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Abstract— The phenomenal growth and popularity of cluster-
based multi-tier data-centers has not been accompanied by a
system-wide understanding of the various resources and their
deployment strategies. Each tier in a multi-tier data-center has
different requirements and behavior. Accordingly, it is a non-
trivial problem to analyze the impact of various system resources
and their influence on each tier. In addition, typical data-center
workloads have a wide range of characteristics. They vary from
high to low temporal locality, large documents to small documents,
the number of documents and several others. The different
characteristics of each kind of workload makes this problem quite
challenging. Further, in the past few years several researchers
have proposed and configured data-centers providing multiple
independent services, known as shared data-centers. The requests
for these different services compete with each other while sharing
the resources available in data-center, thus further complicating
this problem. In this paper, we focus on analyzing the impact of
the file system in a shared data-center environment. We study the
impact of both local file systems (ext3fs and ramfs) and network-
based file systems (PVFS and Lustre) in three broad aspects
namely: (i) Network Traffic Requirements, (ii) Aggregate cache
size and (iii) Cache pollution effects. Based on the insights gained
from these broad issues we propose a multi file system data-center
environment to utilize each file system only for environments where
it is most suited for, thus taking the best capabilities of all the
file systems. Our experimental results show that this approach
can improve the performance by up to 48% in a shared data-
center environment for static (time invariant) workloads showing
high temporal locality, up to 15% for static workloads with low
temporal locality and up to 40% for dynamic (time variant)
workloads.

I. INTRODUCTION

With the increasing adoption of Internet as the primary means
of interaction and communication, highly scalable and available
web servers have become a critical requirement. On the other
hand, cluster systems have become the main system architecture
for a number of environments. In the past, they had replaced
mainstream supercomputers as a cost-effective alternative in
a number of scientific domains. Based on these two trends,
several researchers have proposed the feasibility and potential
of cluster-based multi-tier data-center environments [21], [14],
[18], [4].

A cluster-based multi-tier data-center is an Internet server
oriented cluster architecture, which is distinguished from high
performance computing systems in several aspects. In particular,
data-centers are required to execute various server software that
demand different system resources and characteristics; these
are distinguished from high performance computing systems by
using duplicated programs performing symmetric jobs to max-
imize parallelism. Each of these duplicated programs receive a
request from the end user using a higher level protocol such
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as HTTP. Depending on the request, each program can either
directly fetch a document from the file system and return it to
the user or fetch some raw data from the file system, process
it and send the processed output to the user. In either case,
the interaction of the duplicated programs with the file system
plays an important role in the end performance perceived by
the users.
Multi-tier data-centers generally consist of three tiers; the

proxy tier, the application/web tier and the database tier. Since
each tier has different requirements and behavior, it is a non-
trivial problem to analyze the impact of various system re-
sources (such as the file system) and their influence on each
tier. In addition, typical data-center workloads have a wide
range of characteristics. They vary from high to low temporal
locality, large documents to small documents (download sites
vs book stores), the number of documents and several others.
The different characteristics of each kind of workload makes
this problem quite challenging. Further, in the past few years
several researchers have proposed and configured data-centers
providing multiple independent services, known as shared data-
centers [9], [10]. For example, several ISPs and other web
service providers host multiple unrelated web-sites on their data-
centers. The requests for these different web-sites compete with
each other while sharing the resources available in data-center,
thus further complicating this problem.
In this paper, we focus on analyzing the impact of the file

system in a shared data-center environment. We study the
impact of both local file systems such as ext3fs and ramfs and
network-based file systems such as PVFS and Lustre in three
broad aspects:

1) Network Traffic Requirements: Network file systems re-
quire data to be fetched over the network on every request
to the file system. This has several implications. First, if
the amount of data fetched over the network is very high,
this might cause a network traffic bottleneck and might
hinder with other network operations performed in the
data-center environment. Second, obtaining the handle to
a file is no longer a local operation; this might cause file
opening and closing to be a significantly expensive opera-
tion as compared to local file systems. Third, fetching data
over the network is beneficial when the data is fetched in
large bursts, thus utilizing the bandwidth provided by the
network. Fetching small bursts of data might under-utilize
the network and might lead to sub-optimal performance.

2) Aggregate cache size: While local file systems have a
low cache hit time, they do not have any interaction
with the other nodes in the system as far as the file
management is concerned. Thus, the documents that need
to be served for a web-site (or multiple web-sites) need to
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be replicated on each server node. While this might not
be a concern with respect to disk space for most websites,
it might limit the aggregate amount of cached content due
to replication of the content on the various nodes. On the
other hand, network-based file systems allow the cache
to be distributed (or striped) across various nodes, thus
getting rid of the replication requirement.

3) Cache pollution effects: Caching has a significant impact
on the performance of the web/proxy server. Due to the
high frequency of accesses, popular files tend to be highly
sensitive to the caching capability of the file system.
Ideally, we would like these popular documents to always
be cached. However, in a shared data-center environment
hosting multiple websites, the behavior of the file system
cache becomes unpredictable. It is highly possible that a
large file which is seldom accessed may push many of the
small but “hot” files out of the cache resulting in several
cache misses and a significant drop in performance. As
we will see in the later sections, for shared data-center
environments, this degradation can be up to ten times in
some cases.

