
An Architectural study of Cluster-Based Multi-Tier Data-Centers

K. VAIDYANATHAN, P. BALAJI, J. WU, H. -W. JIN, D. K. PANDA

Technical Report
OSU-CISRC-5/04-TR25

An Architectural study of Cluster-Based Multi-Tier Data-Centers
�

K. Vaidyanathan P. Balaji J. Wu H. -W. Jin D. K. Panda

Computer Science and Engineering
The Ohio State University

2015 Neil Avenue
Columbus, OH 43210�

vaidyana, balaji, wuj, jinhy, panda � @cis.ohio-state.edu

Abstract

The phenomenal growth and popularity of cluster-based
multi-tier data-centers has not been accompanied by a
system-wide understanding of the various resources and
their deployment strategies. Typical data-center workloads
have a wide range of characteristics. They vary from high to
low temporal locality (Zipf coefficient), large documents to
small documents (download sites vs book stores), the num-
ber of documents and several others. However, the implica-
tions of the various system resources such as CPU, file sys-
tem, disk, network, I/O on these different kinds of workloads
have not been previously studied. In other words, the archi-
tectural characterization of cluster-based multi-tier data-
centers has been incomplete in many respects.
In this paper we analyze several system level micro-

benchmarks, based on the various resources mentioned
above to identify the characteristics of different kinds of
workloads. Depending on these characteristics associated
with the workloads, making enhancements to some of the
system resources becomes more critical with respect to the
end performance compared to the others. We back up the
observations of these workload characteristics with exper-
imental results showing the impact of varying the above
mentioned system resources on the particular workloads.
We conclude the study by providing several solutions (e.g.,
file distribution strategies, memory file system for popular
documents, etc.) that allow the design of efficient next gen-
eration cluster-based multi-tier data-centers in a manner
more tightly coupled with the expected workload character-
istics.

Keywords: Clusters, Multi-Tier Data-Center, TCP/IP,
PVFS, Architectural Characterization

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #EIA-
9986052, #CCR-0204429, and #CCR-0311542

1 Introduction

Cluster systems have become the main system architec-
ture for a number of environments. In the past, they had
replaced mainstream supercomputers as a cost-effective al-
ternative in a number of scientific domains. On the other
hand, with the increasing adoption of Internet as the pri-
mary means of interaction and communication, highly scal-
able and available web servers have become a critical re-
quirement. Based on these two trends, several researchers
have proposed the feasibility and potential of cluster-based
multi-tier data-centers [25, 4]
A cluster-based multi-tier data-center is an Internet server

oriented cluster architecture, which is distinguished from
high performance computing systems in several aspects.
In particular, data-centers are required to execute various
server software that demand different system resources and
characteristics; these are distinguished from high perfor-
mance computing systems by using duplicated programs
performing symmetric jobs to maximize parallelism.
Multi-tier data-centers generally consist of three tiers; the

proxy tier, the application/web tier and the database tier.
Accordingly, since each tier of the multi-tier data-center has
different requirements and behavior, it is a challenge to an-
alyze the various architectural components, such as file sys-
tem, I/O, network protocol, etc., and their influence on each
tier. Further, each kind of workload has its own charac-
teristics, making one component more important than the
other with respect to the end performance perceived by the
clients. For example, small static file requests tend to be
neither compute nor I/O intensive. However, their perfor-
mance in most cases is highly sensitive to the caching abil-
ity of the file system due to their high access frequencies.
Similarly, as we will see in the later sections, small to mod-
erate file requests tend to have portions of compute and I/O
interleaved. This causes an increase in the parallelism by
using multiple CPUs to have a greater impact than increas-
ing the CPU speed as such.
In this paper, we analyze several architectural compo-

1

nents of a cluster-based multi-tier data-center and identify
their impact on the criticality of the performance of dif-
ferent workloads. In particular, we examine the impact of
workload characteristics on the performance of the file sys-
tem, I/O subsystem, network protocol, and compute sys-
tem. Since typical web workloads have a wide range of
characteristics, we consider various workload factors such
as locality, size, and popularity. For each component, we
analyze its performance on different workloads in the data-
center environment. We believe that every workload has
a critical characteristic which demands the performance of
one or more architectural components in the cluster-based
data-center environment. We try to identify these critical
characteristics in the workload and provide analysis of var-
ious design alternatives to maximize the performance con-
tribution of each component. Our study reveals several in-
sights into the characteristics and the applicability of vari-
ous emerging technologies in the data-center environment.
For example, for moderate sized workloads, a manual dis-
tribution of files among SCSI disks based on popularity is
found to provide comparable performance with the software
RAID based disk system using SCSI disks.
To the best of our knowledge, this is a unique study that

analyzes the various components of a cluster-based multi-
tier data-center and their impact on the various workloads.
The remaining part of the paper is organized as follows:

Section 2 provides a brief background about multi-tier
data-centers, the Parallel Virtual File System (PVFS) and
TCP/IP. In Section 3 we mention the workload and testbed
that we used. In Section 4, we evaluate various file systems
in the data-center environment in more detail. Section 5
deals with the evaluation of various disk systems. In Sec-
tion 6 we discuss the impact of TCP/IP and the potential
of checksum offloading benefits in the data-center environ-
ment. Section 7 provides some insights into the relevance of
compute resources in data-centers. We conclude the paper
in Section 8.

