
Designing Efficient Asynchronous Memory Operations Using Hardware Copy
Engine: A Case Study with I/OAT∗

K. Vaidyanathan W. Huang L. Chai D. K. Panda
Computer Science and Engineering,

The Ohio State University,
{vaidyana, huanwei, chail, panda}@cse.ohio-state.edu

Abstract

Memory copies for bulk data transport incur large over-
heads due to CPU stalling, small register-size data move-
ment, etc. Intel’s I/O Acceleration Technology offers an
asynchronous memory copy engine in kernel space which
alleviates such overheads. In this paper, we propose a set of
designs for asynchronous memory operations in user space
for both single process (as an offloaded memcpy()) and IPC
using the copy engine. We analyze our design based on
overlap efficiency, performance and cache utilization. Our
microbenchmark results show that using the copy engine for
performing memory copies can achieve close to 87% over-
lap with computation. Further, the copy engine improves
the copy latency of bulk memory data transfers by 50% and
avoids cache pollution effects. With the emergence of multi-
core architectures, the support for asynchronous memory
operations holds a lot of promise in reducing the gap be-
tween the memory and processor performance.

1 Introduction

Several applications in the fields of biomedical informat-
ics, satellite weather image analysis, engineering and sci-
ences not only demand for large number of compute cy-
cles but also for higher memory and network performance.
To address the compute cycle requirement, large number of
processors are getting added to current-generation systems.
Emerging new technologies such as Multi-Core Processors
(also known as Chip-level Multiprocessing or CMP) pro-

∗This research is supported in part by DOE grants #DE-FC02-
06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-0403342 and
#CNS-0509452; grants from Intel, Mellanox, Cisco systems, Linux Net-
worx and Sun Microsystems; and equipment donations from Intel, Mel-
lanox, AMD, Apple, Appro, Dell, Microway, PathScale, IBM, SilverStorm
and Sun Microsystems.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

vide several cores on a single node. Currently dual-core
architectures (two cores per die) are widely available from
various industry leaders including Intel, AMD, Sun (with
up to 8 cores) and IBM. Similarly, network performance has
also been increasing at a tremendous rate with the introduc-
tion of high-performance networks such as InfiniBand [1],
10 Gigabit Ethernet (10 GigE) [7], etc. Today, several in-
dustries are taking the next step in high-speed networking
with multi ten-gigabit networks such as the Mellanox 20-
Gigabit IBA DDR adapters, IBM 30-Gigabit IBA adapters,
etc.

On the other hand, memory performance has not been
improving at a significant pace resulting in a huge gap be-
tween the processor and memory performance. The limited
memory bandwidth is often addressed as the major perfor-
mance degradation factor for many scientific applications.
Several memory block operations such as copy, compare,
move, etc., are performed by the host CPU leading to an in-
efficient use of the host compute cycles. In addition, such
operations also affect the caching hierarchy since the host
CPU fetches the data onto cache, thereby, evicting some
other valuable resources in cache. The problem gets even
worse with the introduction of multi-core systems since sev-
eral cores can concurrently access the memory leading to
memory contention issues, CPU stalling issues, etc. Due to
several of the issues mentioned above, the ability to overlap
computation and memory operation as a memory latency-
hiding mechanism becomes critical for masking the gap be-
tween processor and memory performance.

Direct Memory Access (DMA) has been traditionally
used to transfer the data directly from the host memory to
any input/output device without the host CPU intervention.
Several networks such as InfiniBand and Myrinet provide
a zero-copy data transfer support. However, such solutions
are mainly used for transferring data from one node to an-
other. Researchers in the past have attempted to use DMA
engines to accelerate bulk data movement within a node.
Many of these approaches have not entirely succeeded due
to huge DMA startup costs, completion notification costs

and other performance-related issues. Recently, Intel’s I/O
Acceleration Technology (I/OAT) [6, 9, 11] introduced an
Asynchronous DMA Copy Engine (ADCE) in kernel space
that has direct access to main memory to improve perfor-
mance and reduce the overheads mentioned above.