Based on the insights gained from these broad issues associ-
ated with shared data-centers, in this paper we propose a multi
file system data-center environment. This approach attempts to
handle the above mentioned issues by utilizing each file system
only for environments where it is most suited for, thus taking
the best capabilities of all file systems. Our experimental results
show that this approach can improve the performance by up
to 48% in a shared data-center environment for static (time
invariant) workloads showing high temporal locality, up to 15%
for static workloads with low temporal locality and up to 40%
for dynamic (time variant) workloads.

The remaining part of the paper is organized as follows:
Section II provides a brief background about multi-tier data-
centers, the Parallel Virtual File System (PVFS) and the Lustre
File System. In Section III we mention the workload and testbed
that we used. In Section IV, we evaluate the different file
system in the data-center environment using different workloads
and provide several solutions that allow the design of next
generation data-centers to be tightly coupled with the expected
workload characteristics. We conclude the paper in Section VI.

II. BACKGROUND

In this section, we give a brief overview of the architecture of
multi-tier data-centers, the Parallel Virtual File System (PVFS)
and the Lustre File System.

A. Data-Center Tiered Architecture

A typical data-center architecture consists of multiple tightly
interacting layers known as tiers. Each tier can contain multiple
physical nodes. Requests from clients are load-balanced on to
the nodes in the proxy tier. This tier mainly does caching of
content generated by the other back-end tiers, balances the
requests sent to back-end servers and other such services.

The second tier consists of two kinds of servers. First, those
which host static content such as documents, images and others

which do not change with time are referred to as web-servers.
Second, those which compute results based on the query itself
and return the computed data in the form of a static document to
the users. These servers, referred to as application servers, usu-
ally handle compute intensive queries which involve transaction
processing and implement the data-center business logic.
The last tier consists of database servers. These servers hold

a persistent state of the databases and other data repositories.
For simple queries, such as search queries, etc., these servers
tend to be more I/O intensive requiring a number of fields in
the database to be fetched into memory for the search to be
performed. For more complex queries, such as those which
involve joins or sorting of tables, these servers tend to be more
compute intensive.
Other than these three tiers, various data-center models specify

multiple other tiers which either play a supporting role to
these tiers or provide new functionalities to the data-center. For
example, the CSP architecture [21] specifies an additional edge
service tier which handles security, caching, SAN enclosure of
packets for TCP termination and several others.
Shared Data-Centers: A clustered data-center environment

essentially tries to utilize the benefits of a cluster environment
(e.g., high performance-to-cost ratio) to provide the services
requested in a data-center environment. As mentioned earlier,
researchers have proposed and configured data-centers to pro-
vide multiple independent services, such as hosting multiple
web-sites, forming what is known as shared data-centers. For
example, several service providers host multiple websites in
their data-centers. Hosting multiple services or websites in a
single data-center environment has interesting implications on
the caching capabilities of the data-center.

B. Parallel Virtual File System (PVFS)

PVFS [8] is a parallel cluster-based file system. It was designed
to meet the increasing I/O demands of parallel applications. A
number of nodes in the cluster system can be configured as
I/O servers and one of them (either on I/O server node or on a
different node) as a metadata manager. Figure 1 demonstrates
a typical PVFS environment. As shown in the figure, a number
of nodes in the cluster system can be configured as I/O servers
and one of them (either an I/O server or an a different node) as
a metadata manager.
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Fig. 1. A Typical PVFS Setup

PVFS achieves high performance by striping a file across a set
of I/O server nodes allowing parallel access to the file. It uses
the native file system on the I/O servers to store individual file
stripes. An I/O daemon runs on each I/O node and services
requests from the client nodes. A manager daemon running
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on a metadata manager node handles metadata operations like
file permissions, file stripe characteristics, etc., but does not
participate in read/write operations. The metadata manager
provides a cluster-wide consistent name space to applications.

PVFS supports a set of feature-rich interfaces, including
support for both contiguous and non-contiguous accesses to
memory and files [11]. PVFS can be used with multiple APIs: a
native PVFS API, the UNIX/POSIX API, MPI-IO [23], and an
array I/O interface called the Multi-Dimensional Block Interface
(MDBI). The presence of multiple popular interfaces contributes
to the wide success of PVFS in the industry.

C. Lustre File System

Lustre [12] is an open source, high-performance cluster file
system designed to eliminate the problems of performance,
availability, scalability in distributed systems. Lustre uses object
based disks for storage and metadata servers (MDS) for storing
the metadata. Distributed Object Storage Targets (OSTs) are
responsible for the actual file I/O. Figure 2 demonstrates a
typical Lustre environment. As shown in Figure, apart from
increased network bandwidth, Lustre also supports client-side
caching. On the other hand, PVFS does not support this feature
and we will see the impact of client-side caching especially for
database workloads and its benefits compared the PVFS in later
sections.
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Fig. 2. A Typical Lustre Setup

Lustre leverages open standards such as Linux, XML, SNMP,
readily available source libraries and existing file systems to
provide scalable, reliable and powerful distributed file system.
Lustre maximizes the performance and productivity by using
sophisticated fail-over, recovery and replication techniques to
eliminate downtime and maximize file system availability. In
addition, Lustre also supports strong file and metadata locking
semantics to maintain coherency of the file system.