2 Background

In this section, we give a brief overview of the architecture
of multi-tier data-centers, PVFS, the traditional host-based
TCP/IP implementation.

2.1 Multi-Tier Data-Centers

Figure 1 represents a typical multi-tier data-center. The
first tier in a multi-tier data-center consists of a cluster of
nodes known as the edge nodes. These nodes can be thought
of as switches (Layer 7) providing load balancing, security,
caching, etc. The next tier is usually the front-end servers
which are commonly known as proxy servers that provide
web, messaging and various other services to clients. In

traditional data-centers edge services are provided on the
front-end tiers, commonly referred to as proxy servers. In
this paper, we consider this kind of a traditional data-center.
The next tier (mid-tier) contains the web-servers and ap-
plication servers. These nodes apart from serving static or
time invariant content, can fetch dynamic or time variant
data from other sources and return the data to the end-user
in a presentable form. The last tier of the multi-tier data-
center is the database tier (back-end applications). It is used
to store persistent data. This tier is compute or I/O intensive
depending on the workload.

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���

�����������
�����������
�����������

�����������
�����������
�����������
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

���
���
���
���

���
���
���
���

�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������

���
���
���
���

���
���
���
���

�����������
�����������
�����������
�����������

�����������
�����������
�����������
����������������������
�����������
�����������
�����������

���
���
���
���

���
���
���
���

�����������
�����������
�����������

�����������
�����������
�����������
����������������������

�
�
�
�

�
�
�
�

�����������
�����������
�����������
�����������

 � � � �
 � � � �
 � � � �
 � � � � !�!�!�!�!�!"�"�"�"�"

#
#
#
#

$
$
$
$%�%�%�%�%�%&�&�&�&�&

'
'
'
'

(
(
(
(

)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)

��*�*�*
��*�*�*
��*�*�*

+�+�+�+�+�+
+�+�+�+�+�+
,�,�,�,�,
,�,�,�,�,

-
-
-
-

.
.
.
.

/�/�/�/�/�/
/�/�/�/�/�/
/�/�/�/�/�/

0�0�0�0�0
0�0�0�0�0
0�0�0�0�0

1�1�1�1�1�1
1�1�1�1�1�1
2�2�2�2�2
2�2�2�2�2

3
3
3
3

4
4
4
4

5�5�5�5�5�5
5�5�5�5�5�5
5�5�5�5�5�5
5�5�5�5�5�5

6�6�6�6�6
6�6�6�6�6
6�6�6�6�6
6�6�6�6�67�7�7�7�7�78�8�8�8�8

9
9
9
9

:
:
:
:

;�;�;�;�;�;
;�;�;�;�;�;
;�;�;�;�;�;
;�;�;�;�;�;

<�<�<�<�<
<�<�<�<�<
<�<�<�<�<
<�<�<�<�<=�=�=�=�=�=

=�=�=�=�=�=
>�>�>�>�>
>�>�>�>�>

?
?
?
?
?
?

@
@
@
@
@
@

A�A�A�A�A�A�A
A�A�A�A�A�A�A
A�A�A�A�A�A�A
A�A�A�A�A�A�A

B�B�B�B�B�B�B
B�B�B�B�B�B�B
B�B�B�B�B�B�B
B�B�B�B�B�B�BC�C�C�C�C�C�C�C
C�C�C�C�C�C�C�C
D�D�D�D�D�D�D�D
D�D�D�D�D�D�D�D

E
E
E
E
E
E

F
F
F
F
F
F

G�G�G�G�G�G�G
G�G�G�G�G�G�G
G�G�G�G�G�G�G
G�G�G�G�G�G�G
G�G�G�G�G�G�G

H�H�H�H�H�H�H
H�H�H�H�H�H�H
H�H�H�H�H�H�H
H�H�H�H�H�H�H
H�H�H�H�H�H�H

I
I
I
I
I
I

J
J
J
J
J
J

K�K�K�K�K�K�K
K�K�K�K�K�K�K
K�K�K�K�K�K�K
K�K�K�K�K�K�K

L�L�L�L�L�L�L
L�L�L�L�L�L�L
L�L�L�L�L�L�L
L�L�L�L�L�L�LM�M�M�M�M�M�M�M
M�M�M�M�M�M�M�M
N�N�N�N�N�N�N�N
N�N�N�N�N�N�N�N

O�O�O
O�O�O
O�O�O
O�O�O
O�O�O
O�O�O
O�O�O

P�P
P�P
P�P
P�P
P�P
P�P
P�P

Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q
Q�Q�Q�Q�Q�Q�Q�Q�Q

R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�R
R�R�R�R�R�R�R�R�RS�S�S�S�S�S�S�S�S
S�S�S�S�S�S�S�S�S
T�T�T�T�T�T�T�T�T
T�T�T�T�T�T�T�T�T

