DL8-GG nodes with Server-

Works GC LE chipsets. Each node has dual Intel Xeon 3.0 GHz processors, 512

KB L2 cache, and PCI-X 64-bit 133 MHz bus. We have used InfiniHost MT23108

DualPort 4x Adapters from Mellanox. If both ports of an HCA are used, we can

potentially achieve one way peak bandwidth of 2 GB/s. However, the PCI-X bus
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can only support around 1 GB/s maximum bandwidth. Therefore, for each node

we have used two Adapters and only one port of each HCA is connected to the

switch. The ServerWorks GC LE chipsets have two separate I/O bridges. To

reduce the impact of I/O bus, the two Adapters are connected to PCI-X buses

connected to different I/O bridges. All nodes are connected to a single Mellanox

InfiniScale 24 port switch (MTS 2400), which supports all 24 ports running at full

4x speed. Therefore, our configuration is equivalent to a two-rail InfiniBand net-

work built from multiple Adapters. The kernel version we used is Linux 2.4.22smp.

The InfiniHost SDK version is 3.1 and HCA firmware version is 3.0.1. The Front

Side Bus (FSB) of each node runs at 533MHz. The physical memory is 1 GB of

PC2100 DDR-SDRAM.
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4.3.2 Performance Evaluation with Point-to-Point and Col-
lective Communication

To evaluate the performance benefit of using multi-rail networks, we compare

our new multi-rail MPI with our original MPI implementation. In the multi-rail

MPI design, unless otherwise stated, even striping is used for large messages and

round robin scheme is used for small messages. We first present performance com-

parisons using micro-benchmarks, including latency, bandwidth and bi-directional

bandwidth. We then present results for collective communication by using Pallas

MPI benchmarks [2]. Finally, we carry out application level evaluation by using

some of the NAS Parallel Benchmarks [8] and a visualization application. In many

of the experiments, we have considered two cases: UP mode (each node running

one process) and SMP mode (each node running two processes).

In Figures 4.3, 4.5 and 4.6, we show the latency, bandwidth and bidirectional

bandwidth results in UP mode. We also show bandwidth results for small messages

in Figure 4.4. (Note that in the x axis of the figures, unit K is an abbreviation for

210 and M is an abbreviation for 220.) From Figure 4.3 we can see that for small

messages, the original design and the multi-rail design perform comparably. The

smallest latency is around 6 µs for both. However, as message size increases, the

multi-rail design outperforms the original design. For large messages, it achieves

about half the latency of the original design. In Figure 4.5, we can observe that

multi-rail design can achieve significantly higher bandwidth. The peak bandwidth

for the original design is around 884 MB/s. With the multi-rail design, we can

achieve around 1723 MB/s bandwidth, which is almost twice the bandwidth ob-

tained with the original design. Bidirectional bandwidth results in Figure 4.6
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show a similar trend. The peak bidirectional bandwidth is around 943 MB/s for

the original design and 1877 MB/s for the multi-rail design. In Figure 4.4 we can

see that the round robin scheme can slightly improve bandwidth for small messages

compared with the original scheme.

For Figures 4.7 and 4.8, we have used two processes on each node, each of

them sending or receiving data from a process on the other node. It should be

noted that in the bandwidth test, the two senders are on separate nodes. For

the multi-rail design, we have shown results using both even striping policy and

binding policy for large messages. Figure 4.7 shows that both striping and binding

performs significantly better than the original design. We can also see that striping

does better than binding. The reason is that striping can utilize both adapters in

both directions while binding only uses one direction in each adapter. Since in

the bidirectional bandwidth test in SMP mode, both Adapters are utilized for

both directions, striping and binding perform comparably, as can be seen from

Figure 4.8.

In Figures 4.9, 4.10, 4.11 and 4.12, we show results for Broadcast and Alltoall

for 8 processes (UP mode) and 16 processes (SMP mode) using Pallas Benchmarks.

The trend is very similar to what we have observed in previous tests. With multi-

rail design, we can achieve significant performance improvement for large messages

compared with the original design.

4.3.3 Performance Evaluation with MPI Applications

In Figures 4.13 and 4.14 we show the application results. We have chosen the

IS and FT applications (Class A and Class B) in the NAS Parallel Benchmarks
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Figure 4.13: Application Results (8
processes, UP mode)

Figure 4.14: Application Results (16
processes, SMP mode)

because compared with other applications, they are more bandwidth-bound. We

have also used a visualization application. We show performance numbers for both

UP and SMP modes. However, due to the large data set size in the visualization

application, we can only run it in UP mode.

From the figures, we can see that multi-rail design results in significant reduc-

tion in communication time for all applications in both UP and SMP modes. For

FT, the communication time is reduced almost by half. For IS, the communication

time is reduce by up to 38%, which results in up to 22% reduction in application

running time. For the visualization application, the communication time is reduced

by 43% and the application running time is reduced by 16%. Overall, we can see
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that multi-rail design brings significant performance improvement to bandwidth-

bound applications.

4.4 Summary

In this chapter, we have presented an in-depth study for designing high per-

formance multi-rail InfiniBand clusters for MPI-1 communication semantics. We

have discussed various ways of setting up multi-rail networks with InfiniBand and

proposed a unified MPI-1 design that can support all these approaches. By taking

advantage of RDMA operations in InfiniBand and integrating the multi-rail design

with MPI communication protocols, our design supports multi-rail networks with

very low overhead. Our performance results show that the multi-rail MPI can sig-

nificantly improve MPI communication performance. With a two-rail InfiniBand

network, we have achieved almost twice the bandwidth and half the latency for

large messages compared with the original MPI. The multi-rail MPI design also

significantly reduced the communication time as well as the execution time for

bandwidth-bound applications.
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CHAPTER 5

SUPPORTING ONE-SIDED COMMUNICATION WITH
MULTI-RAIL INFINIBAND CLUSTERS

In the previous chapter, we designed an MPI over InfiniBand for supporting

multi-rail clusters. However, the design challenges and performance evaluation

was primarily focused for MPI two-sided communication. Compared to MPI-1,

MPI-2 is the next generation MPI standard with one-sided operations (such as

MPI Put and MPI Get). In this work, we propose a unified MPI-2 design with

different configurations of multi-rail networks (multiple ports, multiple HCAs and

combinations) for one-sided communication. We present various issues associated

with one-sided communication (multiple synchronization messages, scheduling of

RDMA (Read, Write) operations, scheduling policies, ordering relaxation) and dis-

cuss their implications on our design. We also implement our design and evaluate

it with micro-benchmarks for one-sided communication. Our performance results

show that multi-rail networks can significantly improve MPI-2 one-sided commu-

nication performance. With a two-rail InfiniBand cluster, we can achieve almost

twice the MPI Put bandwidth and half the MPI Put latency for large messages

compared to the single-rail MPI-2 implementation.
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The rest of the chapter is organized as follows. In section 5.1, we present the

design for the communications layer for one-sided communication with InfiniBand.

In section 5.2, we present the detailed design issues with supporting one-sided

communication over multi-rail InfiniBand clusters. In section 5.3, we evaluate the

performance of one-sided benchmarks with our implementation. Finally, in section

5.4, we discuss the contributions and present the summary of the work.

5.1 Communications Layer for One-sided Communication

with Multi-Rail Clusters

The basic architecture of our design to support multi-rail networks for MPI-2

one-sided communication is shown in Figure 5.1. In the figure, we can see that

besides the MPI-2, Direct One-Sided layer and InfiniBand layer, our design consists

of an intermediate layer, Multi-rail Layer.

Multiple HCAs
OrderingHandling

Scheduling of RDMA Read
and RDMA Write Operations

Multiple

Messages

Relaxation

Synchronization

Multiple Subchannels

Scheduling
Policies

MPI 2

ADI3

InfiniBand

Layer
Multi−rail

Direct
One Sided

Figure 5.1: Basic Architecture

51



This layer takes the responsibility of scheduling messages on the available sub-

channels. Besides this, it takes care of the correctness issues like Handling Multiple

HCAs and Multiple Synchronization Messages and efficiency issues like Scheduling

Policies, Ordering Relaxation and Scheduling of RDMA Read and RDMA Write

Operations.

In the previous chapter, we focused on virtual channel abstraction to unify

different multi-rail configurations (multiple ports, multiple adapters and combina-

tions). We incorporate a similar design to unify multi-rail configurations for MPI-2

in this chapter. At the channel level, we maintain a set of data structures to coor-

dinate between different subchannels.

5.2 Detailed Design Issues

In this section, we discuss the design challenges involved for multi-rail MPI-2

design associated at the multi-rail Layer.

5.2.1 Multiple Synchronization Messages

In order to initiate the one-sided communication, the origin process calls start

to open a window. The target process posts the buffers for the window. Once the

one-sided communication is done, a synchronization message needs to be sent to

the target process.

The receipt of synchronization message guarantees the data transfer of previ-

ously issued RMA operations. However, when multiple subchannels are used, data

transfer on one subchannel might not have finished even though other subchannels

would have received the synchronization message. Hence, we need to issue synchro-

nization messages on each subchannel. Note that when the load on subchannels
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is balanced, the transfer of synchronization messages along multiple subchannels

takes place in parallel, incurring negligible overhead.

5.2.2 Scheduling of RDMA Read and RDMA Write Oper-

ations

In MPI-1, usually the two-sided communication uses either RDMA Write or

RDMA Read for data transfer in InfiniBand. For many MPI-2 applications, in

one-sided communication, the MPI Put and MPI Get operations are implemented

using RDMA Write and RDMA Read respectively. Since RDMA Read and RDMA

Write utilize bandwidth in different directions, it is important to schedule them

independently with respect to each other’s load on different subchannels.

In order to achieve this, we propose a load based fragmentation policy discussed

in the next section, which maintains independent queues of MPI Put and MPI Get

operations issued in an epoch. Trivially, this policy would fragment the messages

equally on all subchannels in the presence of only one kind of a one-sided operation.

In presence of a combination of one-sided operations, each having the same size,

this policy would fall back to equal fragmentation.
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5.2.3 Scheduling Policies Classification based on Message
Size

In this chapter, we classify the policies used for scheduling based at different

layers. As proposed in [23], we use reordering and no reordering policies at the

CH3’ (Direct One-Sided) Layer. At the multi-rail layer, we do a classification of

the policies based on the message size. We employ the following policies:

• Round Robin

• Load Balanced Fragmentation

No Reordering Reordering

Load Based
Fragmentation

Round Robin

Scheduling Policies

Multi−rail Layer

Direct One Sided Layer

Figure 5.3: Scheduling Policies at different layers for one-sided communication

For small messages, we employ round robin policy. In this policy, the com-

pletion message is sent using one of the available subchannels in a round robin

fashion. Fragmentation incurs overhead of posting descriptors on multiple sub-

channels, which is significant for small messages. Hence, we employ a switchover

threshold, messages of size less than this threshold are scheduled in a round robin

fashion. For large messages, we primarily use Load Balanced Fragmentation pol-

icy. In this policy, we divide the message in chunks and schedule them, so that
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the load on all subchannels is balanced. This policy leads to optimal utilization

of all subchannels for large messages. In case of one-sided communication, the

switchover threshold can be reduced significantly in comparison to two-sided com-

munication, due to the absence of rendezvous protocol. As a result, medium size

messages can also benefit from fragmentation. We present the actual benefits in

the performance evaluation section.

5.2.4 Absence of Rendezvous Protocol

For regular two-sided communication, small messages typically use eager pro-

tocol and large messages use rendezvous protocol [34]. For medium size messages,

protocol selection depends upon the overhead of control messages for rendezvous

protocol and credits available for eager protocol communication. One-Sided com-

munication does not require a handshake for data transfer between the origin and

target processes. The absence of handshake overhead allows the medium size mes-

sages also to take the advantage of the multi-rail configurations.

5.2.5 Ordering Relaxation

Regular two-sided communication requires messages to be processed in order

by the receiver side. Message(s) scheduled on multi-rail networks may be received

out of order by the receiver side. To maintain correctness, the receiver side needs

to queue the out-of-order messages and poll periodically on them. For large scale

clusters, this bookkeeping may incur overhead, potentially reducing the benefits of

multi-rail networks.

One-Sided communication imposes no ordering requirements for messages within

an epoch, by the definition from the semantics. As a result, the one-sided approach
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does not need to maintain ordering at the receiver side. We simplify our design by

incorporating this fact, reducing the overhead of bookkeeping at the receiver side.

5.3 Performance Benefits of Multi-Rail Design for One-
Sided Communication

To evaluate the performance benefits of our multi-rail MPI-2 design, we com-

pare it with our original MVAPICH2 design [42], which can only use only one-port

of a NIC. In the multi-rail design, we use load balanced fragmentation for large mes-

sages and round robin scheme for small messages. In the next couple of sections,

we present the performance evaluation of multi-rail design with MPI-2 one-sided

benchmarks. We begin with a description of our experimental testbed.

5.3.1 Experimental TestBed

We evaluated our implementation with multiple HCAs on 32-bit systems (re-

ferred to IA32 cluster from here onwards) comprising of independent PCI-X buses,

and on 64-bit systems (referred to as EM64T cluster from here onwards) compris-

ing of PCI-Express bus and multiple ports per adapter. Our experimental testbed

comprises of two clusters.

IA32 Cluster with Multiple HCAs:

This cluster consists of two SuperMicro SUPER X5DL8-GG nodes with Server-

Works GC LE chipsets. Each node has dual Intel Xeon 3.0 GHz processors, 512

KB L2 cache, and PCI-X 64-bit 133 MHz bus. We have used InfiniHost MT23108

Dual-Port 4x HCAs from Mellanox. The ServerWorks GC LE chipsets have two
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separate I/O bridges and three PCI-X 64-bit 133 MHz bus slots. To reduce the im-

pact of I/O bus contention, the two HCAs are connected to separate PCI-X buses

connected to different I/O bridges. The kernel version we used is Linux 2.4.22smp.

The IBGD version is 1.6.1 and HCA firmware version is 3.3.2. The Front Side Bus

(FSB) of each node runs at 533MHz. The physical memory is 2 GB of PC2100

DDR-SDRAM.

EM64T Cluster with Multiple ports:

This cluster consists of two EM64T nodes having 8x PCI Express slots. Each

node has two Intel Xeon CPUs running at 3.4 GHz processors, 512 KB L2 cache

and 1 GB of main memory. This cluster uses III Generation MT25208 4x Dual

Port HCAs from Mellanox. A combined unidirectional bandwidth of 8x can be

used, when both ports are used for communication. The kernel version we used is

Linux 2.4.21-15.EL. The IBGD version is 1.6.1 and HCA firmware version is 4.6.2.

The Front Side Bus (FSB) of each node runs at 800MHz.

5.3.2 Micro-benchmark Evaluation for MPI Put Operation

In Figures 5.4 and 5.6, we present the results for MPI Put bandwidth, bidi-

rectional bandwidth and latency respectively for the IA32 cluster with multiple

HCAs. We show the results for EM64T with two-ports on PCI-Express in Fig-

ures 5.5 and 5.7.