In this paper, we propose a set of designs for asyn-
chronous memory operations in user space for both single
process (as an offloaded memcpy()) and Inter-Process Com-
munication (IPC) using the copy engine. In order to achieve
this, we design and implement a kernel module that pro-
vides a set of interfaces for userspace applications. In our
design, we efficiently handle IPC synchronization, memory
alignment, scheduling across DMA channels and avoiding
user buffer pinning costs. We analyze our design based on
overlap efficiency, performance and cache utilization.

Our experimental results show that using ADCE for
memory copies can achieve close to 87% overlap with com-
putation. Further, it improves the latency of large memory
data transfers by 50% and increases the IPC bandwidth for
large message sizes by a factor of two. Also, the copy en-
gine assists in avoiding 30% performance degradation due
to cache pollution effects.

2 Background

In this section we provide a brief motivation for using
copy engines in bulk data transfers and describe the archi-
tecture of I/OAT Copy Engine.

2.1 Motivations for Copy Offload Engine

Figure 1 illustrates the basic architecture of a copy exe-
cution using a CPU vs using a DMA copy engine. As men-
tioned in [12], utilizing a copy engine for bulk data transfer
offers several benefits:

1. Reduction in CPU Resources and Better Performance:
Memory copies are usually implemented as a series of load
and store instructions through registers. Data is fetched onto
the cache and then onto the registers. Typically, the CPU
performs the copy by register size which is 32 or 64 bit long.
On the other hand, using a copy engine, memory copies can
be done at a faster rate (close to block sizes) since it directly
operates with main memory. Further, the load and store in-
structions used in CPU-based copies may end up occupying
the CPU resources, limiting the CPU to not look far ahead
in the instruction window. Copy engines can help in freeing
up CPU resources so that other useful instructions can be
executed.

2. Computation-Memory Copy Overlap: Since the
memory-to-memory copy operation can be performed with-
out host CPU intervention using an asynchronous copy en-
gine, we can achieve better overlap with memory copies.
This is similar to DMA operation where data is transfered

directly between the memory and device which is com-
monly used by networks such as InfiniBand, Quadrics, etc.

3. Avoiding Cache Pollution Effects: Large memory
copies can pollute the cache significantly. Unless the source
or destination buffers are needed by the application, allocat-
ing this buffer in the cache may result in polluting the cache
as it can evict other valuable resources in the cache. As
mentioned in [12], cluster applications such as web servers
do not touch the data immediately even after completing the
memory copy. Using a copy engine in this case, results in
avoiding any cache pollution as it can directly perform the
copy without getting the data onto the cache.

M
em

or
y

Cache

Registers

CPUCopy on CPU

Copy on DMA
copy engine

Cache Pollution
Critical resource touched

Stalled on Mem
Register−based

CPU not stalled CPU critical
compute overlap resources untouched Reduced pollution

DMA

Engine
Copy

Block granularity

Block granularity

Figure 1. Copy execution on CPU vs Copy En-
gines [12]

2.2 I/OAT Copy Engine Architecture

I/OAT [6] offloads the data copy operation from the
CPU with the addition of an asynchronous DMA copy en-
gine (ADCE). ADCE is implemented as a PCI-enumerated
device in the chipset and has multiple independent DMA
channels with direct access to main memory. When the pro-
cessor requests a block memory operation from the engine,
it can then asynchronously perform the data transfer with
no host processor intervention. When the engine completes
a copy, it can optionally generate an interrupt.

Though ADCE offers several benefits, the following is-
sues need to be taken care of. The memory controller
uses physical addresses, so a single transfer cannot span
discontinuous physical pages. Hence, memory operations
should be broken up into individual page transfers. Sec-
ondly, memory copies whose source and destination overlap
should be carefully handled. Applications need to schedule
such operations in an appropriate order so as to preserve the
semantics of the operation. Lastly, the copy engine must
maintain cache coherence immediately after data transfer.
Data movement performed by the memory controller should
not ignore the data stored in the processor cache, potentially
requiring a cache coherence transaction on the bus.