III. DATA-CENTER REQUIREMENTS

Typical data-center workloads have a wide range of char-
acteristics. These range of characteristics, coupled with the
requirements and behavior of exclusive as well as shared data-
centers, makes analyzing the impact of the various components
in the data-center such as the file system, a non-trivial problem.
In Section III-A, we discuss the broad characteristics of different
kinds of workloads. In Section III-B, we discuss the implica-
tions of the different kinds of file systems on the exclusive
as well as shared data-centers. Experimental analysis of these
implications is presented in Section IV.

A. Workload

Due to the varying characteristics of workloads, in this paper,
we classify the workloads in four broad categories: (i) Single-
file Micro workloads, (ii) Zipf-like workloads and (iii) Dynamic
content workloads.
Single-File Micro workloads: This workload contains only

a single file. This workload is used to study the basic perfor-
mance achieved by the data-center environment for different
file systems without being diluted by other interactions in more
complex workloads. Typically, browsing sites have files which
are a few kilobytes in size. Streaming and download servers on
the other hand, may have large audio and video files which are
a few MBytes in size. In order to address all these workloads,
we used has a wide range of file sizes from 1 KB to 64 MB.
Zipf-like Workloads: It has been well acknowledged in the

community that most workloads for data-centers hosting static
content, follow a Zipf-like distribution [7]. According to Zipf
law, the relative probability of a request for the i’th most
popular document is proportional to ������� , where � determines
the randomness of file accesses. In our experiments, we use
workloads which have constant � value but vary the working
set size and also a constant working set size varying the � value.
Dynamic Content Workloads: We used three kinds of dy-

namic content workloads: (i) A Transactional web benchmark
(TPC-W) to emulate the operations of an e-commerce website,
(ii) RUBiS benchmark to represent auction sites [22] modeled
after eBay.com and (iii) RUBBoS benchmark to represent
bulletin board systems [6] modeled after slashdot.org.

B. File System Implications on Data-Centers

Figure 3 shows the interaction of the data-center with the file
system. For local file systems, the servers can serve the content
locally without requiring any interaction with other nodes as far
as the file management is concerned. On the other hand, in a
network-based file system, the servers have to contact one or
more of the file system servers over the network to retrieve the
file.
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Fig. 3. Data-Center and File System Interaction

In this section, we discuss three broad aspects associated with
the interaction of the various workloads with the file system
component in the data-center environment, namely: (i) Network
Traffic Requirements, (ii) Aggregate Cache Size and (iii) Cache
pollution effects.
1) Network Traffic Requirements: Network file systems re-

quire data to be fetched over the network on every request to
the file system. This has several implications.
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Amount of data fetched: If the amount of data fetched over
the network is very high, this might cause a network traffic
bottleneck and might hinder with other network operations
performed in the data-center environment. For static content
(e.g., html pages, etc), the data transfer path is quite straight
forward. The file requested by the clients is directly present on
the file system; it needs to be retrieved from the file system
and sent to the end client. Thus, we can derive a straight
forward correlation between the amount of data requested by
the client and the total amount of network traffic this request
would generate (including the transfer of the file to the client
and the retrieval of the file from the file system for network-
based file systems).

For dynamic content (e.g., output generated by CGI scripts,
Java servlets, etc), the data transfer path is more complicated.
For example, in transactional workloads (such as TPC-W), the
database needs to retrieve and access several objects in the
database from the file system. Once this raw data is retrieved,
it needs to be processed and the processed output is sent to the
client. Thus, there is no straight forward correlation between the
amount of data retrieved from the file system and the amount
of data sent to the client.

Metadata operations: For network-based file systems, meta-
data operations on files such as obtaining the handle to read
a file are no longer a local operation. For example, PVFS has
a manager daemon that handles metadata operations like file
create, open, close, and remove operations. This might cause file
opening and closing to be a significantly expensive operation
as compared to local file systems. The manager, however, does
not participate in read/write operations; the client library and
the I/O daemons handle all file I/O without the intervention of
the manager.

Network Utilization: Fetching data over the network is ben-
eficial when the data is fetched in large bursts, thus utilizing
the bandwidth provided by the network. Fetching small bursts
of data might under-utilize the network and might lead to sub-
optimal performance. For dynamic content, since the retrieval
of raw data from the file system is accompanied by processing
of this data, it might not be done in a single burst of data read,
but rather as multiple reads of small data bursts.

2) Aggregate Cache Size: As mentioned earlier, while local
file systems have a low cache hit time, they do not have any
interaction with the other nodes in the system as far as the file
management is concerned. Thus, if three servers are assigned
to service requests coming to a certain website, each of these
servers is completely unaware of the existence of the other
servers. Accordingly, all required documents are made available
locally to the server. Further, since the servers are unaware of
each other, the documents that need to be served for the web-site
need to be replicated on each server node. While this might not
be a concern with respect to disk space used for most websites,
it might limit the aggregate amount of cached content due to
replication of the content on the various nodes.