In Figure 5.4, we observe that for small messages (less than or equal to 1KBytes)

, both multi-rail design and the original implementation perform comparably. For

large messages, multi-rail design outperforms the original implementation consid-

erably. With multi-rail design, we can achieve a maximum peak unidirectional
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Figure 5.5: MPI Put Bandwidth on
the EM64T Cluster

MPI Put bandwidth of 1750 MB/s in comparison to 880 MB/s for our original

implementation. We also notice, that due to the absence of rendezvous proto-

col, medium size messages (2KB - 16KB), can take advantage of load balanced

fragmentation policy for multi-rail design.

We observe a similar trend for dual-port on EM64T in Figure 5.5. For messages

of size greater than 8KBytes, we use fragmentation policy. We can achieve a peak

bandwidth of 1500 MB/s using multi-rail design, in comparison to 971 MB/s for

the original implementation capable of using only one-port of a NIC.

In figures 5.6 and 5.7, we compare the performance of MPI Put bidirectional

bandwidth for IA32 cluster and EM64T cluster, respectively. For IA32 cluster,

due to the bottleneck of PCI-X, we can achieve only 941 MB/s for original imple-

mentation. However, using multi-rail design we can achieve a peak bidirectional

bandwidth of 1810 MB/s.

On IA32, we observe a slight drop in bandwidth at 16Kbytes. This occurs due

to significant increase in bidirectional bandwidth in comparison with unidirectional

58



 0

 500

 1000

 1500

 2000

4 64 1K 16K 256K 1M

B
a
n
d
w

id
th

 (
M

B
/s

)

Message Size (Bytes)

two-nics
one-nic
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Figure 5.7: MPI Put Bidirectional
Bandwidth on the EM64T Cluster

bandwidth, and usage of same switchover threshold for them. For EM64T cluster,

we can achieve a peak bidirectional bandwidth of 2620 MB/s with two-ports in

comparison to 1910 MB/s using the original implementation.
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EM64T Cluster

In figures 5.8 and 5.9, we present the results for MPI Put latency for IA32 and

EM64T cluster, respectively. We observe that we perform almost similar with the
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original implementation for small messages. For large messages, we can improve

the latency by 46% for IA32 cluster and 32% for EM64T cluster by using the

multi-rail design.

5.3.3 Micro-Benchmark Performance Evaluation for MPI

Get Operation

Figure 5.10 shows the bandwidth for MPI Get operation for the IA32 cluster.

We observe similar trends in performance as MPI Put operation. Using the multi-

rail design, we can achieve a peak bandwidth of 1705 MB/s, compared to 881 MB/s

for the original implementation. For the EM64T cluster, we can achieve a peak

bandwidth of 1494 MB/s, compared to 969 MB/s for the original implementation.
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Figure 5.10: MPI Get Bandwidth on
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Figure 5.11: MPI Get Bandwidth on
the EM64T Cluster

In figures 5.12 and 5.13, we present the results for MPI Get latency for IA32 and

EM64T cluster, respectively. We observe that we perform almost similar with the

original implementation for small messages. For large messages, we can improve
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the latency by 45% for IA32 cluster and 33% for EM64T cluster by using multi-rail

design.
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Figure 5.12: MPI Get Latency on the
IA32 Cluster
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5.3.4 MPI-2 One-Sided Interleaving Test

To show the impact of re-ordering of one-sided communication, we use a through-

put test which involves two processes. The first process starts a window access

epoch and then issues 16 MPI Put and 16 MPI Get operations of the same size.

The second process just starts an exposure epoch. The same sequence of opera-

tions are repeated for several iterations and we measure the maximum throughput

we can achieve (in terms of Million Bytes/sec). In our previous work, we have

explained this test in further detail [23].

Fig. 5.14 shows the case where CH3’ (Direct One-Sided) layer issues all one-

sided operations in order. For MPI Put, the data mainly flows from the origin

process to the target process, while for MPI Get, the data mainly flows from the
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target process to origin process. So only one direction of the network link is fully

used at one time. We can use the network bandwidth more efficiently if we re-order

the one-sided operations, as shown in Fig.5.15. Here we interleave the put and get

operations so that we can almost achieve bi-directional bandwidth provided by the

link.
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Figure 5.14: Ordered issue of one-sided
operations
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Figure 5.16 shows the performance achieved by a combination of policies at

the CH3’ layer and multi-rail layer. At the multi-rail layer we use load balanced

fragmentation policy. At the CH3’ layer, we compare impact of reordering with

no reordering, when combined with the multi-rail policy specified above.

For IA32 cluster using two-nics, we can achieve almost 1703 MB/s without

reordering, which is close to the multi-rail peak unidirectional bandwidth. With

single-rail implementation, we can achieve a peak bandwidth of 880 MB/s without

reordering. We notice, that with reordering for two-nics, we can almost achieve
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1800 MB/s, almost the peak bidirectional bandwidth with two-nics. With single-

rail implementation, due to the limitation of PCI-X, we can achieve only 907 MB/s.
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Figure 5.16: Interleaved throughput on
the IA32 Cluster
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In figure 5.17, we evaluate the performance of CH3’ layer reordering, compared

to the no reordering policy for the EM64T cluster. We use the load balanced

fragmentation at the multi-rail layer. Using two-ports and reordering, we can

achieve 2604 MB/s, which is almost the peak bidirectional bandwidth available

with two-ports. It is interesting to notice, that reordering with single-rail imple-

mentation outperforms the combination of no reordering with multi-rail implemen-

tation. We attribute it to the fact that, PCI-Express can achieve 8x bidirectional

bandwidth with one-port. However, due to the limitations of PCI-Express, we

cannot achieve a combined 8x unidirectional bandwidth using two-ports. Using

reordering with single-rail implementation, we can achieve 1900 MB/s. However

we can only achieve a peak bandwidth of 1474 MB/s using multi-rail implementa-

tion with no reordering. With no reordering for single-rail implementation, we can
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achieve 962 MB/s, which is close to the unidirectional bandwidth available with

the single-rail implementation.

5.4 Summary

In this chapter, we have presented the challenges (Multiple synchronization

messages, handling multiple HCAs, scheduling policies, ordering relaxation) asso-

ciated with designing MPI-2 one-sided communication over multi-rail InfiniBand

networks. We have implemented our design and presented the performance evalu-

ation for micro-benchmarks. We have observed that multi-rail InfiniBand clusters

can significantly improve the performance for one-sided communication. Using a

two rail cluster, we have achieved almost doubled the throughput and reduced the

latency to half with MPI Put and MPI Get operations for large messages. We have

also observed that reordering policy can significantly improve the performance for

communication patterns with a mix of one-sided operations.
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CHAPTER 6

IMPROVING PERFORMANCE WITH IBM 12X
INFINIBAND ARCHITECTURE

In the previous chapters, we have studied the design for supporting multiple

communication semantics with multi-rail InfiniBand Clusters. The primary focus

has been to support multiple adapters and multiple ports. As discussed in the

background section, 12x adapters with support for multiple send/receiv engines has

been introduced. The designs proposed in the previous chapters are not sufficient

in extracting the potential performance of these adapters.

In this chapter, we propose a unified MPI design for taking advantage of mul-

tiple send/receive engines on a port, multiple ports and HCAs. We study the

impact of various communication scheduling policies (binding, striping and round

robin) and discuss the limitations of these individual policies for different com-

munication patterns, in context of IBM 12x InfiniBand Adapter. To overcome

this limitation, we present a new policy, EPC (Enhanced point-to-point and collec-

tive), which incorporates different kinds of communication patterns point-to-point

(blocking, non-blocking) and collective communication, for data transfer. To en-

able this differentiation, we design a communication marker and discuss the need

to integrate it with the ADI layer for obtaining the optimal performance. We
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implement our design and evaluate it with micro-benchmarks, collective commu-

nication and NAS parallel benchmarks. Using EPC on a 12x InfiniBand cluster,

we can significantly improve the execution times of micro-benchmarks, collective

communication and MPI application kernels.

The rest of the chapter is organized as follows. In section 6.1, we present the

overall design for supporting MPI with 12x InfiniBand Architecture. In section 6.2,

we present the need for scheduling policies for different communication patterns.

In section 6.3, we present the evaluation of our implementation. We conclude and

present the summary in section 6.4.
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Figure 6.1: Overall MPI Design for IBM 12x InfiniBand Architecture

6.1 Overall MPI Design for 12x InfiniBand Architecture

Figure 6.1 represents our overall design. Our previous design presented in

[33, 59] supports using multiple ports and multiple HCAs. In our new design
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presented here, we enhance it by adding support for utilizing multiple send/receive

engines per port. In addition, in our enhanced design, we present a communication

marker, which differentiates between communication patterns, to obtain optimal

performance for point-to-point and collective communication. These enhancements

are shown with dotted boxes in Figure 6.1. A detailed description is also presented

in our publication [55].

6.2 Discussion of Scheduling Policies for different Commu-

nication Patterns

In this section, we present the discussion on scheduling policies. Even though, in

our previous work, we have presented an initial discussion on scheduling policies, we

discuss the limitations of the previously proposed scheduling policies for utilizing

multiple send/recv engines in an efficient manner. We begin with a discussion on

point-to-point communication.

6.2.1 Point-to-Point Communication

Point-to-point communication can be classified as blocking and non-blocking

type of communication. In the blocking communication, only one message is out-

standing in communication between a pair of processes. Round Robin policy uses

the available QPs one-by-one in a round robin fashion [33, 59]. Using round robin

policy may lead to under-utilization of the available send and receive DMA engines

for such kind of communication. Striping divides the messages amongst available

queue pairs providing a much better utilization of available DMA engines. Simi-

larly, for non-blocking communication, striping can provide benefits by exploiting

parallelism in send and receive DMA engines.
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However, a large percentage of MPI applications mainly use medium size mes-

sages for data transfer. In our previous work [33, 59], our design and evaluation

comprised mostly of two queue pairs (one queue pair per port), hence the impact of

striping on the performance of medium size messages is negligible. However, using

multiple send/receive engines per port requires usage of multiple queue pairs per

port. As the number of queue pairs increase, the cost of assembly and dis-assembly

due to striping becomes significant. This cost is mainly due to posting descriptors

for each stripe, and acknowledgment overhead of the reliable connection transport

service of InfiniBand. Hence, using round robin policy for communication may

outperform the striping policy.

From the above discussion, the need to differentiate between point-to-point

communication patterns is clear. We incorporate this using a communication

marker presented in the later part of the section.

6.2.2 Collective Communication

Collective communication primitives based on point-to-point use MPI Sendrecv

primitive for various steps in the algorithm. Each MPI Sendrecv call can further be

divided in one function call of MPI Isend and MPI Irecv each for the partners. For

blocking MPI Collectives, each step in the algorithm is completed before executing

the next step. As described in the previous section, this is a non-blocking form of

communication, and round robin policy would be used, as concluded previously.

However, only one outstanding non-blocking call is available for each send/receive

engine, which may lead to insufficient usage of available send DMA engines. Thus,
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we clearly need to differentiate among the non-blocking calls received from point-

to-point communication and collective communication.

From the above discussion, we can conclude that a single scheduling policy

is not sufficient for data transfer with different patterns. Some policies benefit

blocking communication, while other benefit the non-blocking communication. In

addition, for the non-blocking communication, the usage by collective communi-

cation can further complicate the scheduling policy decision. To resolve the above

conflicts of policy selection, we present a policy, Enhanced point-to-point and col-

lective (EPC), which falls back to optimal policies for respective communication

patterns. For non-blocking communication, it uses round robin, for blocking com-

munication, it uses striping. For collective communication, even though we have

non-blocking calls, it falls back to striping. The efficiency of this policy is depen-

dent upon the ADI layer to be able to differentiate between such communication

patterns. Next, we present such a module, called communication marker module,

which resides in the ADI layer and takes advantage of ADI layer data structures

and parameters for differentiating amongst communication patterns.

6.2.3 Communication Marker

The communication marker module resides in the ADI layer of our design. The

main purpose of this module is to be able to differentiate amongst different com-

munication patterns invoked by the MPI Application. In essence, it differentiates

between:

• Point-to-point

– Blocking
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– Non-blocking

• Collective

Since our design is based on MPICH, this differentiation at ADI layer is pos-

sible. For collective communication, a separate tag is used, which can be used to

differentiate an ADI function call from point-to-point communication. In case of

tag conflicts, the differentiation is not accurate, however, it does not lead to any

performance degradation. In addition, the ADI layer decides the communication

protocol eager/rendezvous depending upon the message size. We have used a ren-

dezvous threshold of 16KBytes in performance evaluation. This value is also used

as the striping threshold, the messages of size equal and above are striped on all

available queue pairs equally.

6.3 Performance Evaluation with MPI over IBM 12x In-
finiBand Architecture

In this section, we present performance evaluation of IBM 12x HCAs using MPI

Benchmarks. We compare the performance of our enhanced design with MVAPICH

release version (referred to as original from here on). The 1QP/port case is referred

to as the original version of MVAPICH. We show the performance results for

simple micro-benchmarks, latency, bandwidth and bi-directional bandwidth. This

is followed by performance evaluation on NAS Parallel Benchmarks [8].

6.3.1 Experimental Testbed

Our experimental testbed consists of an InfiniBand cluster with IBM nodes

built with Power6 processor. The cluster is connected using IBM 12x Dual-Port
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HCAs. Each node in the cluster comprises 4 processors, shared L2 and L3 caches

along-with 32 GB DDR2 533MHz main memory. Each node has multiple GX+

slots, which run at a speed of 950 MHz and CPU speed of 2.4 GHz. We have used

2.6.16 linux kernel and InfiniBand drivers from OpenIB-Gen2, revision 6713. For

our experimentation, we have used only one GX+ bus, one HCA and one port

of an HCA. The objective is to evaluate the performance of multiple send/receive

engines on one HCA. However, the experimentation can definitely be extended to

usage of multiple ports, HCAs and combinations.

6.3.2 Performance Evaluation with Micro-Benchmarks

In Figure 6.2, we present the results for the latency test. For small messages,

it is not beneficial to stripe the message across multiple queue pairs as the startup

time is dominant. Hence, even with increasing number of queue pairs, we use

only one of the QPs for communication. The objective is to see the performance

degradation from our design compared to the original case. From the figure, it is

clear that our design adds negligible overhead compared to the original case.

Figure 6.3 shows the results for large message latency, comparing a set of pa-

rameters: scheduling policy and number of queue pairs used per port. The objec-

tive is to understand the efficiency of the communication marker for differentiating

between communication types. Hence we compare the performance of EPC and

policies proposed in the previous work. We notice that using 4QPs/port, EPC and

striping perform comparably. Both Binding and Round Robin are not able to take

advantage of multiple queue pairs, since they use only one queue pair for an MPI

message. An improvement of 33% is observed using EPC and striping.
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Figure 6.4 and 6.5 compare the performance of EPC and round robin policy

with the original case. Since messages are still on a smaller range, we do not

use striping. Comparing 2QPs with 4QPs, we observe that performance gains

are observed after 1K. For very small messages (less than 1K), the startup time

limits the usage of multiple queue pairs efficiently. However, from 1K-8K message

range, as the transfer time increases, 4QPs show improvement in performance. The

performance is similar to the round robin policy. For the bi-directional bandwidth

case, we notice that increasing number of queue pairs from 2-4 does not help.