3 Proposed Design

In this section, we describe our proposed design in sup-
porting asynchronous memory operation for userspace ap-
plications. We first describe the design for single process
and IPC. Later, we discuss how efficiently we handle issues
such as synchronization, memory alignment, user buffer
pinning, etc.

3.1 Basic Design for User-Space Applica-
tions

Currently, Intel supports several interfaces in kernel
space for copying data from a source page/buffer to a des-
tination page/buffer. These interfaces are asynchronous and
the copy is not guaranteed to be completed when the func-
tion returns. These interfaces return a non-negative cookie
value on success, which is used to check for completion of
a particular memory operation. It is necessary to wait on
another function to wait for the copies to complete.

A memory copy operation typically involves three
operands: (i) a source address, (ii) a destination address
and (iii) number of bytes to be copied. For user-space ap-
plications, the source and destination addresses are virtual
addresses. However, as mentioned in Section 2, the DMA
copy engine can only understand physical addresses. The
first step in performing the copy is to translate the virtual
address to physical addresses. For various reasons related
to security and protection, this is done at the kernel space.
Once we get the physical address, we also need to make
sure that the physical pages that are mapped to the user ap-
plication does not get swapped onto the disk while the copy
engine performs the data transfer. Hence, we need to lock
the pages in memory before initiating the DMA and unlock
the pages after the completion of the copy operation, if re-
quired. We use the get user pages() function in the kernel
space to lock the user pages.

Table 1. Basic ADCE Interface
Operation Description
adma copy(src, dst, len) Blocking copy routine
adma icopy(src, dst, len) Non-blocking copy routine
adma check copy(cookie) (Non-blocking) check for

completion
adma wait copy(cookie) (Blocking) wait for

completion

In order for the userspace applications to use the copy
engine, we propose the addition of the following interfaces,
as shown in Table 1. The adma icopy operation helps in ini-
tiating the copy and returns a cookie which can be used later

to check for completion while the adma copy check opera-
tion helps in checking if the corresponding memory oper-
ation has completed. The adma copy wait operation waits
for the corresponding memory operation to complete and
the adma copy operation is a blocking version which uses
the copy engine and does not return until the copy finishes.

3.2 Design for Inter-Process Communica-
tion (IPC)

In addition to offloaded memory operations within a sin-
gle process, applications also require support for exchang-
ing messages across different processes in a single node.
Typically, parallel applications which run on different pro-
cessors use such mechanisms for inter process communica-
tion. As shown in Figure 2, there are many ways of per-
forming inter process communication. The most common
way followed is the user space shared memory based ap-
proach. In this approach, processes A and B create a shared
memory region. Process A copies the source data onto the
shared memory and process B copies this shared memory
segment to its destination. Clearly, this approach involves
an extra copy. Several MPI implementations use this ap-
proach [4]. As mentioned in Section 2, this approach also
occupies some CPU resources. Another approach is the
NIC-based loop back approach wherein network device can
DMA the data from the source to the destination. The third
approach [8] is to map the user buffer in kernel space and
use the standard copy operation in kernel to avoid an extra
copy incurred by user space shared memory approach. In
this paper, we propose a fourth approach, which is utiliz-
ing the DMA copy engine to perform the copy. Such an
approach does not incur any extra copies, not touch many
CPU critical resources and also avoids any cache pollution
effects.