For example, suppose each server has a 512MB memory-
based file system cache. Now, if the total size of the frequently
accessed content for the website served is 200MB, each server
can cache the frequently accessed content separately; thus there

would be no issue. However, if the total size of the frequently
accessed content served is 1GB, each server cannot cache the
frequently accessed content separately (since each server has
only 512MB memory); this leads to cache misses on each server
resulting in a loss of performance. On the other hand, if a
number of servers (say four) form a network-based file system
such as PVFS, the aggregate cache of the file system would
be close to 2GB (512MB x 4 servers). Thus, all the frequently
accessed content can be placed in the file system cache. This
issue is especially of a great concern in shared data-centers.
Since such data-center host multiple websites, the aggregate
size of the frequently accessed content increases linearly with
the number of websites.
As mentioned earlier, for dynamic content, the data used to

produce the results (database) and the final output sent to the
client are different. Thus, there are two kinds of caching that
are possible: (i) caching the raw database objects themselves
and (ii) caching the final output generated that is sent to the
client. Caching the final output generated has several research
issues associated with it, including maintaining consistency and
coherency of the output file with the data objects present in
the database, etc. We have done some previous work in this
direction [18], but do not concentrate on that aspect in this
paper. On the other hand, caching the raw database objects
themselves is handled by the database itself.
In this paper, we study the impact of this issue for static (time

invariant) workload. However, the ideas are also relevant for
caching the raw database objects in dynamic content workloads.

3) Cache pollution effects: Caching has a significant impact
on the performance of the web/proxy server. Each website in a
data-center has a set of frequently accessed popular files. Due
to the high frequency of accesses, these popular files tend to
be highly sensitive to the caching capability of the file system.
Ideally, we would like these popular documents to always be
cached. While most of the requests in the website are for
these frequently accessed files, some requests for other not-
so-frequently-accessed files are also possible. Such requests
tend to fetch the non-frequently accessed content to the file
system cache, thus polluting the cache content and requiring
later arriving requests for frequently accessed documents to
result in a cache miss.
This issue is especially concerning for shared data-centers.

With multiple websites sharing the same resources in a shared
data-center, each website now has a lesser amount of file
system cache to utilize. Further, since the frequency of access
of different documents is different in a typical data-center
environment (Zipf like distribution), the amount of degradation
can increase in a super-linear manner as compared to the number
of websites serviced in the shared data-center.
To understand the reason for this behavior in more detail, we

classify the frequently accessed documents into two classes:
‘‘moderately hot” files and ‘‘very hot” files. As the names
suggest, the most frequently accessed half of the popular files
are classified as ‘‘very hot” files. Obviously, the number of
requests for the ‘‘very hot” files is significantly larger as
compared to the ‘‘moderately hot” files.
In a data-center hosting just one website, all the frequently
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accessed documents (both the ‘‘moderately hot” files as well
as the ‘‘very hot” files) are present in cache. Now, accessing a
large infrequently accessed document results in the frequently
accessed documents to be evicted and results in some cache
misses. Applying this in the shared data-center environment
hosting two websites, since the amount of memory present on
the data-center servers is constant, they can now cache only
about half the number of popular files from each website; this
would result in only the ‘‘very hot” files being cached from
both the websites. Since these files are accessed a lot more
frequently than the ‘‘moderately hot” files, they are significantly
more sensitive to cache pollution effects. This results in a super-
linear and sometimes drastic drop in the number of cache hits.

IV. EXPERIMENTAL ANALYSIS

In order to study the impact of the performance of the various
file systems in a cluster-based multi-tier data-center, we per-
formed various system-level micro-benchmarks and application
level tests. We consider both local file systems (ext3fs and
ramfs) as well as network-based file systems (PVFS and Lustre).
In this section, we analyze the peak performance achieved by
these file systems and study their impact on the client’s response
time and throughput in a multi-tier data-center environment.
Especially, we study on network requirements, aggregated cache
volume, and cache pollution effect for each file system. The
analysis results show that the network-based file systems can
provide a large aggregated cache volume while they have
network requirements. We also observe that ramfs can sustain
the cache pollution. To take the advantages of each file system,
we also propose utilizing a multi file system in this section.

For all our experiments we used the following two clusters:
Cluster1: A cluster system consisting of 8 nodes built around

SuperMicro SUPER P4DL6 motherboards and GC chipsets
which include 64-bit 133 MHz PCI-X interfaces. Each node has
two Intel Xeon 2.4 GHz processors with a 512 kB L2 cache
and a 400 MHz front side bus and 512 MB of main memory.
We used the RedHat 9.0 Linux distribution.

Cluster2: A cluster system consisting of 8 nodes built around
SuperMicro SUPER X5DL8-GG motherboards with Server-
Works GC LE chipsets which include 64-bit 133 MHz PCI-X
interfaces. Each node has two Intel Xeon 3.0 GHz processors
with a 512 kB L2 cache and a 533 MHz front side bus and 2 GB
of main memory. We used the RedHat 9.0 Linux distribution.