Since we use eager protocol for small messages, copy based approach is used. In

the bi-directional bandwidth test, the process needs to copy the data out to the

peer and also copy the data sent by the peer. We notice that the memory copy

bandwidth limits the improvement in performance.

Figures 6.6 and 6.7, show the performance of uni-directional and bi-directional

bandwidth tests for large messages. We compare the performance of EPC with

the originally proposed even striping [33, 59]. Using both policies we are able
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to achieve, 2745 MB/s and 5263 MB/s results respectively for the above tests

in comparison to 1661 MB/s and 3079 MB/s using the original implementation.

However, even striping performs much worse than EPC for medium size messages

(16K - 64K). This can be attributed to the fact that dividing the data into multiple

chunks leads to inefficient use of send engines, as they do not have enough data

to pipeline, posting of descriptors for each send engine and receipt of multiple

acknowledgments. For very large messages, the data transfer time is reasonably

high, and as a result, the performance graphs converge.

Figure 6.8 shows the performance of MPI Alltoall using our enhanced design.

We use 2x4 configuration for performance evaluation, where two nodes and four

processes per node are used for communication. However, for MPI Alltoall, even

for medium range of messages, we can see an improvement, due to efficient uti-

lization of available send and receive DMA engines in comparison to single-rail

implementation. Hence, differentiation at the ADI layer between non-blocking

73



 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1M256K64K16K

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

1 Port, 1 QP/port
1 Port, 2 QPs/port
1 Port, 4 QPs/port
1 Port, 4 QPs/port, Even Striping

Figure 6.6: Large Message Uni-
directional Bandwidth

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

1M256K64K16K

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

1 Port, 1 QP/port
1 Port, 2 QPs/port
1 Port, 4 QPs/port
1 Port, 4 QPs/port, Even Striping

Figure 6.7: Large Message Bi-
directional Bandwidth

communication and collective communication significantly helps the performance

of collective operations.
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6.3.3 Performance Evaluation with NAS Parallel Bench-

marks

Figures 6.9 and 6.10 show the results for Integer Sort, Class A and Class B

respectively. We compare the performance for 2 (2x1), 4 (2x2) and 8 (2x4) pro-

cesses respectively. Using two processes on Class A and B, the execution time

improves by 13% and 9% respectively with 4 QPs/port. We use only EPC policy

for comparison, since it performs equal or better than previously proposed policies,

as shown by results from micro-benchmarks. For 4 processes, the execution time

improves by 8% and 7% respectively. Since we use shared-memory communication

for processes on same node, the percentage of network communication decreases

with increasing number of processes and the performance benefits follow a similar

trend. However, we do not see any performance degradation using our enhanced

design.

Figures 6.11 and 6.12 show the results for Fourier Transform, Class A and

Class B, respectively. We see around 5%-7% improvement with increasing number

of processes. Although, not included in the paper, we have not seen performance

degradation using other NAS Parallel Benchmarks.
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6.4 Summary

In this chapter, we have presented an MPI design for IBM 12x InfiniBand ar-

chitecture comprising of multiple send/receive DMA engines. We have studied the

impact of various communication scheduling policies (binding, striping, and round

robin), and presented a new policy, EPC (Enhanced point-to-point and collective),

which incorporates different kinds of communication patterns; point-to-point block-

ing, non-blocking and collective communication, for data transfer. We have dis-

cussed the need to strongly integrate our design with the ADI layer to obtain

optimal performance. Our performance results show that 12x HCAs can signifi-

cantly improve MPI communication performance. Using EPC on a 12x InfiniBand

cluster with one HCA and one port, we can improve the performance by 41%

with ping-pong latency test and 63-65% with the unidirectional and bi-directional

throughput tests compared with the default single-rail MPI implementation. We

have concluded that none of the previously proposed policies alone provide optimal

performance in these communication patterns. Using NAS Parallel Benchmarks,
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we see an improvement of 7-13% in execution time along with a signification im-

provement in collective communication using Pallas benchmark suite.
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CHAPTER 7

HOT-SPOT AVOIDANCE WITH MULTI-PATHING
USING LMC MECHANISM

Large scale InfiniBand clusters are becoming increasingly popular, as reflected

by the TOP 500 [6] Supercomputer rankings. At the same time, fat tree [31]

has become a popular interconnection topology for these clusters, since it allows

multiple paths to be available in between a pair of nodes. However, even with

fat tree, hot-spots may occur in the network depending upon the route config-

uration between end nodes and communication patterns in the application. To

make the matters worse, the deterministic routing nature of InfiniBand limits the

application from an effective use of multiple paths transparently and avoid the

hot-spots in the network. Simulation based studies for switches and adapters to

implement congestion control have been proposed in the literature [62, 20, 52].

However, these studies have focused on providing congestion control for the com-

munication path, and not on utilizing multiple paths in the network for hot-spot

avoidance. Literature proposed for Ethernet is not completely relevant for Infini-

Band, since these InfiniBand supports link level flow control [18, 61, 27]. Other

studies have proposed adaptive routing mechanisms for InfiniBand, however these
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mechanisms are not available with the current generation of InfiniBand adapters

and switches [40, 37, 51, 49, 29, 35, 50].

In this chapter, we present the design for an MPI functionality, Hot-spot Avoid-

ance with MVAPICH (HSAM), which provides hot-spot avoidance for different

communication patterns, without apriori knowledge of the pattern. We leverage

LID Mask Count (LMC) mechanism of InfiniBand to create multiple paths in the

network, and study its efficiency in creation of contention free routes. We also

present the design issues (scheduling policies, selecting number of paths, scalabil-

ity aspects) associated with our MPI functionality. We implement our design and

evaluate it with collective communication and MPI applications. Our experimen-

tal evaluation shows that HSAM is able to benefit the performance of collective

communication primitives and MPI application kernels significantly.

The rest of the chapter is organized as follows. In section 7.1, we present the

limitations of existing designs in providing network hot-spot avoidance. We present

the design issues of our work, including the proposal to adaptive striping policy,

which uses path bandwidth estimation for hot-spot avoidance. In section 7.2, we

present the performance evaluation of our work In section 7.3, we conclude and

summarize our contributions.

7.1 Limitations of Existing Designs

In the designs presented in previous chapters, we presented an initial frame-

work using multi-rail networks and presented different scheduling policies for their

efficient utilization. We leverage this framework for designing hot-spot avoidance

functionality. However, the existing framework suffers from following limitations:
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• The existing design assumes the uniformity in the network bandwidth for

different paths. It also does not provide a mechanism for estimation of path

bandwidth.

• A key functionality missing in the existing framework is to leverage the LMC

mechanism for hot-spot avoidance. Using the subnet manager to configure

disjoint paths and their efficient usage is a major functionality, which is added

to the existing framework.

• The existing framework assumes the presence of one network path. However,

it is possible that some of the network paths are being heavily utilized, and

some are being under utilized. Utilizing very few of these paths may not

significantly help to avoid hot-spots. However, utilization of all the existing

paths has practical implications due to startup costs, and accuracy in the

estimation of path bandwidth. We study this issue in detail in our design

and evaluation.

• Increasing number of paths leads to increased memory utilization. In the

existing framework, we did not address the memory scalability issue with in-

creasing number of queue pairs. However, with increasing number of queue

pairs, this issue needs to be addressed. We address this problem using In-

finiBand’s shared receive queue mechanism.

We address each of the above issues in this work. We call our enhanced design,

HSAM (Hot-Spot Avoidance MVAPICH). In the section 4.1, we presented an initial

design for leveraging multi-rail clusters. We use this framework as much as possible

for providing hot-spot avoidance. Specifically, we enhance this framework with
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dynamic scheduling policies, which adjust themselves based on input from other

components of the system. We also enhance the design to support usage of LMC

mechanism to leverage the presence of multiple paths.

7.1.1 Leveraging Multiple Paths Using LMC

Depending upon the communication pattern, presence of other jobs in the

network, it is possible that some paths become hot-spots, while other paths are

left under-utilized. An important mechanism to efficiently use the available paths

is by changing the routing table of each switch block. Using this mechanism,

contention free paths can be created for a particular communication pattern. The

subnet manager allows a user to input its own routing table for different switches,

which can be used for communication. However, this mechanism suffers from the

fact that the optimization can be done only for a single communication pattern.

At the same time, presence of other jobs in the network, exact scheduling of each

MPI task can complicate the generation of user-assisted routing tables.

To overcome the above limitations, we leverage the LID (Local Identifier) Mask

Count (LMC) mechanism of InfiniBand, which allows multiple paths to be created

between a pair of nodes. Using an LMC value of x, we can create 2x paths, with 7

being the maximum value allowed for LMC. We use OpenSM [58], a popular subnet

manager for InfiniBand to configure these paths. Using trace-route mechanism of

InfiniBand, we calculate the exact path (set of switch blocks and ports) taken by

each pair of source and destination LID for different values of LMC. We notice

that the subnet manager is able to configure paths utilizing different spine blocks

in the switch. Hence, LMC mechanism provides us as many contention free paths
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as possible. However, efficient utilization of these paths is dependent upon the

scheduling policy for data transfer. In the next section, we discuss the scheduling

policies used for evaluation.

7.1.2 Adaptive Striping

As we have discussed in section 4.1, it is important to take into consideration

path bandwidth for striping schemes. A simple solution is to use weighted striping

and set the weights of different paths to their respective link bandwidths. How-

ever, this method fails to address the problem of handling hot-spots for different

situations mentioned in the previous sections.

A partial solution to is to carry out a small test during the initialization phase

of MPI applications to determine the path bandwidth. However, in addition to its

high overhead (tests need to be done for every path between every pair of nodes),

it fails to solve the problem for handling varying hot-spots.

In order to solve the last problem, we propose a dynamic scheme for strip-

ing large messages. Our scheme, called adaptive striping scheme, is based on the

weighted striping . However, instead of using a set of fixed weights set at initial-

ization time, we periodically monitor the progress of different stripes in each path

and exploit feedback information from the InfiniBand Layer to adjust the weights

to their near optimal values.

In designing the adaptive striping scheme, we assume the latencies of all paths

are about the same and focus on their bandwidth. In order to achieve optimal

performance for striping, a key insight is that the message must be striped in such

a way that transmission of each stripe finishes at about the same time. This results
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in perfect load balancing and minimum message delivery time. Our scheme period-

ically monitors the time each stripe spends in each path and uses this information

to adjust the link weights so that the striping distribution becomes more balanced

and eventually attains near optimality. This feedback based control mechanism is

illustrated in the figure 7.1

InfiniBand Layer

Striped 
Messages

Rendezvous
RDMA Data
Messages

Completion of
Different Stripes

Communication

Scheduler

Scheduling

Policies

Completion

Filter
AdjustmentsPolicy

WeightStriping
Weighted

Figure 7.1: Feedback Loop in Adaptive Striping

In InfiniBand, a completion notification is generated after message delivery to

the destination and the corresponding acknowledgment receipt. The Completion

Filter of our implementation, helps the progress engine to poll and check for new

completion notifications and takes appropriate action. To calculate the delivery

time of each stripe, we record the start time for a stripe, when it is handed over to

the InfiniBand Layer for transmission. On the finish of the delivery, a completion

notification is generated by the InfiniBand Layer. The Completion Filter compo-

nent then records the finish time and calculates the delivery time. After collecting

the delivery time for each message stripe, weights are re-calculated and sent to the

Scheduling Policies component to adjust the policy. Later, the Communication

Scheduler uses the new policy for striping.
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Next we discuss the details of weight adjustment. Our main idea is to have a

fixed number of total weights and redistribute them based on feedback information

obtained from different stripes of a single message. Suppose the total weight is

Wtotal, the current weight of path i is Wi, the path bandwidth of path i is BW i,

the message size is S, and the stripe delivering time for path i is ti, we then have

the following:

BW i =
S · Wi

Wtotal

ti
=

S · Wi

ti · Wtotal

(7.1)

Since Wtotal and S are the same for all paths, we have the following:

BW i ∝
Wi

ti
(7.2)

Therefore, new weight distributions can be done based on Equation 7.2. Sup-

pose W ′

i is the new weight for path i, the following can be used to calculate W ′

i :

W ′

i = Wtotal ·

Wi

ti
∑

k∈paths
Wk

tk

(7.3)

In Equation 7.3, weights are completely redistributed based on the feedback

information. To make our scheme more robust to fluctuations in the system, we

preserve part of the historical information. Suppose α is a constant between 0 and

1, we have the following equation:

W ′

i = (1 − α) · Wi + α · Wtotal ·

Wi

ti
∑

k∈paths
Wk

tk

(7.4)

In our implementation, the start times of all stripes are almost the same and

can be accurately measured. However, completion notification is generated by the
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InfiniBand Layer asynchronously. Hence, we can record the finish time of a stripe

only as soon as its completion notification is found. Since MPI progress engine

processing can be delayed due to application’s computation, we can only obtain an

upper bound on the actual finish time and the resulting delivery time ti is also an

upper bound. Therefore, the question arises, how accurately can we estimate the

delivery time ti for each path. To address this question, we consider three cases:

1. Progress engine is not delayed. In this case, accurate delivery time can be

obtained.

2. Progress engine is delayed and some of the delivery times are overestimated.

Based on Equation 7.4, in this case, weight redistribution will not be opti-

mal, but it will still improve performance compared to the original weight

distribution.

3. Progress engine is delayed for a long time and we find all completion notifi-

cations at about the same time. Based on Equation 7.4, this will essentially

result in no change in the weight distribution.

We can see that in no case will the redistribution result in worse performance

than the original distribution. In practice, case 1 is the most common and accurate

estimation can be expected most of the time.

7.1.3 Selecting Number of Paths

In topologies like Fat Tree, there are multiple paths available for communica-

tion between every pair of processes, even though there is only one physical port
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available at the end node. Using the maximum value of LMC allowed by Infini-

Band specification, we can create 128 virtual paths. However, some of the paths

may physically overlap with each other. As per the InfiniBand specification con-

nection model, a queue pair/path is needed to use them simultaneously. Once a

path is specified for a queue pair, it cannot be changed during the communication

(An exception is Automatic Path Migration for InfiniBand, which is beyond the

scope of this work). However, there are some practical considerations in leveraging

all the paths simultaneously:

• Sending a message stripe through each path requires posting a correspond-

ing descriptor. Hence, this may lead to significant startup overhead with

increasing number of paths.

• For each message stripe, a completion is generated on the sender side. With

increasing number of paths, more completions need to be handled, which can

potentially delay the progress of the application.

• The accuracy of path bandwidth is significantly dependent upon the discov-

ery of the completions, as mentioned in the adaptive striping policy section.

With increasing number of paths, the accuracy may vary significantly.

• The memory usage increases with increasing number of paths. We handle

this issue in the scalability section later.