��

��

���������������
���������������
���������������
���������������

�����������
�����������
�����������

���������
���������
���������
�������������������
�������������������
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	

Process B

User buffer

NIC based
Loop Back Copy (NLBC)

Memory Copy (USMC)

Process A

User buffer

Asynchronous DMA Copy
Engine based Copy (ADCEC)

Kernel Assisted Memory
Mapped Copy (KAMMC)

User space Shared

ADCEC

KAMMC

USMC

NLBC

Figure 2. Different IPC Mechanisms

We support the following user interface, as shown in Ta-
ble 2, for applications to exchange messages across differ-
ent processes. The adma read and adma write operations

read and write data onto another process and adma iread
and adma iwrite operations initiate the data transfer. How-
ever, due to the presence of two different processes, syn-
chronization becomes a bottleneck for performance. Data
transfer cannot be initiated unless both the processes have
posted their buffers for data transfer. We describe the chal-
lenges in handling these scenarios in Section 3.3. The
adma icheck operation checks whether the memory oper-
ation has completed and the adma wait operation waits till
the memory operation completes.

Table 2. ADCE Interface for IPC
Operation Description
adma iread(fd, addr, len) Non-blocking read routine
adma iwrite(fd, addr, len) Non-blocking write routine
adma read(fd, addr, len) Blocking read routine
adma write(fd, addr, len) Blocking write routine
adma check(cookie) (Non-blocking) check for

read/write completion
adma wait(cookie) (Blocking) Wait for

read/write completion

Figure 3 shows the mechanism by which we support
IPCs. Our design can be easily integrated with the pipe
or socket semantics. Currently, we support the socket se-
mantics for establishing the connection between different
processes. Once the connection is made, processes can use
the set of interfaces mentioned above for utilizing the copy
engine. Let us consider two connected processes (A and
B). If process A needs to send data to process B, process A
makes a request to the kernel (Step 1). In step 2, the kernel
locks the user page and adds the entry to a list of cached vir-
tual to physical mappings. The kernel then makes an entry
to a list of pending read and write requests. At this time, if
process B posts its read buffer (Step 4), the kernel locks the
user page and caches the page mapping (Step 5). The kernel
searches the list to find the matching write request (Step 6).
Since the write buffer is already posted, it initiates the DMA
copy (Step 7). Process A waits for the completion of oper-
ation (Step 8) by issuing a request to the kernel. The kernel
first makes sure that the corresponding buffers are posted
by waiting on a semaphore (Step 9a). This semaphore is
initially in a locked state and released when both the read
and write buffers match. Steps 10-11 are similar to Steps
8-9.

3.3 Handling IPC Synchronization

Since we have two different processes performing com-
munication using the copy engine, synchronization be-
comes a critical issue before initiating the DMA transac-
tion. For example, consider processes A and B wanting to

User Buffer

...

User Buffer

1. Request (ioctl)

Process A

User

Kernel 9a. Wait on semaphore
9b. Wait for DMA

completion
5b. Cache the page

mapping

11a. Wait on semaphore
11b. Wait for DMA

completion

6. Search

Linked List of Posted Requests
3. Post Request

2a. Lock the user pages
2b. Cache the page

mapping

5a. Lock the user pages

7. Initiate DMA copy

8. Wait

4. Request (ioctl)

10. Wait

Process B

Figure 3. IPC using DMA copy engine

communicate a buffer of size 1 KB. We need to handle the
following cases making sure that latency, progress and CPU
utilization do not get affected significantly. Case 1: Process
A posts the write buffer and waits for the operation to fin-
ish. Then process B posts an adma iread operation. Case
2: Process B posts the read buffer and waits for the opera-
tion to finish. Then process A posts an adma iwrite opera-
tion. Case 3: Both processes A and B post their respective
buffers before performing the wait operation. To address
these cases, we use a binary semaphore in our implementa-
tion. For Case 1, we queue the request posted by Process
A during the write request and we allow the process to wait
on the semaphore during the wait operation. When Process
B posts a read buffer, the DMA is initiated and immediately
process A is woken up by releasing the semaphore. Process
A then waits on the DMA copy to finish and the control
is given back to the user process. For Case 2, a similar
approach is followed except that Process A wakes up pro-
cess B after process A posts the corresponding write buffer.
In Case 3, both processes A and B see a matching request
posted and thus do not wait on any semaphore and directly
check for DMA completion. All three cases avoid unnec-
essary polling and the control is released immediately after
the buffers are posted so that DMA completion is checked
immediately leading to better notification.