Clusters 1 and 2 used the following interconnect:
Interconnect: InfiniBand network with Mellanox InfiniHost

MT23108 DualPort 4x HCA adapter through an InfiniScale
MT43132 twenty-four 4x Port completely non-blocking Infini-
Band Switch. The Mellanox InfiniHost HCA SDK version is
thca-x86-3.1-build-003. The adapter firmware version is fw-
23108-rel-3 00 0001-rc4-build-001. The IPoIB driver for the In-
finiBand adapters was provided by Voltaire Incorporation [14].
The version of the driver used was 2.0.5 10.

Cluster 1 was used as the server nodes in the data-center
environment and Cluster 2 was used as the clients. We used
Apache version 2.0.48, PVFS 1.6.2, Lustre 1.0.4, PHP 4.3.1
and MySQL 4.0.12 in all our experiments. Requests from the
clients were generated using eight threads on each node.

A. Basic Performance of Different File Systems

In this section, we analyze the basic performance achieved by
the different file systems: ramfs, ext3fs, PVFS and Lustre. We
show the data transfer rates achieved by these file systems in two
scenarios, transferring cached data and transferring uncached
data. We also show the overhead in performing metadata
operations such as file open(), close(), etc.
For all experiments, in the PVFS and the Lustre setups, three

I/O nodes are configured with each I/O node using ext3fs as the
local file system. The stripe size used was 64KB.
Table I shows three different measurements for the different

file systems, (i) the overhead of metadata operations such as
read() and write(), (ii) read latency for small (4K) and
large (1M) cached content and (iii) read latency for small (4K)
and large (1M) uncached content. Performance numbers for the
write() operation and other file sizes are skipped here due
to space restrictions and can be found in [24].
Comparing the metadata operations for the different file sys-

tems, since this is only a local operation for the local file
systems (ext3fs and ramfs), the overhead can be expected to be
low. On the other hand, since the network-based file systems
(PVFS and Lustre) need to access their metadata managers to
handle file permission issues, the overhead can be significant
for them. Further, this implies that for small file transfers, the
metadata operations can take up a significant portion of the
transfer time in network-based file systems.
Coming to the data transfer rates, for files in cache, we can

expect the performance of the local file systems to be better than
the network-based file systems since its only a local operation.
However for files not in cache, we see that the network-based
file system give better or comparable performance compared to
the local file system due to parallel accesses from different I/O
servers. However it is to be noted that the numbers we reported
here for read latencies do not include the file open() and
close() overheads.

B. Network Requirements of file systems

In order to study the network requirements of different file
systems in the data-center environment, we perform three sets of
experiments. The first experiment evaluates the absolute amount
of network traffic generated by each file system. The second
experiment evaluates the rate at which data is requested over the
network. These two experiments provide an indication about (i)
the potential of the network becoming a bottleneck while using a
network-based file system and (ii) the utilization of the network
bandwidth provided by the data access patterns of the different
workloads. The third experiment shows the end performance
achieved by the different file systems under various workloads
(Zipf Class0 through Zipf Class3) with a high temporal locality
coefficient ( � = 0.9). This experiment indicates the impact of the
high overhead of metadata operations associated with network-
based file systems.
Absolute Network Traffic Generated: Figure 4a shows the

amount of network data transferred for a data-center environ-
ment hosting static content. We used the Linux utility netstat
to monitor the network traffic and report the total number of
packets received and sent from the web server. For the local file
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TABLE I

FILE ACCESS LATENCY OF DIFFERENT FILE SYSTEMS

Latency (usecs) ext3fs ramfs pvfs lustre
4K 1M 4K 1M 4K 1M 4K 1M

Open & Close overhead 6 6 6 6 1060 1060 876 876
Read Latency (cache) 4 1602 4 1578 680 13825 7.7 1998
Read Latency (no cache) 1500 76312 1400 2379 9600 44108 3000 50713
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Fig. 4. Network requirements for various workloads: (a) Static Content (Zipf) (b) Dynamic Content (TPC-W)

system, the network requirements will be the total number of
packets exchanged between the proxy and web server. However
for the cluster file systems, in addition to the network traffic
between the proxy and the web server, it would also include
the communication between the web server and the file system
servers for fetching the document over the network. We can
see that the amount of network traffic associated with PVFS
increases proportionally as compared to the local file system.
For Lustre, however, the network traffic is very close to that of
the local file system. This is due to client-side cache used by
Lustre, i.e., Lustre maintains a cache of the fetched documents
on the webserver nodes too thus reducing the requirement to
go over the network for every request. The network traffic for
ramfs is skipped in this graph and is expected to be similar
to ext3fs since both file systems do not create any additional
network traffic for file management.

Figure 4b shows the amount of network traffic generated
for the different file systems for dynamic content (TPC-W
browsing type of benchmark) in a data-center environment.
As shown in the figure, surprisingly, the network traffic does
not increase with the increasing workload size. For ext3fs the
amount of network traffic almost remains constant mainly due
the nature of these transaction-based queries. However even for
the network-based file systems, the network traffic does not
increase. The main reason for this is the indexing and caching
capabilities of database systems. Database systems implement
indexing and memory based caching as an effective means
of query searching and processing. Several databases maintain
this intelligent mapping and send file I/O requests for only
the relevant non-cached data from the file system resulting in
very less network traffic for network-based file systems. We see
similar trend in lustre but the total number of packets received
is similar to the ext3fs.