Hence, a judicious selection of number of paths is imperative to performance and

memory utilization of the MPI library. In the next section, we discuss the memory

utilization aspect of our design.

86



7.1.4 Scalability Aspects of HSAM

In the previous section, we discussed that increasing number of paths leads

to more memory utilization. Essentially, the memory utilization per path can be

represented as follows:

memqp = memqp−context + nes ∗ memsqe + ner ∗ memrqe (7.5)

where memqp is the connection memory usage per path, nes and ner are number

of send and receive work queue elements, memsqe and memrqe are the sizes of each

send queue and receive queue elements respectively. memqp−context is the size of

each QP context, corresponding to each path in our design.

To make our design more scalable, we use the shared receive queue mechanism

of InfiniBand to handle the scalability aspect for receive queue. In the previous

design, receive queues corresponding to different processes was shared. We allow

different paths for the same set of processes to be attached to the shared receive

queue. As a result the memory usage can be represented as:

memqp = memqp−context + nes ∗ memsqe (7.6)

Although our current design focuses only on reducing the memory usage for

receive queue, additional methods such as setting up connections only as needed

(on-demand connection management) have also been shown to significantly reduce

memory usage and can be used in conjunction with our design. In future, we plan

to address these issues.
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7.2 Performance Evaluation

In this section, we evaluate the performance of HSAM and compare its per-

formance with the existing solution (referred to as Original for the rest of the

section). We use 1 process per node (hence 48 process run is referred to as 48x1).

Our evaluation consists of two parts. In the first part, we show the performance

benefit we can achieve compared to the original MPI implementation using collec-

tive communication. In the second part, we provide an evaluation of our design

with MPI applications. We use NAS Parallel Benchmarks [8] and PSTSWM [4], a

shallow water modeling application, for our evaluation.

7.2.1 Experimental Testbed:

Our testbed cluster consists of 64 nodes; 32 nodes with Intel EM64T architec-

ture and 32 nodes with AMD Opteron architecture. Each node with Intel EM64T

architecture is a dual socket, single core with 3.6 GHz, 2 MB L2 cache and 2 GB

DDR2 533 MHz main memory. Each node with AMD Opteron architecture is a
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dual-socket, single core with 2.8 GHz, 1 MB L2 cache and 4 GB DDR2 533 MHz

main memory. On each of these systems, the I/O bus is 8x PCI-Express with

Mellanox MT25208 dual-port DDR Mellanox HCAs attached to 144-port DDR

Flextronics switch. The firmware version is 5.1.400. We have used Open Fabrics

Enterprise distribution (OFED) version 1.1 for evaluation on each of the nodes

and OpenSM as the subnet manager, distributed with this version.

7.2.2 Performance Benefits of HSAM with Collective Com-

munication:

Figure 7.2 shows the ping-pong latency achieved using 2 processes by a 4-byte

message with increasing value of LMC. The motivation is to understand the impact

of increased routing table size (present on each switch block), with increasing value

of LMC, since the number of entries in the table grow exponentially. We notice

that increasing LMC does not impact the latency. The figure also represents the

performance, when both processes are located on same block (1-hop) and different

89



blocks (3-hops). We notice that 3-hops increases the latency by 0.25 us, an increase

of around 0.12 us every switch block.

In Figure 7.3, we show the performance of MPI Alltoall Personalized for 48 pro-

cesses. We compare a combination of HSAM parameters; number of paths, striping

policy, LMC use with original implementation. In our design, the completion filter

waits for the completion of all stripes, before notifying the application with the

completion. The time is dominated with the slowest stripe, even though other

stripes may have finished earlier, and as a result the benefit from using hot-spot

free path is nullified. Hence, using even striping does not improve the performance

compared to the original implementation. For rest of the evaluation, we only fo-

cus on adaptive striping policy with HSAM. Using adaptive striping with HSAM

improves the performance significantly (both 2 paths and 4 paths).

However, using 8 paths, we see a performance degradation in comparison to the

original design. We have noticed that inaccuracy in estimation of path bandwidth

is due to a combination of factors mentioned in the design section. Particularly,

pulling off multiple completions from the completion queue adds significantly to

the inaccuracy. However, we see an improvement in performance with 4 paths

compared to the two paths case and an improvement of 25% with 4 paths compared

to the original case. Hence, for most of our evaluation, we use 4 paths by default

and the adaptive scheduling policy for our evaluation.

Figure 7.6 shows the results for 24 processes with HSAM. We can clearly notice

that the corresponding dark spots in the original case are much lighter with HSAM.

We are able to improve the average bandwidth by 21%.
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7.2.3 Performance Benefits at Application Level

In this section, we present the results for MPI applications with HSAM. We

use NAS Parallel Benchmarks [8] and PSTSWM [4]. For NAS Parallel Bench-

marks, we focus on the FT benchmark, which uses MPI All-to-all personalized

for communication. We use class B and class C problem size for evaluation. For

PSTSWM, we use medium problem size for evaluation. Although not included

in this evaluation, we have not seen performance degradation for rest of the NAS

Parallel Benchmarks using HSAM.
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Figure 7.10: Performance Evaluation with PSTSWM

Figure 7.8 shows the results for FT benchmark, Class B problem size, for 16,

32 and 64 processes. We compare the performance of HSAM’s adaptive striping

with the original policy. Using 16 processes, we do not see any improvement, since

the contention in the network is negligible. However, with 32 processes, we see

an improvement of 8% with HSAM and 6% with 64 processes, compared to the

original design. Figure 7.9 shows the results for Class C problem size with FT

benchmark. With 32 processes, we see an improvement of 9%. The increased
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improvement is attributed to the increased size of data transfer during MPI All-

to-all phase. With 64 processes, an improvement of 8% is observed, compared to

the original design.

Figure 7.10 shows the results for 36, 48 and 64 processes respectively with

PSTSWM. We notice that using HSAM, we can improve the performance for 64

processes by around 4%. For rest of the combinations, we do not see significant

performance improvement.

7.3 Summary

In this paper, we have designed an MPI functionality which provides hot-spot

avoidance for different communication patterns, without apriori knowledge of the

pattern. We have leveraged LID Mask Count (LMC) mechanism of InfiniBand to

create multiple paths in the network, and studied its efficiency in creation of con-

tention free routes. We have also presented the design issues (scheduling policies,

selecting number of paths, and scalability aspects) associated with our MPI func-

tionality. We have implemented our design and evaluated it with collective com-

munication and MPI applications. On an InfiniBand cluster with 64 processes, we

have observed an average improvement of 23% for displaced ring communication

pattern. For collective communication like MPI All-to-all Personalized, we have

observed an improvement of 27%. Our evaluation with NAS Parallel Benchmarks

has shown an improvement of 6-9% in execution time for FT Benchmark, with

class B and class C problem size.
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CHAPTER 8

ENHANCED DESIGN FOR AVOIDING HOT-SPOTS
WITH BETTER NETWORK PATHS UTILIZATION

In the previous chapter, we presented the HSAM functionality, which is capa-

ble of providing network hot-spot avoidance by leveraging multiple paths in the

network. The primary short-coming although is its inability to leverage more than

four paths in the network, due to striping overhead. As a result, we were not able

to leverage the presence of other paths, with lesser contention.

In this chapter, we re-visit the adaptive approaches for hot-spot avoidance. A

useful approach for hot-spot avoidance is Automatic Path Migration. We discuss

the benefits and limitations of this approach. Primarily focusing on the short-

comings of HSAM functionality, we present a new MPI functionality, which per-

forms Batch Based Striping and Sorting (BSS) to leverage paths un-used by HSAM.

We implement our design and evaluate it with different MPI benchmarks. The ex-

perimental evaluation shows that the BSS functionality is able to outperform the

HSAM functionality, show-casing the BSS capabilities.

The rest of the chapter is organized as follows. In section 8.1, we re-visit the

adaptive approaches to hot-spot avoidance. In section 8.2, we present the design

for BSS based MPI design. In section 8.3, we present the implementation details
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of BSS, which is followed by performance evaluation in section 8.4. In section 8.5,

we conclude and summarize our results.

8.1 Adaptive Approaches for Hot-Spot Avoidance

In this section, we discuss the solution space with adaptive approaches for

hot-spot avoidance. We begin with discussion of an approach which leverages

Automatic Path Migration (APM) [26, 57]. We also discuss “Hot-Spot Avoidance

with MVAPICH (HSAM)” [42, 56] proposed in the previous chapter.

8.1.1 Automatic Path Migration Based Hot-Spot Avoid-
ance

As discussed in the background section, APM uses an alternate route for net-

work failover. In addition, it allows a user to leverage the alternate path for load

balancing. Hence, this approach can also be used for hot-spot avoidance. A user

can specify an alternate path using the LMC mechanism and request the alternate

path to be loaded. Figure 8.1 illustrates this approach. Once the primary path has

HCA HCA
Adapter

Transition
Causes

Adapter
Causes

Transition

Port1 Port1

Process 1 Process 2

Primary Path

Alternate Path

Figure 8.1: APM Based Hot-Spot
Avoidance Approach

been detected as a hot-spot, a user may request the transition to be performed.

This approach may also be combined with multi-pathing, with a subset of paths

95



as primary paths of communication and the other subset as their alternate paths.

However, APM state transitions are expensive and transition of alternate path to

primary path of communication may not be feasible for avoiding hot-spots [57].

APM affects the on-going communication significantly, and as a result, the estima-

tion of path bandwidth for the communication instances may be fairly inaccurate.

Hence, we do not implement and evaluate this approach in this chapter. We plan

to re-visit this approach with upcoming InfiniBand products like ConnectX [3],

which promises to be a low overhead solution for APM.

8.1.2 Current Software Based Approaches and Limitations

Recent literature reflects the efforts done by researchers for providing hot-spot

avoidance with InfiniBand networks. We primarily focus on the HSAM scheme [56].

Under this approach, reliable connection transport model is used for data transfer

and completion notification mechanism is used for path bandwidth estimation [33].

Multiple paths are defined using the LMC mechanism and weights are adjusted

according to the bandwidth estimations. This approach provides significant ben-

efits for collective communication primitives as compared to the no-multi-pathing

case. However, the HSAM [56] scheme suffers from the following limitations:

• The HSAM scheme is able to use only a subset of paths for communica-

tion and increase in the number of paths beyond four leads to performance

degradation [56] due to increased striping overhead.

• The HSAM scheme statically selects a number of paths to be used for com-

munication. Although weights for different paths are updated adaptively, all
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selected paths are used even though some of the paths may have very low

bandwidths compared to the best path.

• Although the HSAM scheme potentially provides benefits for sequential map-

ping of MPI ranks to nodes, it is not clear, whether the benefits are available

to different mappings of processes.

To overcome the above limitations, we use a novel approach for hot-spot avoid-

ance. We use a Batch based Striping and Sorting scheduling policy. This approach

is described in the upcoming section.

8.2 BSS Policy Based MPI Design

In this section, we propose the BSS scheduling policy followed by its integration

with the MPI layer. We selected MVAPICH2 [42] as the framework of our design

due to its advanced features and presence of support for multi-rail configurations

(multiple adapters and ports).

8.2.1 The BSS Scheduling Policy

In this section, we propose the BSS scheduling policy. Let npaths represent the

total number of paths between every pair of processes and nbatch represent the

batch of paths used during a communication instance for a message. Each BSS

configuration is represented as a 2-tuple: (npaths, nbatch), where nbatch ≤ npaths.

These values can be specified by the user. However, as discussed later, increasing

npaths beyond the number of physically disjoint paths may not be beneficial. Let

Wtotal represent the aggregated weight of npaths and wi represent the weight of the

ith path between a pair of processes. To begin with, we initialize all the paths
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with equal weights.

wi =
Wtotal

npaths

(8.1)

Since BSS policy is topology and communication pattern agnostic, this weight as-

signment reflects the generic nature of BSS policy. This by no means is a limitation

of the framework and other initial weight assignments may be plugged in as well.

For every communication instance, BSS policy selects the first nbatch of paths from

a non-decreasing weight sorted array. The data is striped on these paths propor-

tional to their weights. Let Wbatch denote the total weight of the paths in the batch

and M be the size of the data to be transferred. The ith path sends wi

Wbatch

· M

amount of data. Let ti denote the time taken by the stripe on the ith path. As

mentioned in the previous chapter, ti is calculated using the data delivery notifi-

cation mechanism of reliable connection transport model. The updated weight w′

i

of the path is represented by the following equation:

w′

i = Wbatch ·

wi

ti∑
k∈batch

wk

tk

(8.2)

The variance in bandwidth estimation is alleviated using a linear model of path

updation.

w′

i = (1 − α) · wi + α · Wbatch ·

wi

ti∑
k∈batch

wk

tk

(8.3)

To enable faster convergence on the paths to use, we use a higher value of α. Once

the paths are updated, the array of path weights is sorted again. We also note

that each communication instance only impacts the weights of the paths which

have been used during the communication. Although, it does affect the ordering

of the paths to be used for next iteration. In this regard, our weight updation

policy is rather a heuristic, where the optimal algorithm would update the local
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weights keeping global weights into account. However, the latter approach is not

scalable, since it requires addition global exchange of weight arrays. Hence, we

only implement the heuristic for our evaluation.
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Figure 8.2: BSS Based MPI Design
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8.2.2 BSS Policy Based Communications Layer

In this section, we present the BSS policy based design for communications

layer. The BSS communications layer has following components: Message Sched-

uler, Scheduling policies and BSS Filter. The message scheduler is responsible for

striping the data and requesting the data transfer on nbatch paths. The scheduling

policies component is responsible for specifying the scheduling policy and accept-

ing user parameters. We allow the user to specify nbatch, and also specify the

maximum number of paths to be used for communication. The scheduling policies

component has been discussed in detail in the previous chapters.

Our path bandwidth estimation leverages the completion notification mecha-

nism with the reliable connection transport model of InfiniBand. The BSS com-

pletion filter is responsible for time-stamping the acknowledgments of multiple
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stripes, weight updation and sorting of the weights. It is also responsible for the

notification to the MPI protocol layer, once all the stripes of a message have been

received.

8.3 Detailed Design Issues

In this section, we present the detailed design issues with the BSS scheduling

policy.

8.3.1 Selecting Number of Paths:

Figure 8.4 shows the block diagram of the switch used in our performance eval-

uation. A maximum of twelve physically independent paths are available between

every pair of nodes. Using the ibtracert mechanism provided by InfiniBand access

layer, we have concluded that the subnet manager is able to configure these paths

for usage. Hence, we use twelve as the maximum number of paths with BSS. In

addition, we also evaluate other BSS configurations (4,2), (8,2) and (12,3).

2

13

144 Port Switch

Available To End Node

12 Leaf Blocks

12 Spine Blocks

To Spine Blocks

1 3

14

Figure 8.4: 144-port Switch Block Di-
agram
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8.3.2 Scalability Issues:

The scalability issues with reliable connection transport model have been a

focus of research for many researchers [42, 45]. Most of the researchers have focused

on scalability issues with “no-multi-pathing” case. Multi-pathing requires creation

of multiple QPs, which aggravates this issue significantly. Although, beyond the

scope of this paper, we hereby briefly mention possible solutions for alleviating

these problems:

• On-demand connection management with unreliable datagram based ap-

proach for small messages and reliable connection for large messages.