3.4 Handling Memory Alignment

Another issue is the memory alignment problem asso-
ciated with source and destination buffers. Since the copy
engine operates with main memory, the performance of the
copy operation can be enhanced if the memory is page-
aligned. For example, lets say that the source address starts
at offset 0 and the destination address at 2K. If we assume
the page size to be 4 KB, then we can only schedule a max-
imum of 2 KB copy since the copy length is required to be
within the page-boundary, leading 2000 such operations if
we assume a 4 MB data transfer. On the other hand, if the
addresses were page-aligned, we only need 1000 such op-

erations. In the worst case, we may end up issuing copies
for very small messages (<100 bytes) for several iterations.
Clearly, by making the addresses page-aligned, we can save
on the number of copy operations and more importantly
avoid issuing very small data transfers using the copy en-
gine.

3.5 Handling User Buffer Locking

As mentioned in Section 2, the copy engine deals with
physical addresses as it directly operates on main mem-
ory. To avoid swapping of user pages to the disk during
a copy operation, it is mandatory that the kernel locks the
user buffers before initiating the DMA copy. Usually this
locking cost is quite large, in the order of µs contributing
significantly to the total time required for data transfer. To
reduce this cost, we lock the buffers initially and do not re-
lease the locked buffers even after the completion of data
transfer. For subsequent data transfers, if the same user
buffer is reused, we can avoid the locking costs and directly
use the physical address that maps to the virtual address.
However, if the application uses malloc() and free() calls,
the kernel module needs to be aware of such changes and
appropriately release these buffers.

3.6 Handling Scheduling across DMA
channels

Several applications can use the DMA engine simulta-
neously. Hence, it is possible that a small memory opera-
tion is queued behind several large memory operations. Due
to the fact that we have several DMA channels, scheduling
these memory operations on appropriate channels becomes
a challenging task. Currently, we use a simple approach of
using the channels in a round-robin manner and schedule
the memory operations. We plan to extend this work on
using dedicated channels and adaptive schemes in future.

4 Experimental Results

We ran our experiments on a dual dual-core Intel
3.46 GHz processors and 2 MB L2 cache system with
SuperMicro X7DB8+ motherboards which include 64-bit
133 MHz PCI-X interfaces. The machine is connected with
an Intel PRO 1000Mbit adapter. We used the Linux RedHat
AS 4 operating system and kernel version 2.6.9-30.

4.1 Latency and Bandwidth Performance

Figure 4a shows the performance of copy latency using
CPU and ADCE for small message sizes. In this experi-
ment, both source and destination buffers fit in the cache.
For CPU-based copy operation, we measure the memcpy

operation of libc library and average it over several itera-
tions. This is indicated as libc memcpy (CPU-based) line
in the figure. For ADCE, we use the adma icopy operation
followed by the adma wait operation and measure the time
to finish both the operations.

As shown in Figure 4a, we see that CPU-based approach
performs well for all message sizes. This is mainly due to
the cache size which is 2 MB. Since both source and des-
tination buffers can fit in the cache, CPU-based approach
performs better. Figure 4b show the performance of copy
latency for small messages when source and destination
buffers are not in the cache. In this experiment, we use two
64 MB buffers as source and destination. After every copy
operation, we move the source and destination pointers by
message size, so that memory copy always uses different
buffers. We repeat this for a large number of iterations and
ensure that the buffers are not in the cache. As observed in
the figure, we see that ADCE using four channels performs
better from 16 KB. As mentioned earlier, since we are us-
ing buffers that are not in the cache, for ADCE, we also
incur penalties with huge pinning costs for every copy oper-
ation. As a result, we see that the performance is little worse
compared to the previous experiment where the buffers are
in the cache. Also, the performance of ADCE with one
channel gets better after 256 KB message size. However, as
shown in Figure 4c, we see that the performance of ADCE
for large message sizes is significantly better than the CPU-
based approach. For 4 MB message size, we observe that
ADCE with four channels results in 50% improvement in
latency as compared to the CPU-based approach. Also, we
observe that ADCE using four channels achieves better la-
tency compared to ADCE with one channel.