Data transfer rate: Figure 5a shows a snapshot of the I/O
activity for static content workload in a data-center environment.
We use the Linux iostat utility to monitor the I/O traffic at the
web server tier. We see that Zipf class 0, Zipf class 1, Zipf
class 2 have very less I/O activity but for Zipf class 3, the
amount of I/O read from the disk increases. For Zipf class 4, the

amount of disk I/O activity is significantly larger compared to
all workloads. For network-based file systems, this I/O activity
would correspond to the network traffic generated. We observe
that the rate at which data is accessed over the network is about
40MBytes/s. This is less than 25% of the network bandwidth
provided by TCP/IP over the InfiniBand network we are using
(TCP/IP achieves a peak bandwidth of about 200MBytes/sec in
our testbed). In general, this rate of data transfer can be expected
to be pretty low for most current networks.
On the other hand, as seen in Figure 5b, the amount of disk

I/O for dynamic content is significantly lesser in comparison to
the static workloads. This shows that the read and write patterns
for databases are in forms of many bursts of small data reads or
writes. Thus, using a network-based file systems for dynamic
workloads might result in an under utilization of the network
bandwidth.

TABLE II

WORKLOAD CLASSIFICATION

Class File Sizes Working Set Size
Zipf Class 0 1K - 250K 25 MB
Zipf Class 1 1K - 1MB 100 MB
Zipf Class 2 1K - 4MB 450 MB
Zipf Class 3 1K - 16MB 2 GB
Zipf Class 4 1K - 64MB 6 GB

Overhead of Metadata operations and Network Traffic:
To understand the overall impact of the high overheads of
metadata operations in network-based file systems, we show the
end performance achieved by the different file systems under
various workloads (Zipf Class0 through Zipf Class3; described
in Table II) with a high temporal locality ( � = 0.9). Since the
workloads have a high temporal locality coefficient and most
files accessed are small files, the performance of these traces is
dominated by the performance for small files.
Table III shows the performance of the data-center in Trans-

actions per Second (TPS) for different single file traces (file
sizes 4K and 1M) in two cases: when the data accessed is in
cache and the case when the data accessed is not in cache,
respectively. In both the cases, for small file sizes the network-
based file systems perform worse than the local file systems due
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TABLE III

THROUGHPUT ACHIEVED BY DIFFERENT FILE SYSTEMS IN A DATA-CENTER

TPS ext3fs ramfs pvfs lustre
4K 1M 4K 1M 4K 1M 4K 1M

File in
cache 11241 221 11378 253 699 211 1054 215
File not
in cache 1488 66 2149 110 484 28.8 502 26.8

to the high file open() and close() overheads. For large
files, network-based file systems perform either comparably or
worse than local file systems. On the whole, for Zipf traces
with a high temporal locality coefficient (which are dominated
by small files), this overhead can be expected to be the worst.

Figure 6a shows the throughput achieved by various file
systems on different workloads. With small workloads, since
most of the files can be cached in the file system cache, ext3fs
and ramfs achieve significantly better performance in compar-
ison to pvfs and lustre. This degradation in the performance
is mainly attributed to the high overheads of open() and
close() operations for network-based file systems with small
files. Further, since the workloads considered in this section
show a high temporal locality, this would result in the most
popular documents being fetched most of the time; these are
small documents in our workloads, thus resulting in an overall
degradation of performance.

Figure 6b shows the performance of data-center for different
classes of dynamic content workloads (TPCW Class 0 refers to
a workload with the TPC-W specifications, but the database size
is equal to the working set size of the Zipf Class 0 workload).
We see that the data-center performance with ramfs or ext3fs is
significantly better than the pvfs file system. One point to note is
that most databases do not open or close the files corresponding
to the database for every request. Thus, for the dynamic content

workload, the network-based file systems do not have to face the
overhead of file open() and close() operations. However,
as shown in Figure 5b, the data accesses for dynamic content
is in many bursts of small data transfers. This causes severe
under-utilization of the network and can cause a drop in the
performance for network-based file systems. This behavior is
reflected in the performance of the PVFS file system compared
to ext3fs and ramfs. Lustre on the other hand does comparably to
ext3fs and ramfs. This is due to the client-side caching supported
by it; the database server avoids the network traffic most of
the times because of the cache maintained by the Lustre file
system on the database node itself. We see similar trend for
both shopping and browsing mix type of workloads and have
been included in [24].

C. Aggregate Cache Size for file systems
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To analyze the impact of the aggregate cache offered by
network-based file systems, we measure the performance
achieved by the data-center for various workloads. For all the
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workloads, we fix the working set size to 4GB and vary the
� value to demonstrate workloads with different coefficients of
temporal locality.

Figure 7 shows the transactions per second (TPS) achieved
by a network-based file system (pvfs) and a local file system
(ext3fs) for this type of workload. We see that, with an � value
of 0.75, the data-center performance with ext3fs file system
is better than pvfs due to the better cache hit time of the
local file system. However, as the aggregate size of the popular
content increases, in other words as the � value increases, the
data-center performance with ext3fs is worse than data-center
performance with pvfs. This is because of the larger aggregate
cache size provided by PVFS. We see similar trend for the lustre
file system as shown in Figure 7.