• Maintaining an upper bound on the number of reliable connection queue

pairs. This would provide an upper bound on the connection memory taken

by the MPI library [42, 45].

• ConnectX [3], the next generation InfiniBand promises to provide QP shar-

ing benefits for processes on the same node. This would be beneficial for

clusters based of many-core architectures and reduce the connection memory

consumption significantly.

8.3.3 Integration with MPI Rendezvous Protocol:

Our design focuses on data transfer involving large messages. For small mes-

sages, software based approaches for hot-spot measurement are not feasible. In

future, we plan to work on hot-spot avoidance for small messages. Each ren-

dezvous data transfer involves a send-handle and receive-handle data structure on
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the sender and receiver side, respectively. These data structures are used for notifi-

cation upon the completion of data transfer on sender and receiver side. Compared

to the HSAM [56] scheme, each data transfer in the BSS policy involves different

Wbatch value. To address this issue, we piggyback Wbatch value with the rendezvous

start message. This is further illustrated in Figure 8.3. The receive-handle stores

this value at the receipt of the rendezvous-start message. Since RDMA is used for

actual data transfer, the receiver is un-aware of the individual data size written to

its memory by different stripes. Hence, we piggyback the wi

Wbatch

· M information

with the ith finish message. Once the aggregated value of weight received from

different finish messages is equal to the Wbatch, the MPI protocol layer is notified

of the completion of data transfer.

8.3.4 Discussion

The design of the BSS policy discussed in the previous sections is completely

topology agnostic. As a result, every process pair starts with the same paths to

begin with (since all path weights are equal). However, in some cases it may be

possible to utilize a heuristic, where different process pairs may start with different

path IDs to begin with for lesser contention with no multi-pathing case. OpenSM,

the subnet manager used in our implementation configures disjoint paths for every

pair of ports. However, it does not consider the paths already assigned to a pair of

ports for configuring the rest of the paths. A randomized relationship is currently

observed among paths between different set of ports. As a result, we did not apply

any heuristic as a starting point for BSS policy.
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Another point for discussion is comparing BSS policy with the optimal case. An

ideal case would be the presence of only one job in the network and the application

has a single communication pattern. In addition, the mapping of MPI ranks to

nodes is also known. For MPI Alltoall, which represents very dense communication

in the network, we wanted to evaluate the optimal case. However, we noticed

that we could not find a completely disjoint path for every iteration. The main

problem stems from the fact that the forward and reverse paths between a pair of

InfiniBand ports do not follow the same set of links. At the same time, the path

ID to be used by processes for a QP has to be the same, as per the InfiniBand

specification [26]. Hence, we did not compare the performance with optimal case.

As mentioned above, we are working on a routing engine, which can generate

completely contention free paths for the case discussed above.

8.4 Performance Benefits with the BSS Policy Based MPI

Design

In this section, we evaluate the performance of the BSS policy using a 64 node

InfiniBand cluster. Different configurations of the BSS policy ((4,2), (8,2) and (12,

3)) are evaluated and compared with the HSAM [56] design. Although, more com-

binations are possible, we show the results for best value of nbatch, keeping npaths

constant. In section 8, we mentioned that HSAM is a special case of the BSS

scheme, when npaths and nbatch are same. We also compare the performance of the

BSS policy with no multi-pathing case, the scenario commonly used in most MPI

implementations over InfiniBand. This is referred with “Original” in the perfor-

mance graphs, unless mentioned otherwise. Our evaluation consists of two parts.

In the first part, we use Intel MPI Benchmark [2] for collective communication. In
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the second part, we focus on NAS Parallel Benchmarks [8], particularly, Fourier

Transform, which primarily uses MPI Alltoall. We begin with a brief description

of our experimental testbed.

8.4.1 Experimental TestBed

Our testbed cluster consists of 64 nodes: 32 nodes with Intel EM64T architec-

ture and 32 nodes with AMD Opteron architecture. Each node with Intel EM64T

architecture is a dual socket, single core with 3.6 GHz, 2 MB L2 cache and 2 GB

DDR2 533 MHz main memory. Each node with AMD Opteron architecture is a

dual-socket, single core with 2.8 GHz, 1 MB L2 cache and 4 GB DDR2 533 MHz

main memory. On each of these systems, the I/O bus is x8 PCI-Express with

Mellanox [3] MT25208 dual-port DDR Mellanox HCAs attached to 144-port DDR

Flextronics switch. The firmware version is 5.1.400. We have used Open Fabrics

Enterprise distribution (OFED) version 1.1 for evaluation on each of the nodes

and OpenSM as the subnet manager, distributed with this version.

8.4.2 Performance Evaluation with Collective Communi-
cation

In this section, we present the evaluation of BSS, HSAM and Original for var-

ious collective communication patterns. We use MPI Alltoall, MPI Allgather and

MPI Allreduce for collective communication. We also evaluate different mappings

of process ranks to nodes in the network:

• Sequential Mapping: The processes are mapped to the nodes in a sequential

fashion. As an example, let the ith output switch port be represented by
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porti, as shown in the Figure 8.4. A process with MPI rank i is scheduled

on porti.

• Default Mapping: The processes are assigned randomly to the nodes. This is

also the default behavior of various program launchers (Multi-purpose dae-

mon (MPD) is an example used by MVAPICH2). However, for a consistent

comparison between different configurations of BSS, HSAM and Original im-

plementations, same mapping is used. Default mapping also represents the

nodes assigned to a job, due to fragmentation in the cluster aggravated by

the completion of previous jobs.

Figures 8.5 and 8.6 shows the results for MPI Alltoall with 48 and 64 processes

respectively. Pair-wise exchange algorithm is used for MPI Alltoall [30]. However,

the exchange partner for non-power-of-2 case (48 processes) is different from power-

of-2 case (64 processes). We see that BSS (12, 3) performs the best, reducing

the latency to half in comparison to the original case. Compared to the HSAM,

latency decreases by 27%. Compared to the BSS (4, 2) case, the improvement in
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performance is 15%. The improvement in performance is due to the adaptation

of path weights at the run-time by the BSS scheme. The HSAM scheme is also

able to adapt to the path weights, but it does not use all the paths and ends up

with sub-optimal paths for usage. For 64 process case, compared to the HSAM

scheme, the improvements with the BSS scheme are 16%, 31% and 32% for (4,

2), (8, 2) and (12, 3) cases respectively. Figures 8.7 and 8.8 show the results for

MPI Alltoall with a default mapping of processes. We see that the benefits are

significant compared to the Original case as well as HSAM. Hence, BSS provides

benefits with different scheduling of processes.
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Figures 8.9 and 8.10 show the results for MPI Allgather with 48 and 64 pro-

cesses respectively. For the message sizes presented in these figures, MPI Allgather

uses the ring algorithm [30]. Looking from the topology perspective, each switch

block has exactly one out-bound and in-bound communication. Rest of the com-

munication is within a leaf block, as shown in Figure 8.4. As a result, insignificant

contention is observed, and all the cases perform similarly. However, under random
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allocation of nodes to a job, the number of in-bound and out-bound communica-

tion instances increases and the contention increases significantly. Figure 8.11 and
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Figure 8.9: MPI Allgather(48x1), Se-
quential Mapping
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Figure 8.10: MPI Allgather (64x1),
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Figure 8.12 show the results for such a scenario. For 32 process case, we see that

the MPI Allgather latency reduces by 32% from the original case. Albeit, different

combinations of the BSS scheme do not show improvement compared to each other,

since the amount of contention in the network is lesser compared to MPI Alltoall.

However, for 64 processes, default distribution of processes leads to significantly

more contention than 32 processes. As a result, the improvement compared to

Original and the HSAM scheme is 43% and 32%, respectively.

Figures 8.13 and 8.14 show the results for MPI Allreduce with 48 and 64 pro-

cesses respectively. For power-of-2 number of processes, MPI Allreduce uses MPI

Reduce-Scatter followed MPI Allgather. MPI Reduce-Scatter itself uses pairwise

exchange algorithm for the message sizes shown in the graph. Hence, one of the

steps is hot-spot free (MPI Allgather, as shown above), however the other step has

contention (pair-wise exchange). Hence, for 64 processes, we see benefits in the
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Figure 8.12: MPI Allgather (64x1),
Default Mapping

first phase. For 48 processes, recursive doubling algorithm is used. As a result, no

contention is observed.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1M256K64K16K

La
te

nc
y 

(u
s)

Message Size (Bytes)

Original
BSS (12, 3)

BSS (8, 2)
BSS (4, 2)

HSAM, 4 Paths

Figure 8.13: MPI AllReduce (48x1),
Sequential Mapping
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Figure 8.14: MPI AllReduce (64x1),
Sequential Mapping

Figures 8.15 and 8.16 show the results for MPI Allreduce with default mapping

of processes. Even though the algorithms remain the same, the amount of con-

tention increases and as a result different configurations of BSS show significant

benefits in comparison to HSAM and Original implementations.
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Default Mapping

8.4.3 Performance Evaluation with MPI Applications

Figures 8.17 and 8.18 represent the results for NAS Parallel Benchmarks [8]

with Fourier Transform with Class B and Class C problem size respectively. Other

NAS Parallel Benchmarks do not show any degradation in performance, as shown

in the Figure 8.19. In all experiments, we only use the sequential mapping. As

seen in the previous section, sequential mapping of processes produces the least

performance improvement. We expect that the benefits shown with the sequential

mapping of processes are the least a job will achieve for any mapping of processes.

Fourier Transform benchmark uses collective communications primitives like

MPI Alltoall, MPI Reduce and MPI Bcast. For MPI Alltoall, we observed signifi-

cant performance benefits in the previous section. We notice that the benefits are

transferred to the Fourier Transform benchmark.

For Class B, compared to the Original case, different versions of the BSS policy

show performance benefits ranging from 10%-11% in the execution time. We also

notice that the performance of our implementation of the HSAM scheme performs
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very closely to the results presented in the previous chapter. Different configura-

tions of BSS further improve the execution time by 6-7%. Similar improvements

are seen for both 32 and 64 process case. For Class C problem size, BSS configura-

tions perform similarly. Compared to the original case, BSS configuration improve

the execution time by 13% for 32 process case and 6.5% compared to the HSAM

scheme. Similar performance improvement is observed with 64 process case.

8.5 Summary

In this chapter, we presented enhanced approaches to efficiently utilize phys-

ically independent and paths unused by HSAM. We proposed a novel scheduling

policy, which performs Batch-based Striping and Sorting (BSS) during the ap-

plication execution to adaptively eliminate the path(s) with low bandwidth. We

discussed the detailed design issues including the scalability aspects. We imple-

mented our design and evaluated with collective communication primitives and ap-

plications. We compared the performance of different BSS configurations, the best

configuration of the HSAM [56] scheme and the original case (no multi-pathing at

all). Using MPI Alltoall, we achieved an improvement of 27% and 32% in latency

with different BSS policy configurations compared to the best configuration of the

HSAM scheme on 32 and 64 processes, respectively. A default mapping of tasks in

the cluster shows similar benefits. Using MPI Allgather and MPI Allreduce with a

default mapping of tasks, an improvement of 32% in latency is observed for 64 pro-

cesses. Using the Fourier Transform benchmark from NAS Parallel Benchmarks [8]
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with different problem sizes, the execution time can be improved by 5-7% with dif-

ferent BSS policy configurations compared to the best HSAM configuration and

11-13% from the original implementation.
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CHAPTER 9

NETWORK FAULT TOLERANCE USING
AUTOMATIC PATH MIGRATION

As discussed in the previous chapters, InfiniBand is being widely accepted as

the next generation interconnect due to its open standard and high performance.

As a result, clusters based on InfiniBand are becoming increasingly popular, as

shown by the TOP 500 [6] Supercomputer rankings. However, increasing scale

of these clusters has reduced the Mean Time Between Failures (MTBF) of com-

ponents. Network component is one such component of clusters, where failures

of network interface cards (NICs), cables or switches breaks the existing path(s)

of communication. InfiniBand provides a hardware mechanism, Automatic Path

Migration (APM), which allows user transparent detection and recovery from net-

work fault(s). However, the current InfiniBand literature lacks the understanding

of associated design trade offs with APM and performance analysis.

In this chapter, we design a set of modules; alternate path specification module,

path loading request module and path migration module, which work together for

providing network fault tolerance for user level applications. We integrate these

modules for simple micro-benchmarks at the Verbs Layer, the user access layer

for InfiniBand, and study the impact of different state transitions associated with
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APM. We also integrate these modules at the MPI [38, 39] (Message Passing

Interface) layer to provide network fault tolerance for MPI applications.

The rest of the chapter is organized as follows. In section 9.1, we present the

overall design followed by network fault tolerance modules in section 9.2. In section

9.3, we discuss the interaction of main thread and asynchronous thread. In section

9.4, we present the performance evaluation with MPI applications and Verbs level

benchmarks. We present the summary and conclude in section 9.5.

9.1 Overall Design

In this section, we present the overall design of network fault tolerance modules,

their interactions with a user-level application and the communication layer of a

user-level application. The interaction is shown in Figure 9.1.

Progress Engine

FinalizationInitialization

Communication

Communications Layer

Alt. P.S.M.

Path L.R.M.

Path M. M.

Network Fault Tolerance Layer

User−Level Application (MPI, File−System)

InfiniBand Access Layer

Notification

Figure 9.1: Overall Design of Network Fault Tolerance Modules and Interaction
with User Applications
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For simplicity, we have assumed that the interface between the access layer

and the user-level application consists of a communication layer with the modules;

Initialization Module, Communication Module, Progress Engine and Finalization

Module. For different user-level applications, some of the modules may have more

functionality than the others. Nevertheless, the modules are portable for different

user-level applications (MPI, File-Systems etc).

Figure 9.1 also shows the order in which the network fault tolerant modules can

be called by the communications layer modules. The alternate path specification

module can be called at any point during the execution of the program. The

path loading request module can be called in conjunction with the alternate path

specification module. It can also be called separately during the execution of

the application. The path migration module can be called only if the QP(s) for

which the request is made are in the ARMED state. The notifications for different

transition states of the APM are handled by the network fault tolerance modules.

9.2 Design of Network Fault Tolerance Modules

In this section, we present the modules which form the core in providing network

fault tolerance for our design. There are three modules which work in conjunction;

alternate path specification, path loading request module and path migration module.

The alternate path specification module is responsible for deciding the alternate

path to be used in the presence of network fault(s). The path loading request

module is responsible for requesting the alternate path to be loaded in the path

migration state machine. The path migration module is responsible for transition

of alternate path to the primary path of communication.
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9.2.1 Alternate Path Specification Module

This module is responsible for specifying an alternate path to be used by a

queue pair. The request for alternate path to be used can be done manually, or

automatically by the HCA, should an error occur on the primary path of commu-

nication.