The bandwidth performance of copy operation is shown
in Figure 5. In this experiment, we post a window of
adma icopy operations (128 in our case) and wait for these
memory operations to finish. We repeat this experiment
for several iterations and report the bandwidth. For CPU-
based approach, we use the libc memcpy instead of the
adma icopy operation. As shown in Figure 5, for message
sizes till 1 MB, the CPU-based approach yields a maxi-
mum bandwidth of 9189 MB/s. This is mainly due to the
caching effect since the copy happens inside the cache. For
message sizes greater than 1 MB, we observe a huge drop
in bandwidth for CPU-based approach achieving close to
1443 MB/s. However, ADCE with four channels achieves
a peak bandwidth of 2912 MB/s, almost double the band-
width achieved by CPU-based approach. ADCE with one
channel achieves close 2048 MB/s.

4.2 Overlap of Computation and Memory
Operation

In this section, we evaluate the ability of ADCE to effec-
tively overlap memory copy process and computation. To

 0

 50

 100

 150

 200

 250

 300

 256k 64k 16k 4k 1k

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 256k 64k 16k 4k 1k

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

 0

 2000

 4000

 6000

 8000

 10000

 12000

16M8M4M2M1M

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

Figure 4. Latency: (a) small message hot-
cache, (b) small message cold-cache and (c)
large message cold-cache

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

16M 4M 1M 256k 64k 16k 4k 1k

Ba
nd

wi
dt

h
(M

B/
s)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

Figure 5. Bandwidth

carry this evaluation we design an overlap benchmark. For
a certain message size, the benchmark first estimates the
latency of blocking memory copy Tcopy (adma icopy oper-
ation immediately followed by adma wait operation). To
test the overlap efficiency, the benchmark initiates an asyn-
chronous memory copy (adma icopy) followed by a certain
amount of computation which at least takes time Tcompute

> Tcopy, and finally waits for the completion (adma wait).
The total time is recorded as Ttotal. If the memory copy is
totally overlapped by computation, we should have Ttotal =
Tcompute. If the memory copy is not overlapped, we should
have Ttotal = Tcopy + Tcompute. The actual measured value
will be in between, and we define overlap as:

Overlap = (Tcopy + Tcompute - Ttotal) / Tcopy

Based on the above definition, the value of overlap will
be between 0 (non-overlap) and 1 (totally overlapped). A
value close to 1 indicates a higher overlap efficiency. Fig-
ure 6a illustrates the overlap efficiency we measured. As we
can see, CPU-based copy using memcpy is blocking, thus
we always get an overlap efficiency of 0. By using ADCE
for large size memory copies, we are able to achieve up
to 0.92 (92%) and 0.87 (87%) overlap using one and four
channels, respectively. For ADCE with four channels, we
check the completion across four channels and thus it re-
sults in lesser overlap compared to ADCE with one channel
case. For smaller sizes, the overlap efficiency is small due
to DMA startup overheads. We see similar trend in overlap
efficiency when the source and destination buffers are not
in the cache as shown in Figure 6b. However, the actual
percentages seen are much lower. We explain the reason for
such lower percentages in the section below.