D. Cache Pollution Effects

In shared data-center environments, requests from multiple
web-sites compete with each other to utilize the cache provided
by the file system. Thus, requests for one website might pollute
the file system cache causing the requests for the second website
to be handled as cache misses.
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Cached content for various workloads

In order to study this effect, we designed a test to study
the amount of cache corruption that can occur for varying
workloads. In this experiment, we compare the percentage of
cache hits for different workloads in two scenarios. In the first
scenario (legend Single), we host only one website on the data-
center; this makes sure that most the “hot” files for that website
remain in cache. In the second scenario (legend Shared), we
host two identical websites on the data-center and compare the
number of cache hits with that of the first scenario.

Figure 8 shows the total amount of cached and noncached
accesses for the various workloads. This figure gives us several
insights. First, for very small workloads (Zipf Class 0 and Zipf
Class 1) there is no difference in the number of cache hits. This
is because the servers have enough memory space available to
cache the frequently accessed documents for both the websites.
Second, for medium ranged workloads (Zipf Class 2), the
number of cache misses start increasing. This is because the
servers do not have enough memory to cache all the frequently
accessed documents for all the websites; thus increasing the
number of websites hosted increases the cache misses.

Third, for large workloads (Zipf Class 3 and Zipf Class 4), the
number of cache hits drops drastically in the shared data-center

scenario. Ideally, we expect the decrease in the number of cache
hits to be lesser than 50% since the same cache is shared by two
websites now; so about half of the popular documents from each
website can still stay in cache. However, as the figure shows,
this is not the case and the drop in the number of cache hits is
by nearly a factor of ten. The reason for this is the impact of
the requests for large non-frequently accessed documents. For
a better understanding of this behavior, we repeat the example
provided Section III-B.3 in the context of the results seen in
this figure.
Again, we classify the frequently accessed documents into two

classes: ‘‘moderately hot” files (lower half in the frequency of
accesses) and ‘‘very hot” files (upper half in the frequency of
accesses). In a single data-center, all the frequently accessed
documents (both the ‘‘hot” files as well as the ‘‘very hot”
files) are present in cache. Now, accessing a large infrequently
accessed document results in some of the frequently accessed
documents to be evicted and results in some cache misses. These
evicted documents would most likely be the ‘‘moderately hot”
files due to the lesser frequency of their access.
In the shared data-center environment, however, since the

servers do not have enough memory space to accommodate
all the popular files from both the websites, they can cache
approximately half the popular files from each website; this
would result in only the ‘‘very hot” files being cached from
both the websites. Now, accessing a large infrequently accessed
document results in some of the frequently accessed documents
to be evicted. Since the file system cache does not contain any
“moderately hot” files in this scenario, some of the ‘‘very hot”
files will need to be evicted. Since these files are accessed
a lot more frequently than the ‘‘moderately hot” files, they
are significantly more sensitive to cache pollution effects. This
results in a drastic drop in the number of cache hits for shared
data-centers.

E. Multi File System Data-Centers

In the previous few sections, we have shown the impact of
three broad issues in the shared data-center environment: (i)
Network Traffic Requirements, (ii) Aggregate Cache Size and
(iii) Cache Pollution Effects. Based on our observations on these
broad issues, in this section, we propose utilizing a multi file
system based data-center environment. This approach attempts
to handle the above mentioned issues by utilizing each file
system only for environments where it is most suited for, thus
taking the best capabilities of all file systems.
The multi file system approach uses a combination of ramfs

and ext3fs to serve websites serving (i) static content with a
high temporal locality or (ii) dynamic content. Similarly the
approach uses a combination of ramfs and either PVFS or Lustre
for websites serving static content with low temporal locality.
For simplicity, we will refer to ext3fs, PVFS and Lustre as the
“backing file system” in the respective environments. In this
approach, we place the most frequently accessed files in ramfs
and the remaining files on the backing file system.
We focus on three kinds of workloads in this section: (i) Static

content with high temporal locality (Zipf Class 0 through Zipf
Class 4), (ii) Static content with low temporal locality (Zipf
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Fig. 9. Shared Data-Center Environment: Impact of a Hybrid file system (a) Static Content (Zipf) (b) Dynamic Content (TPC-W: Browsing Mix)

trace with varying � values) and (iii) Dynamic content
To show the impact in terms of performance, we emulate a

web service provider hosting two web sites. For the first web
site, we place all the files in the backing file system. For the
second web site, we set up two scenarios. In the first scenario,
all files are placed in the backing file system. In the second
scenario, all the “hot” files are placed on ramfs, and all other
files in the backing file system. Requests for both web sites
are serviced simultaneously. The performance difference of the
second website between the two scenarios is our focus.

Figure 9a shows the percentage improvement achieved by the
second web site when the websites serve static content with
high temporal locality. As mentioned earlier, for this workload
we use a combination of ramfs and ext3fs to store the files. We
see that the multi file system approach achieves a performance
improvement of up to 48% in some cases.