In our design, the alternate path can be specified by the user or chosen auto-

matically by the module. Specification of the alternate path requires providing a

couple of parameters; altDLID (the destination LID of the alternate path), altPORT

(the HCA port for the alternate path), altSRC−PATH−BITS (the LMC value to be

used for the alternate path). A primary benefit of using APM is that the connec-

tion remains established during the transition of path. This is achieved by keeping

qpnum (the QP number) to be the same for the alternate path. An example of

alternate path specification is shown in Figure 9.2. The primary path and the

alternate path can take any values (the alternate path can be same as the primary

path of communication). As shown in the figure, the first case uses the alternate

port as the alternate path. The second case uses the same port, however an al-

ternate path in the network, which can be used by specifying a different value for

altSRC−PATH−BITS. In this chapter, we select the other port of the HCA as the

altPORT and corresponding LID as the altDLID, if the other port is also available

for communication. Otherwise, we use a different path in the network by selecting

a different altSRC−PATH−BITS value from the primary path. In the latter case, the

altDLID and altPORT remain the same as the primary path.
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Figure 9.2: An Example of Primary and Alternate Path of Communication used
by PSM

9.2.2 Path Loading Request Module

This module is responsible for initiating the loading of the alternate path for

a QP. The module accepts a parameter for the list of the processes, for which this

step needs to be done. This module can be invoked during anytime of the program

execution after the RESET-INIT transition sequence has been completed for the

QP(s). The completion of the request can be done using asynchronous events or

polling mechanism. We discuss the trade offs of these approaches as follows.

Completion of Path Loading Request: The completion of the request for

alternate path can be done using notification mechanism. Alternatively, the Verbs

API provides a query− qp function call to check the path migration state of a QP.

Using the query−qp mechanism, we can ascertain the path migration state of a QP

(path migration state should be ARMED to call path migration module, should be

migrated to call the path loading request module). We have noticed that the cost

of querying a QP is higher than the overhead generated with the asynchronous
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notification. Hence, we use an asynchronous thread based notification handling of

these events. The completion of the request(s) is notified by asynchronous event(s),

which we refer to as the eventARMED in this paper.

9.2.3 Path Migration Module

This module is invoked when a user wants to use the alternate path to be

used as a primary path of communication, in the absence of a network fault. This

functionality is useful in providing load balancing with the available paths. Alter-

natively, if an error occurs during transmission, the HCA requests the alternate

path to be loaded as the primary path of communication, without intervention from

the user application. This module assumes that the path loading request module

has successfully loaded the alternate path, and the alternate path is in a healthy

state. The completion of this sequence is notified with the help of asynchronous

events, which are referred as eventMIGRATED in this work. The asynchronous

thread discussed in the previous section is enhanced to handle these events. In the

performance evaluation section, the invoking of this module is referred by Armed-

Migrated legend.

9.3 Interaction of Main Execution Thread and the Asyn-

chronous Thread With Network Fault Tolerance Mod-
ules

In this section, we present the interactions of Main Execution Thread and

the Asynchronous Thread with the Network Fault Tolerance Modules. Figure 9.3

shows the possible interactions. The interactions from the main execution thread

are shown with solid lines, the interactions with asynchronous thread are shown
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with dotted lines. Although, both threads can interact with the network fault

tolerance modules, the main execution thread can execute the modules at any stage

of the application execution. The asynchronous thread can call the path migration

module on the occurrence of eventARMED. On the occurrence of eventMIGRATED,

the asynchronous thread can call alternate path specification module and path

loading request module or the alternate path specification module only. We limit

the asynchronous thread to execute the modules only at the occurrence of events,

since the thread is active only on the occurrence of events.

Main Execution Thread (MPI/Verbs) Asynchronous Thread

T
im

e

Request Module
Path LoadingPath Migration

Module

Alternate Path
Specification Module

event

event
MIGRATED

ARMED

Figure 9.3: Interaction of Network Fault Tolerance Modules with Main Execution
Thread and Asynchronous Thread

9.3.1 Integration of Network Fault Tolerance Modules at
Verbs and MPI Layer

We implement our network fault tolerance modules, so that various user level

applications can leverage them without any changes to the modules specific to
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the application. For the micro-benchmarks at the Verbs Layer, we extend the

micro-benchmark suite discussed in our previous work [33].

9.4 Performance Evaluation with the APM Based Network
Fault Tolerance Modules

In this section, we evaluate the performance of our Network Fault Tolerance

modules over InfiniBand. At the Verbs layer, we design a ping-pong latency test

and a computation test. We study the impact on performance for different tran-

sition states in APM, when they are requested at different points during the ex-

ecution of the test. This is followed by the study with the MPI applications and

the impact of these state transitions on the execution time, in the absence and the

presence of faults. We begin with a brief overview of our experimental testbed.

9.4.1 Experimental Testbed

Our Experimental Testbed consists of a set of Intel Xeon nodes each having a

133 MHz PCI-X slot. Each node has two Intel Xeon CPUs running at 2.4 GHz ,

512 KB L2 cache and 1 GB of main memory. This cluster uses 2nd Generation

MT23218 4X Dual Port HCAs from Mellanox [3]. We used the Linux 2.6.9-15.EL

kernel version [5] and Verbs API (VAPI) from Mellanox provided with the In-

finiBand Gold CD (IBGD). The HCA firmware version used is 3.3.2. The nodes

are connected with a 144-port Single Data Rate (SDR) switch. The switch uses

OpenSM; a popular subnet manager provided with IBGD. Since each HCA has

two ports, we connect both ports to the switch, and use first port as the primary

path and second port as the alternate port for communication.
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9.4.2 Evaluation of the Network Fault Tolerance Modules
at the Verbs Layer

In this section, we evaluate the performance of the network fault tolerance

modules at the Verbs layer. To study this performance, we design a ping-pong

latency test. The test uses two processes: sender and receiver. The sender posts a

send descriptor corresponding to the ping message and posts a receive descriptor

for the pong message (to be sent by the receiver). The sender then polls on the

completion queue for receiving a receive and a send completion queue entry (CQE)

each. The receiver polls on its completion queue for a receive CQE. Once a receive

CQE is obtained, the receiver sends a pong message back to the sender. This step

is repeated for a large number of iterations. The sender reports the latency as the

half of the total time for above operation. To understand the impact on a large

scale cluster, we create multiple QPs between these processes. These QPs are used

in a round-robin fashion for communication. The legend corresponding to original

is the case when none of the network fault tolerance modules are invoked and 1

QP is used.
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In Figure 9.4 and Figure 9.5, we present the time consumed in INIT-RTS

transition sequence, when the alternate path specification module and the path

loading request module are invoked during the RTR-RTS phase. We compare its

performance with the original case. We notice that the total time taken by each

of the lines is linear with increasing number of queue pairs (the x-axis is a log

scale). An increased time in execution by around 15% is noticed compared to the

original case. These graphs reflect the timings for requesting the APM sequence.

The completion of these requests is notified with the help of asynchronous events.

For all the remaining tests, first port is used as the primary path of communication

and the second port is used as the alternate path of communication for all QPs.
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9.4.3 Impact of PSM and LRM on QP Transitions

In Figure 9.6 and Figure 9.7, we present the time consumed in Migrated-Armed

and Armed-Migrated transition sequences with the increasing number of QPs be-

tween the processes. To calculate the timings for Migrated-Armed transition, the

alternate path specification module is invoked during INIT-RTR phase and time is

calculated till eventARMED for all QPs is received by the asynchronous thread. For

calculating the time for the Armed-Migrated transition, path migration module is

invoked for all QPs. Once the asynchronous thread receives eventMIGRATED for all

QPs, the shared data structures between the main thread and the asynchronous

thread are updated. A linear trend is observed with the increasing number of QPs

in these transitions. For small number of QPs, Armed-Migrated transition takes

around 30% more time than Migrated-Armed transition. For larger number of

QPs, the time reduces to around 16%. The main purpose of the above tests is

to calculate the maximum penalty observed by a user-level application. However,

since these requests are non-blocking, it remains to be seen, how these transitions

impact the ongoing communication.

9.4.4 Impact of Network Fault Tolerance Modules on La-
tency

Figure 9.8 compares the performance of the original case with different tran-

sition sequences using the ping-pong latency test. We slightly modify the test to

report the latency observed at every iteration to clearly understand the impact of

different transitions on the latency. In our evaluation, we note that the latency

observed increases, till all the events corresponding to a transition sequence are
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received. For those latency values, we calculate the average and report them in

the figure. We have also observed that the number of iterations in the test, which

have impact on latency is very close to the number of QPs for which the transition

is requested. As a result, we almost see a flat curve for the average latency. The

results show that both Migrated-Armed and Armed-Migrated requests add signif-

icant overhead to the ongoing communication. However, this overhead remains

constant with the increase in the message size.

We now show the results for our acid test, the impact of performance on latency,

when a network fault occurs. After the alternate path is loaded, we disable the

primary path of communication by un-plugging the cable corresponding to the

primary path of communication on the sender side. The HCA automatically moves

the alternate path as a primary path of communication for the currently used QP.

Since QPs are used in a round robin fashion, this step is executed for all QPs. We

measure the average latency observed till the eventMIGRATED for all QPs has been

generated. This test helps us understand, the impact on latency for small messages
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on large scale clusters, when each process pair uses one QP for communication.

Figure 9.9 shows the impact on latency for small messages, when 512 QPs are used

for communication. We notice that the amount of overhead remains almost same

with increasing message size. Hence, the overhead incurred per QP remains the

same independent of the message size.

9.4.5 Impact of Network Fault Tolerance Modules on Com-
putation

Figures 9.10 and 9.11 show the impact on computation for different APM tran-

sition sequences. Since the eventARMED and eventMIGRATED are handled by the

asynchronous thread, both processes are executed on the same node of a dual-

processor machine. The test initiates APM transition request for all QPs and

performs the computation. A computation loop large enough is chosen empiri-

cally, such that all interrupts are generated before the computation loop finishes.

The time spent in requesting the transition is subtracted and the performance is

reported. For different computation loops, the total time of computation is varied

to understand the performance impact with increasing computation. We observe

that the computation time increases significantly with the increasing number of

QPs. The time taken to handle the eventMIGRATED and eventARMED contributes

significantly to this overhead. However, with the increasing size of the computa-

tion loop, the overhead incurred remains same for the same number of QPs. For

2048 QPs, the overhead incurred is almost 60 ms.
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Figure 9.10: Impact on Computation, Migrated-Armed
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9.4.6 Evaluation of the Network Fault Tolerance Modules
at the MPI Layer

In this section, we present the performance for NAS parallel benchmarks [8],

when different APM sequence transitions are requested. The impact on perfor-

mance in the presence of network faults is also studied. A 4x2 configuration (4

nodes and 2 processes per node) is used for executing the applications. The appli-

cations are profiled to make sure that network fault tolerance modules are invoked

during the critical execution phase of the application. The primary communica-

tion path is broken by unplugging the cable at different points in the application

execution for sixteen runs. The average performance observed is presented.

Figure 9.12 and Figure 9.13 show the results with different transitions sequences

in APM using Integer Sort kernel, with Class A and Class B problem size. The

results in the presence of network faults are also presented. In the absence of

network faults, different APM transition sequences incur some overhead for Class

A. In the presence of network fault, a very significant amount of overhead is ob-

served. Since the results reflect an average case, they show a healthy mixture of

the cases, when the application was busy computing, busy in communication and

their combinations. Increasing the number of QPs to emulate a large scale cluster

also shows an interesting trend. In the presence of a network fault, all QPs used

in the round robin fashion observe a transition of alternate path to the primary

path. Figure 9.13 shows the results for Class B problem size. The execution time

is longer for the problem size. The impact of different APM transition sequences

is lesser as a result. The time for QP transitions in the absence of faults and pres-

ence of faults largely remains independent of the message size as shown during the
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performance evaluation with the tests at the Verbs layer. The number of events

generated are also largely dependent upon the number of QPs used. Hence as

the execution time of an application increases, the relative overhead shown due to

APM in both the absence and the presence of faults decreases.
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Figure 9.13: Performance Evaluation on IS, Class B, 4x2
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Figure 9.14 and Figure 9.15 show the results for NAS FT Class B and LU Class

B respectively. Since the overhead incurred per QP almost remains same, when a
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network fault occurs, we notice that the percentage of performance degradation is

much lesser in these cases. Even with increasing the number of QPs/process to 64,

we only notice around 5-6% degradation in performance. For LU class B in par-

ticular, the execution time is around 256 seconds, and hence the overhead of state

transitions is amortized with the long running application. Hence for applications

running for reasonably long time, APM incurs almost negligible overhead in the

overall execution time.
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9.5 Summary

In this chapter, we have designed modules; alternate path specification module,

path loading request module and path migration module, which work together for

providing network fault tolerance with APM for user level applications. We have

integrated these modules for simple micro-benchmarks at the Verbs Layer; the user

access layer for InfiniBand, and studied the impact of different state transitions

associated with APM. We have also integrated these modules with the MPI layer to

provide network fault tolerance for MPI Applications. Our performance evaluation

has shown that APM incurs negligible overhead in the absence of faults in the

system. For MPI applications executing for reasonably long time, APM causes

negligible overhead in the presence of network faults. For Class B, FT and LU

NAS Parallel Benchmarks with 8 processes, the degradation is around 5-7% in the

presence of network faults.
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CHAPTER 10

SOFTWARE BASED NETWORK FAULT TOLERANCE
ON CLUSTERS WITH UDAPL INTERFACE

In the last couple of years, Network APIs like uDAPL (user Direct Access

Provider Library) are being proposed to provide a network-independent interface

to different RDMA-enabled interconnects. Clusters with combination(s) of these

interconnects are being deployed to leverage their unique features, and to provide

network failover in wake of transmission errors. However, wide variety of intercon-

nects pose portability issues. This limits their different combinations to be used

in network failures, in addition to providing optimal performance.

In this chapter, we design a network fault tolerant MPI using uDAPL interface,

making this design portable for existing interconnects. Our design provides failover

to available paths, asynchronous recovery of the previous failed paths and recovery

from network partitions without application restart. In addition, the design is able

to handle network heterogeneity, making it suitable for the current state of the art

clusters. To achieve these goals, we design a set of low overhead modules; com-

pletion filter and error-detection, message (re)-transmission and path recovery and

network partition handling, which perform completion filter and detection, (re)-

transmission and recovery from network partitions, respectively. We implement
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our design and evaluate it with micro-benchmarks and applications. Our perfor-

mance evaluation shows that the proposed design provides significant performance

benefits to both homogeneous and heterogeneous clusters. Experiments reveal that

the proposed network fault tolerance modules incur very low overhead and provide

optimal performance in wake of network failures for simple MPI micro-benchmarks

and applications. In addition, in the absence of such failures, using a heteroge-

neous 8x1 configuration of InfiniBand Architecture (IBA) and Ammasso-GigE,

we are able to improve the performance of NAS Parallel Benchmarks by 10-15%

for different benchmarks. For simple micro-benchmarks, we are able to improve

the throughput by 15-20% for uni-directional and bi-directional bandwidth tests.