4.3 Asynchronous Memory Copy Over-
heads

In order to understand the low overlap efficiency ob-
served in the previous section, we measure the split-
up/overhead of ADCE. Figure 7 shows the split-up over-
head of ADCE using four channels. In this experiment, we
ran the copy latency test with source and destination buffers
not in the cache and measure the overhead of user/kernel
transition, pinning of user buffer, DMA startup and com-
pletion. We observe that the pinning cost occupies a sig-
nificant fraction of the total overhead. For small message
sizes, we see that all four overheads contribute equally to-
wards the latency and there is very little room for overlap.
For larger message sizes, we see that the pinning cost and
DMA startup cost occupies 30% and 7%, respectively. The
remaining time is overlapped with the computation (62%).

4.4 Cache Pollution Effects

In this section, we measure the effect of cache pollu-
tion with applications. We design the experiment in the

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

16M 4M 1M 256k 64k 16k 4k 1k

O
ve

rla
p

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

16M 4M 1M 256k 64k 16k 4k

O
ve

rla
p

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

Figure 6. Computation-Memory Copy Over-
lap: (a) hot-cache and (b) cold-cache

following way. We perform a large memory copy opera-
tion and perform a column-wise access of a small memory
buffer which can fit in the cache. Figure 8 shows the ac-
cess time for various memory sizes. We measure the ac-
cess time without the memory copy and report it as access
w/o copy and for remaining cases, we perform the memory
copy using CPU and ADCE. As shown in figure, the ac-
cess time after performing the copy using ADCE does not
change with the normal access time. However, CPU-based
approach increases the access time by 30% due to cache
eviction. Since ADCE operates directly on main memory,
ADCE avoids cache pollution effects. As a result, the ac-
cess latency after using ADCE does not change. However,
CPU-based approach evicts some of the entries in the cache
resulting in an increase in access time latency.

4.5 IPC Latency and Bandwidth

Figure 9a shows the IPC latency for ADCE based copy
(ADCEC), NIC loopback based copy (NLBC) and Kernel-
assisted memory mapped based copy (KAMMC). For 4 MB
message size, we see that ADCEC achieves close to 2954
µs whereas KAMMC and NLBC achieve close to 5803
and 14333 µs, respectively. Further, for increasing mes-
sage sizes, the performance of ADCEC is much better than
KAMMC and NLBC, respectively.

Figure 9b shows the IPC bandwidth with ADCEC,
KAMMC and NLBC. Since the buffers can fit in the cache,
we observe that the performance of KAMMC is better than
ADCEC and NLBC till 256 KB message size achieving
close to 8191 MB/s. However, for message sizes greater
than 1 MB, we see that ADCEC achieves 2932 MB/s
whereas KAMMC and NLBC achieve only 1438 MB/s and
720 MB/s, respectively.

Copy Engine Splitup Overhead

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1K 4K 16K 64K 256K 1M 4M
Message Size (bytes)

Pe
rc

en
ta

ge
 O

ve
rh

ea
d

(%
)

User/Kernel Pinning DMA startup
DMA completion Overlap-Time

Figure 7. Asynchronous Copy Overhead

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1M 256k 64k 16k 4k 1k

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCE
libc memcpy (CPU-based)

access w/o copy

Figure 8. Cache Pollution Effects

5 Discussion and Related Work

Emerging technologies such as multi-core processors
(also known as Chip-level Multiprocess) provide several
cores on a single node. Since several of these cores ac-
cess memory at the same time, memory contention issues
become very common in such environments. Also, due to
the gap between memory and processor performance, con-
tention issues will only get worse with more and more cores.
The inability to perform useful computation by stalling on

 0

 2000

 4000

 6000

 8000

 10000

 12000

16M 4M 1M 256k 64k 16k 4k 1k

La
te

nc
y

(M
icr

os
ec

on
ds

)

Message Size (Bytes)

ADCEC
KAMMC

NLBC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

16M 4M 1M 256k 64k 16k 4k 1k

Ba
nd

wi
dt

h
(M

B/
s)

Message Size (Bytes)

ADCEC
KAMMC

NLBC

Figure 9. Inter Process Communication: (a)
Latency and (b) Bandwidth

memory operations is often considered the bottleneck in
many of these environments. ADCE helps in alleviating
this bottleneck by its asynchronous feature, thus allowing
the cores to perform useful computation during a memory
copy operation.