A similar strategy can be followed for dynamic content also.
However, for dynamic content websites, the entire database is
usually huge and may not be able to completely fit in the
ramfs. Hence we may have to place only a part of the database
in the ramfs. For example, we can place the tables that are
frequently accessed in the ramfs. Though directly placing the
database in a memory based file system might be inappropriate
due to reliability and fault-tolerance issues, researchers have
worked on semi-reliable databases and memory based fault-
tolerant databases in the past. In this paper, we do not consider
these issues and assume that the database is equipped with these
features, thus allowing the usage of memory based file systems.
In our experiment, we place the tables which are frequently
accessed in ramfs and the remaining tables in the backing file
system. For example in a TPC-W browsing type of benchmark,
we realize that the ‘select’ queries are more frequently accessed
than the ‘update’ queries. Also these ‘select’ queries predom-
inantly access the customer, item tables frequently. Hence we
place the files pertaining to these tables in ramfs.

Figure 9 shows the improvement achieved by the second web
site while using ramfs to cache the frequently accessed tables
which can fit in the cache. As mentioned before, in the figure,
we call the workload on the first web site as background
workload (shown as the x-axis in the figure), and the workload
on the second web site as foreground workload (shown as the
legends in the figure). We see a similar trend in comparison
to static content; the larger the working set of the background
workload, the higher the improvement that can be achieved.
Compared to placing the small files on ext3fs, placing them

on ramfs achieves a performance improvement of up to 40%
with TPCW Class 3 workload as the background trace. We
see similar trend for TPC-W Shopping and Ordering type of
benchmarks and also for real traces like RUBiS and RUBBoS.
We have included those results in [24] due to space constraints.
Figure 10 shows the data-center performance for workloads

with varying coefficients of temporal locality. We can see that
placing the “hot” files in ramfs gives an improvement of up to
15% in some cases. There are two reasons for this. The first
reason is the avoidance of cache pollution because of placing
the “hot” files in ramfs. The second reason is the reduced
overhead of the open() and close() system calls because of
placing several small files in a local file system. As the temporal
locality decreases, we see that there is a reduction in the amount
of benefit achieved. This is because with very low temporal
locality, the number of cache hits reduces; thus avoiding cache
pollution cannot be expected to give high benefits. Secondly,
with very low temporal locality, the number of requests for the
smaller files reduces; thus the overhead of the open() and
close() system calls is not as much of a concern.
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V. RELATED WORK

Hu et al. [13] have quantitatively analyzed performance bottle-
necks of the Apache server and proposed several techniques to
improve the same. Several others have studied the performance
of a busy WWW server [1], [16]. Joubert et al. [15] proposed
memory-based web servers in improving its performance. Most
of the approaches mentioned above concentrate on evaluating
only the WWW server whereas in our approach we evaluate a
shared multi-tier data-center environment.
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Wang et al. [25] have done detailed file system workload anal-
ysis. However the analysis was done for scientific applications
and does not apply to data-center applications. Wang and Li [26]
suggest a temporary file system which works in conjunction
with the regular file system. However the web servers need
to manage their own data and meta-data on raw disks and
also the analysis was simulation-based. In the multi-file system
approach we run real traces and identify the benefits of placing
documents on ram disks in shared data-center scenarios. Martin
F. Arlitt et al. [2] have studied workload characteristics that are
common to different workloads and emphasized the importance
of caching and performance issues in web servers. Also, Jaidev
et al. [20] have looked at network processing overhead in web
servers. They claim that protocol offload would give significant
benefits for static workloads (compute-intensive) and not for I/O
intensive workloads. However, to the best of our knowledge, our
study is unique since we propose a multi file system for multi-
tier data-centers and identify its impact in shared data-center
scenarios. We have also evaluated PVFS [27], [4] in our previous
work and we expect the results to be similar over different high
speed interconnects.

VI. CONCLUDING REMARKS

In this paper, we analyzed the impact of the file system in
a shared data-center environment. We studied the impact of
both local file systems (ext3fs and ramfs)and network-based file
systems (PVFS and Lustre) in three broad aspects namely: (i)
Network Traffic Requirements, (ii) Aggregate cache size and
(iii) Cache pollution effects. We showed the capabilities and
disadvantages of each file system in the light of the above
mentioned three aspects. Finally, based on the insights gained
from these broad issues, we proposed a multi file system
data-center environment to utilize each file system only for
environments where it is most suited for, thus taking the best
capabilities of all the file systems. Our experimental results
show that this approach can improve the performance by up
to 48% in a shared data-center environment for static (time
invariant) workloads showing high temporal locality, up to 15%
for static workloads with low temporal locality and up to 40%
for dynamic (time variant) workloads.

Dynamic reconfiguration of resources has been studied in
the context of nodes [5], [3] and storage environments [19].
However, dynamic reconfigurability for caching and retrieving
file documents based on support from the file system is quite
novel and holds a lot of promise. The work in this paper was
performed as an initial study to understand the implications
of such dynamic reconfigurability with file system support.
We plan to extend the knowledge gained in this study to
implement a full-fledged dynamic reconfiguration module for
file management.
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