Even though, the evaluation in the chapter has been done using InfiniBand and

Ammasso-GigE, there are emerging interconnects, which plan to support uDAPL

interface and are not yet available in market commercially. The proposed design

is generic and capable of supporting any interconnect with uDAPL interface.

The rest of the chapter is organized as follows. In section 10.1, we present the

overall design of uDAPL based network fault tolerant MPI. In section 10.2, we

present the basic infrastructure for network fault tolerance design. In section 10.3,

we discuss the design of the communications and network fault tolerance layer. In

section 10.4, we present the evaluation of uDAPL based MPI. In section 10.5, we

conclude and present the summary.

10.1 Overall Design for uDAPL Based Network Fault Tol-

erant MPI

In this section, we present the overall design for our uDAPL based network fault

tolerant MPI. This is further illustrated in Figure 10.1. The figure represents the
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overall design and an example node configuration consisting of both IBA and GigE

devices. In section 10.2, we present multi-network abstraction layer, which provides

a uniform interface to our design for clusters with network heterogeneity. We also

discuss the implementation issues associated with using multiple interconnects.

In section 10.3, we present the main component of our design, communica-

tions and network fault tolerance layer. Figure 10.4 presents the interaction of

different components in communications and network fault tolerance layer. This

layer comprises of modules, which work together for scheduling the communication

in an efficient manner for providing network fault tolerance. The message (re)-

transmission module in this layer is responsible for scheduling the communication

on available paths according to the scheduling policy. The completion filter and

error detection module detects error and provides information to message (re)-

transmission about the failed work request(s). The path repository maintains the

available paths for every pair of communication nodes. This layer also consists

of path recovery and network partition handling module, which is responsible for

recovery of failed paths and dealing with network partitions.

10.2 Basic Infrastructure For Network Fault Tolerance De-
sign

In this section, we discuss the basic design, which acts as an infrastructure

for providing network fault tolerance. Our design is capable of providing network

fault tolerance for clusters using single interconnect, in addition to a combination

of interconnects supporting uDAPL interface. We begin with the introduction of

multi-network abstraction layer.
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10.2.1 Multi-Network Abstraction Layer

As shown in Figures 10.1, 10.2 and 10.3, our design is capable of combining

clusters with a combination of interconnects, supporting uDAPL interface to the

user applications. Homogeneous clusters are a special case of this configuration.

Each interconnect specifies its own uDAPL library, built over the interconnect’s

access layer. Hence, presence of an equivalent abstraction is imperative to hiding

network heterogeneity. This layer provides an equivalent interface of multiple

uDAPL interfaces to the communications and fault tolerance layer. To provide

such an abstraction, this layer maintains unified data structures for end point(s),

public service point(s), completion queue(s) and available paths between processes.

10.2.2 Implementing Abstraction Layer over uDAPL

In our previous work with uDAPL [12], we have presented asynchronous and

polling based connection management schemes to connect EPs associated with dif-

ferent processes. In the design, the EP(s) information is exchanged, followed by

mandatory ep connect function call to connect them as specified by the uDAPL

specification. However, the design assumed the presence of only one network in-

terface. To support network heterogeneity, each node exchanges its node config-

uration at the MPI initialization phase. Node configuration comprises of uDAPL

provider information, and associated parameters with different interconnects. This

information is communicated to peers at the time of EP exchange phase, to avoid

multiple messages being sent for node configuration exchange. Thread-based EP

connection scheme is used for connecting various EPs. At the end of this step,
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each node updates its path repository for communication to every other node in

the cluster.

10.2.3 Communication Methodology for Multiple Intercon-

nects

As mentioned in the background section, uDAPL allows an user to use RDMA

for data transfer. One of the key requirements is that the user buffer be registered

with the corresponding interconnect. Since our design supports multiple inter-

connects, for simplicity, we register the complete buffer with all interconnects. In

addition, for the rendezvous protocol, completion notifications need to sent on all

interconnects participating in data transfer to the communicating process. Pres-

ence of multiple paths also leads to out-of-order messages. MPI requires messages

to be processed in order. Hence, we maintain out-of-order queues, and periodically

poll on them.

As discussed in [33, 59], scheduling policies have a great impact on performance,

when a combination of paths are available. Simple policies like even striping, round

robin, process binding and weighted striping provide comparable performance for a

combination of interconnects with similar peak bandwidth. However, these policies

provide sub-optimal performance when different paths have different bandwidths.

In our previous work, we have also shown that adaptive striping stands out the

best candidate in such scenarios. Hence, we use this policy, so that our design

leverages multiple networks in an optimal fashion, in addition to using them for

failover. A striping threshold value is used, below which the primary network

for communication is used. In the performance evaluation section, we have used

adaptive striping policy by default, unless mentioned otherwise. We have used
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InfiniBand as the primary path of communication, wherever possible, for messages

below the striping threshold.

10.3 Design of Communications and Network Fault Toler-
ance Layer

In this section, we discuss the design of communications and network fault

tolerance layer. We discuss various modules associated with this layer and their

interactions. This is shown in more detail in the Figure 10.4. We begin with the

error detection module.

10.3.1 Completion Filter and Error Detection Module

uDAPL library allows a user application to make work requests by posting send

work requests or descriptors. The status of these requests can be determined by

using the completion queue mechanism. As shown in Figure 10.4, completion noti-

fications generated from the network are stored in the completion queue. uDAPL

also provides completion notification interrupt to be generated for solicited work

requests. However, this mechanism leads to increased latency, particularly for

small messages. In our design, we use polling on the completion queue to deter-

mine the status of the work request. It is to be noted, that a completion queue

entry (CQE) is generated, independent of success/failure in completing the work

request. Upon receipt of a successful CQE, this module updates the weight(s)

of different path(s) of communication to the communicating process, as shown in

Figure 10.4. However, on receiving a failed CQE, associated error code in the CQE

is used to determine the cause of the failure. We leverage this uDAPL capability

to check the failure in completion of a send or a receive work request. The remote
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access error failure opcode shows the un-reachability of the remote destination.

This failure implies that even after multiple re-tries by the Network Interface Card

(NIC), the path could not be reached. Such a failure can also occur, when the rkey

value for RDMA operation is wrong. However, in both cases, occurrence of even a

single failure on an end point breaks the connection and all posted work requests

(send or receive) result into error. The recovery mechanism of the broken EP is

handled in the Path Recovery and Network Partitioning Module. Once the error is

detected, the control is transferred to message re-transmission module.

10.3.2 Message (Re)Transmission Module

This module is activated upon receiving an input from the completion filter

and error detection module or receiving an input from the ADI layer for mes-

sage transmission. If the request is received from the ADI layer, the appropriate

scheduling policy is used for message transmission. The interaction is further il-

lustrated in Figure 10.4. Upon receipt of a failed CQE from completion filer and

error detection module, the first step is to update the path repository, marking

the associated communication path to the destination process unavailable. Upon

receipt of a failed CQE with receive opcode, the corresponding buffer is simply

released, however another receive descriptor is not posted, since the connection is

already broken. As mentioned before, posting another work request on a broken

connection results in error. When a CQE with failed send opcode is received, path

repository is queried for the available paths to the destination rank. The return

from the path repository can be success with a list of the available path(s) or a

failure in case of network partition (it is not be noted that the sender may still
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have communication paths to other processes). The failed send descriptor consists

of information about the length of the work request. To post this descriptor to

available paths, the length of each work request is adjusted in conjunction with

scheduling policy and associated lkey for interconnect is used. In addition, if an

RDMA operation is requested, the associated rkey is updated for data transfer.

10.3.3 Path Recovery and Network Partition Handling Mod-
ule

The design mentioned upto now provides failover, when network paths fail and

message re-transmission in such cases. However, network errors can be transient

and this should not limit the application from re-using the corresponding paths

upon recovery. In addition, an application should not abort in the presence of

network failures, since the process state is intact. Long running applications should

also be able to use the recovered paths, and be able to extract the best performance

out of the System Area Network. This layer meets the above requirements by using

an asynchronous thread based recovery mechanism.

In order to facilitate this capability, the broken end point associated with the

failed network path needs to be brought back to the connected state. This is

further illustrated in Figure 10.6(a). The DAT specification mentions that an end

point in an error state should not be moved to disconnected state at the discovery

of first failure, else would result in loss of the previously posted work requests.

Hence, in our design, we post a send work request called marker. Since Work

requests always finish in order on the sender side, after receiving a CQE associated

with the marker, the end point can be moved to the disconnected, followed by the

unconnected state as shown in Figure 10.6(a).
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The communication protocol for recovery from network partition is further

illustrated in Figure 10.5. When a process receives the first communication failure,

it initiates an asynchronous thread which initiates request(s) for bringing back the

end points to the connected state. As mentioned in our previous work [12], each

process acts as a server for processe(s) with higher MPI rank and sends connect

requests only to processe(s) with lower rank. Since connection requests can possibly

arrive at any point of time, the asynchronous server thread remains in sleep state

during the program execution and wakes up only during connection request(s)

from the client(s). Similarly, the client thread initiates request(s), goes to sleep

and only activates, when the connection event(s) are generated. Once a client and

server have received the connection events, each of their end points are in connected

state. At this point, each of the processes post receive descriptors, and exchange

the credit information by sending a connect message. Once the processes receive

the message, they are ready for communication. Since these threads are in sleep

state for most of the time during program execution, they incur little contention

to the main thread.

10.4 Performance Evaluation with uDAPL Based MPI

In this section, we evaluate the performance of our design. We call our design

MN-uDAPL and compare its performance with MVAPICH-0.9.7 for OSU Tests [42]

and NAS Parallel Benchmarks [8]. Our Performance Evaluation is further divided

into multiple cases:

• No network fault(s) occur during the application execution in the SAN. This

evaluation helps us understand the performance improvement which can be
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achieved when there are multiple interconnects in the SAN, in homogeneous

and heterogeneous environments.

• One or more network fault(s) occur during the application execution in the

SAN. We evaluate the cases when a previously failed path recovers during

the application execution, to the cases of network partitioning. This helps us

understand the overhead incurred by network fault tolerance modules, when

such faults occur.

We begin with a brief description of our experimental testbed.

10.4.1 Experimental Testbed

Figure 10.6(b) is a block diagram for our experimental testbed. This cluster

consists of eight SuperMicro SUPER X5DL8-GG nodes with ServerWorks GC LE

chipsets. Each node has dual Intel Xeon 3.0 GHz processors, 512 KB L2 cache,

142



and PCI-X 64-bit 133 MHz bus. We have used InfiniHost MT23108 Dual-Port 4x

HCAs from Mellanox. The ServerWorks GC LE chipsets have two separate I/O

bridges and three PCI-X 64-bit 133 MHz bus slots. The kernel version we used

is Linux 2.6.9smp. The IBGD version is 1.8.2 and HCA firmware version is 3.3.2.

The Front Side Bus (FSB) of each node runs at 533MHz. The physical memory is

2 GB of PC2100 DDR-SDRAM.

Four nodes in the cluster comprise of one InfiniBand(InfiniHost MT23108 Dual-

Port 4x HCAs from Mellanox) and eight nodes comprise of Ammasso (Ammasso

1100 RDMA-enabled Gigabit-Ethernet Adapter) each. uDAPL libraries provided

by Mellanox and Ammasso are used for performance evaluation.

10.4.2 Performance Evaluation on Configuration A

As shown in Figure 10.6(b), this configuration comprises of two nodes which

have both IBA and GigE network interface cards.

Figure 10.7 shows the latency of small messages for different devices of MVA-

PICH, 0.9.7. Since the messages are small, only IBA device is used for commu-

nication. Messages above the striping threshold (256K) use adaptive striping for

communication. In comparison to MVAPICH-0.9.7, uDAPL device, our MPI in-

curs negligible overhead. The overhead in latency, when compared to VAPI device

is due to the absence of inline functionality in uDAPL library. This functionality

allows data to be posted along with the descriptor, hence reducing the number of

I/O bus transactions.
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Figure 10.8 shows the performance of latency for large messages. Messages

above the striping threshold are able to be benefited by using the adaptive striping

policy. For 512Kbyte message, the latency improves by almost 10%.
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Figure 10.11: Performance Evaluation of IS and CG NAS Parallel Benchmarks,
Class A
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Figure 10.12: Performance Evaluation of FT and MG NAS Parallel Benchmarks,
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Figure 10.9 and 10.10 show the performance for OSU uni-directional and bi-

directional bandwidth test. As explained above, MN-uDAPL uses only InfiniBand

device for messages of size lesser than the striping threshold. Adaptive striping

provides a peak uni-directional bandwidth of 963 MB/s compared to 880 MB/s

for MVAPICH-0.9.7, uDAPL device(IBA) only. The GigE device can only provide
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around 100 MB/s. Similarly, a performance improvement of 18% is seen for peak

bandwidth in the bi-directional bandwidth test, which improves from 931 MB/s

to 1095 MB/s.
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10.4.3 Performance Evaluation on Configuration B

In this section, we evaluate the unified performance of the cluster, also the con-

figuration B as shown in the Figure 10.6(b). We use MVAPICH 0.9.7, uDAPL de-

vice for evaluation and compare its performance with MN-uDAPL. Since MVAPICH-

0.9.7 is capable of utilizing only one interface at a time, we evaluate it under two

configurations for our cluster. In one configuration, it is able to utilize nodes with

IBA cards only, and the other configuration can utilize nodes with GigE cards

only. Figures 10.4.2 and 10.12 compare the performance of these configurations

with MN-uDAPL, which is capable of handling this network heterogeneity in a

unified manner. In Figure 10.4.2, we use CLASS A, IS and CG benchmarks. For

IS, IBA only with 4 nodes takes 2.09 seconds, only GigE takes 1.90 seconds. MN-

uDAPL is able to reduce the time taken to 1.75 seconds, which is an improvement

of 8% from GigE only and 17% from IBA case only. Respective improvements

of 20% and 9% are seen for the CG application kernel. Figure 10.12 shows the

performance comparisons for FT and MG benchmarks. We notice that the appli-

cation time does not improve much with respect to the network. However, a slight

improvement in performance is shown by using MN-uDAPL than GigE device only.

10.4.4 Performance Evaluation with Network Faults

Figure 10.13, 10.14, 10.15 and 10.16 show the results for the cases when network

fault occurs in the system. The comparisons are being shown for the message

re-transmission scheme with the ideal case, when the same test is ran with no

network faults. In order to show these results, we let the OSU Latency test report

148



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2  4  6  8  10  12

B
an

dw
id

th
 (

M
B

/s
)

Time Step

MN-uDAPL, Message Retransmission
IBA + GigE, No Faults

IBA, No Faults
GigE, No Faults

Figure 10.15: Uni-directional Bandwidth Comparison for Fault Tolerant Schemes,
GigE Path Fails

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2  4  6  8  10  12

B
an

dw
id

th
 (

M
B

/s
)

Time Step

MN-uDAPL, Message Retransmission
IBA + GigE, No Faults

IBA, No Faults
GigE, No Faults

Figure 10.16: Bidirectional Bandwidth Comparison for Fault Tolerant Schemes,
GigE Path Fails

149



8x1 (4x1, IB + GigE) and (4x1, GigE), No Faults
8x1 (4x1, IB + GigE) and (4x1, GigE), With Fault

  0

  0.5

  1

  1.5

  2

  2.5

  3

CGIS

T
im

e(
S

ec
on

ds
)
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bandwidth at each iteration for a large number of iterations for a message size of

1 MB. The point of failure is reported as the middle point on the x-axis.

Figure 10.13 and 10.14 show the results for uni-directional and bi-directional

bandwidth, when IBA path fails during the communication. The message retrans-

mission scheme achieves the peak bandwidth as shown in the previous sections.