Researchers have proposed several solutions for asyn-
chronous memory operations in the past. User-level
DMA [10, 2] deal with providing asynchronous DMA ex-
plicitly at the user space. Zhao et al [12] talk about hardware
support for handling bulk data movement. Calhoun’s the-
sis [3] proposes the need for dedicated memory controller
copy engine and centralized handling of memory operations
to improve performance. However, many of these solu-
tions are simulation-based. Ciaccio [5] proposed the use
of self-connected network devices for offloading memory
copies. Though this approach can provide an asynchronous
memory copy feature, it has a lot of performance-related is-
sues. I/OAT [6] offers an asynchronous DMA copy engine
(ADCE) which improves the copy performance with very
little startup costs. In this paper, we use this hardware for
supporting asynchronous memory operations.

6 Conclusions and Future Work
Intel’s I/O Acceleration Technology offers an asyn-

chronous memory copy engine in kernel space that allevi-

ates copy overheads such as CPU stalling, small register-
size data movements, etc. In this paper, we proposed a set of
designs for asynchronous memory operations in user space
for both single process (as an offloaded memcpy()) and IPC
using the copy engine. We analyzed our design based on
overlap efficiency, performance and cache utilization. Our
microbenchmark results showed that using the copy engine
for performing memory copies can achieve close to 87%
overlap with computation. Further, the copy latency of bulk
memory data transfers is improved by 50%.

We plan to analyze the impact of the copy engine with
several MPI-based applications and also other distributed
applications such as web servers as a part of future work.
We also propose to improve our design so that applications
can achieve close to 100% overlap with computation.

References

[1] InfiniBand Trade Association. http://www.infinibandta.com.
[2] M. A. Blumrich, C. Dubnicki, E. W. Felten, and K. Li. Pro-

tected, user-level DMA for the SHRIMP network interface.
In Proc. of the 2nd IEEE Symp. on High-Performance Com-
puter Architecture (HPCA-2), 1996.

[3] M. Calhoun. Characterization of block memory operations.
In Masters Thesis, Rice University, 2006.

[4] L. Chai, A. Hartono, and D. K. Panda. Designing high per-
formance and scalable mpi intra-node communication sup-
port for clusters. In IEEE International Conference on Clus-
ter Computing, 2006.

[5] G. Ciaccio. Using a self-connected gigabit ethernet adapter
as a memcpy() low-overhead engine for mpi. In Euro
PVM/MPI, 2003.

[6] A. Gover and C. Leech. Accelerating network receiver pro-
cessing. http://linux.inet.hr/files/ols2005/grover-reprint.pdf.

[7] J. Hurwitz and W. Feng. End-to-End Performance of 10-
Gigabit Ethernet on Commodity Systems. IEEE Micro, Jan-
uary 2004.

[8] H. W. Jin, S. Sur, L. Chai, and D. K. Panda. Limic: Sup-
port for high-performance mpi intra-node communication
on linux cluster. In International Conference on Parallel
Processing (ICPP), 2005.

[9] S. Makineni and R. Iyer. Architectural characterization of
TCP/IP packet processing on the Pentium M microproces-
sor. In High Performance Computer Architecture, HPCA-
10, 2004.

[10] E. P. Markatos and M. G. H. Katevenis. User-level DMA
without operating system kernel modification. In Pro-
ceedings of the Third International Symposium on High-
Performance Computer Architecture, (HPCA), 1997.

[11] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn,
R. Huggahalli, D. Newell, L. Cline, and A. Foong. TCP
Onloading for Data Center Servers. In IEEE Computer, Nov
2004.

[12] L. Zhao, R. Iyer, S. Makineni, L. Bhuyan, and D. Newell.
Hardware support for bulk data movement in server plat-
forms. In Proceedings of International Conference on Com-
puter Design, 2005.