However, at the point of failure, the re-transmission scheme almost achieves no-

bandwidth due to multiple re-transmissions which occur at this point, before the

DMA engine concludes the un-reachability of the destination process, and puts a

failed CQE into the corresponding interconnect’s completion queue. At this point,

only GigE path is available. As can be noted from the graphs, our scheme incurs

no overhead in providing the peak bandwidth. Figure 10.15 and 10.16 show a

similar trend, the difference being the failure of the GigE path.

Figure 10.4.3 and 10.18 present the results, when network paths fail at the

beginning of the application itself. We notice from the figures that the perfor-

mance degradation is negligible in comparison to the case 8x1 case, where only

GigE is used for communication. This shows that the overhead of the message re-

transmission module, generating an asynchronous thread for communication etc.

incurs very low overhead on the communication performance.

Figure 10.19 and 10.20 present the results for uni-directional bandwidth when

running experiments in the configuration A. At the point 8 in the graph, both

GigE and the IBA path fail and hence a network partition occurs in the system.

At this point, the application hangs and waits for one of the connection paths to

come up. The path recovery and network partition handling module generates an

asynchronous thread and waits for the connection events from other process. After
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re-connection, the processes are able to achieve the peak uni-directional bandwidth

which is achievable with GigE. At a later point, when the IBA path is available,

we are able to achieve the peak bandwidth achievable in the presence of no-faults.

Figure 10.19 shows a similar trend, however in this case the IBA path comes back

earlier than the GigE path. However, in this case also we are able to achieve the

peak uni-directional bandwidth achievable, similar to the ideal case.

10.5 Summary

In this chapter, we have designed a network fault tolerant MPI using uDAPL in-

terface, making this design portable for existing and upcoming interconnects. Our

design has provided failover to available paths, asynchronous recovery of the previ-

ous failed paths and recovery from network partitions without application restart.

In addition, the design is able to handle network heterogeneity, making it suitable

for the current state of the art clusters. To achieve these goals, we have designed

low overhead completion filter and error-detection, message (re)-transmission and

path recovery and network partition handling modules which perform completion

filter and detection, (re)-transmission and recovery from network partitions respec-

tively. We have implemented our design and evaluated it with micro-benchmarks

and applications. Our performance evaluation have shown that the proposed design

provides significant performance benefits to both homogeneous and heterogeneous

clusters. Experiments also reveal that network fault tolerance modules incur very

low overhead and provide optimal performance in wake of network failures for sim-

ple MPI micro-benchmarks and applications. In addition, in the absence of such

failures, using a heterogeneous 8x1configuration of IBA and Ammasso-GigE, we
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have been able to improve the performance of NAS Parallel Benchmarks by 10-15%

for different benchmarks. For simple micro-benchmarks, we have been able to im-

prove the throughput by 15-20% for uni-directional and bi-directional bandwidth

tests.
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CHAPTER 11

OPEN SOURCE SOFTWARE RELEASE AND
ADOPTION

A majority of the work presented in this dissertation has been incorporated

in an open source manner with OSU MPI over InfiniBand, MVAPICH and MVA-

PICH2, MPI-1 and MPI-2 versions of the MPI libraries. The duration of this

work has spanned multiple releases of MVAPICH and MVAPICH2 (0.9.5 - 1.0 for

MVAPICH) and (0.9.5 - 1.0 for MVAPICH2). The results presented in this disser-

tation have enabled the community to design ultra scale InfiniBand clusters with

resilience to network faults and hot-spot avoidance.

MVAPICH/MVAPICH2 support many network interfaces including OpenFab-

rics, uDAPL and VAPI. Much of the initial work has become available with VAPI,

the Verbs API from Mellanox. As the community has moved towards Open Source

API for InfiniBand, most of the work has become available with OpenFabrics. In

addition to InfiniBand, MVAPICH also supports 10GigE-iWARP with OpenFab-

rics interface and any adapter which supports RDMA with the uDAPL interface.

It also supports multiple architectures including popular 32-bit and 64-bit archi-

tectures.
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Since its release in 2002, more than 580 computing sites and organizations

have downloaded this software. In addition, nearly every InfiniBand vendor and

the Open Source OpenFabrics stack includes this software in their packages. Our

software has been used on some of the most powerful computers, as ranked by

Top500 [6]. Examples from the November 2007 rankings include 3rd 14336-core

Clovertown cluster at New Mexico Computing Applications Center, 22nd, 5848-

core Dell PowerEdge (Intel EM64T) cluster at Texas Advanced Computing Cen-

ter/Univ. of Texas (TACC), 29th, 9216-core Appro Quad Opteron dual Core at

Lawrence Livermore National Laboratory and 108th, 2200-processors Apple Xserve

2.3 GHz cluster at Virginia Tech. More information about our software release can

be found at MVAPICH Homepage [42].
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CHAPTER 12

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

12.1 Summary of Research Contributions

The research in this dissertation aims towards providing high performance and

network fault tolerant MPI with multi-pathing over InfiniBand. As discussed in

the previous chapter, a majority of these designs are available with MVAPICH and

MVAPICH2 software package. These designs are likely to benefit the existing and

upcoming ultra-scale InfiniBand clusters.

Although, MPI is the primary programming model for discussion in this dis-

sertation, a majority of the ideas are applicable to other programming models,

including X10 and UPC, which are being projected as the programming mod-

els for next generation peta-flop systems. Other middlewares including parallel

file systems are also likely to benefit from designs presented in this dissertation.

Hence, we can conclude that the contribution of this dissertation to this community

is significant. Following sections provide a more detailed summary of the research

contributions:
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12.1.1 Efficient MPI-1 Design for Multi-Rail InfiniBand
Clusters

In chapter 4, we presented an in-depth study of designing high performance

multi-rail InfiniBand clusters for MPI-1 primitives. We discussed various ways

of setting up multi-rail networks with InfiniBand and proposed a unified MPI-1

design that can support all these approaches. By taking advantage of RDMA oper-

ations in InfiniBand and integrating the multi-rail design with MPI communication

protocols, our design supported multi-rail networks with very low overhead. Our

performance results show that the multi-rail MPI can significantly improve MPI

communication performance. With a two-rail InfiniBand network, we achieved al-

most twice the bandwidth and half the latency for large messages compared with

the original MPI. The multi-rail MPI design also significantly reduced the commu-

nication time as well as the running time for bandwidth-bound applications.

12.1.2 Supporting MPI One-Sided Communication with
Multi-Rail InfiniBand Clusters

In chapter 5, we presented the challenges (Multiple synchronization messages,

handling multiple HCAs, scheduling policies, ordering relaxation) associated with

designing MPI-2 one-sided communication over multi-rail InfiniBand networks.

We implemented our design and presented the performance evaluation for micro-

benchmarks. We observed that multi-rail InfiniBand clusters can significantly

improve the performance for one-sided communication. Using a two rail clus-

ter, we achieved almost doubled the throughput and reduced the latency to half

with MPI Put and MPI Get operations for large messages. We also observed that
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reordering policy can significantly improve the performance for communication

patterns with a mix of one-sided operations.

12.1.3 Improving Performance with IBM 12x InfiniBand

Architecture

In chapter 6, we focused on designing an MPI substrate for IBM 12x InfiniBand

Architecture. We discussed with the introduction of overall design, and presented

the limitations of previously proposed designs in achieving the peak performance

of IBM 12x InfiniBand architecture. We presented the need for re-visiting the

scheduling policies, depending upon the communication pattern in the application.

We presented communication marker module, which resides in the ADI layer and

differentiates between communication patterns. We achieved a peak unidirectional

bandwidth of 2745 MB/s and bidirectional bandwidth of 5362 MB/s. We concluded

that none of the previously proposed policies alone provides optimal performance

for these communication patterns. Using NAS Parallel Benchmarks, we saw an

improvement of 7-13% in execution time along with a signification improvement

in collective communication using Intel Benchmark suite.

12.1.4 Hot-Spot Avoidance with Multi-Pathing Using LMC

Mechanism

Large scale InfiniBand clusters are becoming increasingly popular, as reflected

by the TOP 500 [6] Supercomputer rankings. At the same time, fat tree [31]

has become a popular interconnection topology for these clusters, since it allows

multiple paths to be available in between a pair of nodes. However, even with fat
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tree, hot-spots may occur in the network depending upon the route configuration

between end nodes and communication patterns in the application.

In chapter 7, we presented the design for an MPI functionality, Hot-Spot Avoid-

ance with MVAPICH (HSAM) which provides hot-spot avoidance for different

communication patterns, without apriori knowledge of the pattern. We leveraged

LMC (LID Mask Count) mechanism of InfiniBand to create multiple paths in

the network, and studied its efficiency in creation of contention free routes. We

also presented the design issues (scheduling policies, selecting number of paths,

scalability aspects) associated with our MPI functionality. We implemented our

design and evaluated it with collective communication and MPI applications. On

an InfiniBand cluster with 64 processes, we observed an average improvement of

23% for displaced ring communication pattern among processes. For collective

operations like MPI All-to-all Personalized and MPI Reduce Scatter, we observed

an improvement of 27% and 19% respectively. Our evaluation with NAS Paral-

lel Benchmarks [8] shows an improvement of 6-9% in execution time for the FT

Benchmark, with class B and class C size using 32-64 processes for evaluation.

For other NAS Parallel Benchmarks, we did not see a degradation in performance

compared to the original design.

12.1.5 Enhanced Design for Avoiding Hot-Spots with Bet-
ter Network Paths Utilization

In chapter 8, we addressed the limitations of the HSAM design presented in

chapter 7. We presented a Hot-Spot Avoidance Layer (HSAL) with InfiniBand to
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provide path bandwidth estimation completion filter modules for two-sided com-

munication semantics. To efficiently utilize physically independent paths, we pro-

posed a novel scheduling policy, which performs Batch-based Striping and Sorting

(BSS) during the application execution to adaptively eliminate the path(s) with

low bandwidth. Using MPI Alltoall, we achieved an improvement of 27% and 32%

in latency with different BSS policy configurations compared to the best configu-

ration of the HSAM scheme on 32 and 64 processes, respectively.

12.1.6 Network Fault Tolerance Using Automatic Path Mi-
gration

In chapter 9, we designed a set of modules; alternate path specification module,

path loading request module and path migration module, which work together for

providing network fault tolerance for user level applications. We integrated these

modules for simple micro-benchmarks at the Verbs Layer, the user access layer

for InfiniBand, and study the impact of different state transitions associated with

APM. We also integrated these modules at the MPI [38, 39] (Message Passing

Interface) layer to provide network fault tolerance for MPI applications. Our per-

formance evaluation has shown that APM incurs negligible overhead in the absence

of faults in the system. For MPI applications executing for reasonably long time,

APM caused negligible overhead in the presence of network faults. For Class B FT

and LU NAS Parallel Benchmarks with 8 processes, the degradation was around

5-7% in the presence of network faults.
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12.1.7 Software Based Network Fault Tolerance on Clus-
ters with uDAPL Interface

In chapter 10, we designed a network fault tolerant MPI using uDAPL interface,

making this design portable for existing and upcoming interconnects. Our design

provided failover to available paths, asynchronous recovery of the previous failed

paths and recovery from network partitions without application restart. In addi-

tion, the design was able to handle network heterogeneity, making it suitable for

the current state of the art clusters. To achieve these goals, we designed a set of low

overhead modules completion filter and error-detection, message (re)-transmission

and path recovery and network partition handling which performed completion filter

and detection, (re)-transmission and recovery from network partitions respectively.

We implemented our design and evaluated it with micro-benchmarks and applica-

tions. Our performance evaluation has shown that the proposed design provides

significant performance benefits to both homogeneous and heterogeneous clusters.

Experiments also revealed that network fault tolerance modules incur very low

overhead and provide optimal performance in the wake of network failures for sim-

ple MPI micro-benchmarks and applications. In addition, in the absence of such

failures, using a heterogeneous 8x1configuration of IBA and Ammasso-GigE, we

were able to improve the performance of NAS Parallel Benchmarks by 10-15%

for different benchmarks. For simple micro-benchmarks, we were able to improve

the throughput by 15-20% for uni-directional and bi-directional bandwidth tests.

The proposed design was generic and capable of supporting any interconnect with

uDAPL interface.
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12.2 Future Research Directions

The high performance and rich features of InfiniBand has made it an attractive

solution for designing various programming models, including MPI for existing

and upcoming large scale InfiniBand clusters. In this dissertation, we have demon-

strated that it is possible to design and implement an efficient communications

and network fault tolerance layer for MPI over InfiniBand. We have discussed var-

ious design issues including scheduling policies, efficient data transfer for one-sided

communication with multi-pathing support, network fault detection and recovery

from failures, including network partitions. However, there are still many research

topics, which can be pursued further. In the upcoming sections, we describe them

in brief.

• Designing Efficient MPI with Congestion Control In the previous

chapters, we have studied various designs for avoiding hot-spot avoidance

with path bandwidth estimation [56]. However, our design does not pro-

vide solutions for congestion control. InfiniBand has proposed mechanisms

for congestion notification at the source, sink and in the network for mark-

ing packets with congestion. Various researchers have focused on providing

efficient response functions in presence of congestion for high speed intercon-

nects like InfiniBand. However, these mechanisms have not become available

in current generation InfiniBand products. Studying the impact of congestion

control mechanisms with hot-spot avoidance mechanisms can be beneficial

for upcoming ultra-scale InfiniBand clusters.
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• Designing Software Based Network Fault Tolerance Layer with

APM In previous chapters, we presented the solution for designing net-

work fault detection and recovery with uDAPL support and user-transparent

failover with Automatic Path Migration. However, there are mechanisms

provided by InfiniBand, which can simplify the recovery protocol. As an

example, the shared receive queue mechanism can be used with APM for

a combination of hardware-software network fault tolerance. The software

layer is triggered only in cases the APM does not complete successfully.

• Leveraging Adaptive Routing Mechanisms with InfiniBand Archi-

tecture Recently, Mellanox [3] has announced the support for adaptive

routing with InfiniBand architecture and a 36-port crossbar silicon. Lever-

aging the ConnectX architecture [3] with support for adaptive routing would

alleviate hot-spots in the network, in a user-transparent fashion. Study-

ing the impact of user-level hot-spot avoidance mechanisms with adaptive

routing would provide key insights with respect to efficacy of different mech-

anisms, along with the congestion control mechanisms, proposed recently by

InfiniBand community.
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