U�U
U�U
U�U
U�U

V�V
V�V
V�V
V�V

W�W�W�W�W�W
W�W�W�W�W�W
W�W�W�W�W�W
W�W�W�W�W�W

X�X�X�X�X
X�X�X�X�X
X�X�X�X�X
X�X�X�X�X

Y�Y�Y�Y�Y�Y�Y�Y
Y�Y�Y�Y�Y�Y�Y�Y
Y�Y�Y�Y�Y�Y�Y�Y

Z�Z�Z�Z�Z�Z�Z�Z
Z�Z�Z�Z�Z�Z�Z�Z
Z�Z�Z�Z�Z�Z�Z�Z

Internet

Network
Enterprise

Applications Applications

Services
Edge

Front−end
Mid−tier Back−end

Applications

Figure 1. A Typical Multi-Tier Data-Center
(Courtesy CSP Architecture design [28])

A request from a client is received by the edge/proxy
servers. If this request can be serviced from cache, it is
serviced. Otherwise, it is forwarded to the web/application
servers. Static requests are serviced by the web servers by
just returning the requested file to the client via the proxy
server. This content may be cached at the proxy server
so that subsequent requests to the same static content may
be served from the cache. The application tier nodes han-
dle dynamic content. The type of applications this tier in-
cludes range from mail servers to directory services to ERP
software. Any request that needs a value to be computed,
searched, analyzed or stored uses this tier. The back-end
database servers are responsible for storing data persistently
and responding to queries. These nodes are connected to
persistent storage systems. Queries to the database systems
can be anything ranging from a simple seek of required data
to performing joins, aggregation and select operations on
the data.

2.2 Parallel Virtual File System (PVFS)

PVFS [7] is a parallel cluster-based file system. It was de-
signed to meet the increasing I/O demands of parallel appli-
cations. Figure 2 demonstrates a typical PVFS environment.
As shown in the figure, a number of nodes in the cluster sys-
tem can be configured as I/O servers and one of them (either

2

an I/O server or an a different node) as a metadata manager.

Node
I/O server

Node
I/O server

Node
I/O server

Data

Data

Data

Meta
Data

.

.

.
.
.
.

...

.

.

N
etw

ork

Metadata
ManagerClient

Client

Client

Client

PVFS

PVFS

PVFS

PVFS

Figure 2. A Typical PVFS Setup

PVFS achieves high performance by striping a file across
a set of I/O server nodes allowing parallel access to the file.
It uses the native file system on the I/O servers to store in-
dividual file stripes. An I/O daemon runs on each I/O node
and services requests from the client nodes. It supports both
read and write requests.
A manager daemon running on a metadata manager node

handles metadata operations involving file permissions,
truncation, file stripe characteristics, etc., but does not par-
ticipate in read/write operations. The metadata manager
provides a cluster-wide consistent name space to applica-
tions.
PVFS supports a set of feature-rich interfaces, including

support for both contiguous and non-contiguous accesses
to memory and files [9]. PVFS can be used with mul-
tiple APIs: a native PVFS API, the UNIX/POSIX API,
MPI-IO [33], and an array I/O interface called the Multi-
Dimensional Block Interface (MDBI). The presence of mul-
tiple popular interfaces contributes to the wide success of
PVFS in the industry. In this paper, we have studied PVFS
in detail and proposed some enhancements to improve its
performance contribution in the data-center environment.

2.3 TCP/IP Protocol Stack

Current day multi-tier data-centers has been using the tra-
ditional host-based TCP/IP [32, 34] stack for packet pro-
cessing. TCP/IP deals with issues such as dividing the
data passed to it from the application into appropriate sized
chunks for the network layer below (segmentation), ac-
knowledging received packets (reliability), setting timeouts
to make certain the other end acknowledges packets that are
sent, checking for possible data corruption (data integrity)
and several others.
Traditionally, TCP/IP has not been able to take advan-

tage of the high performance provided by the physical net-
works mainly due to the multiple copies and kernel con-

text switches present in its critical message-passing path. A
number of approaches [20, 24, 8, 29, 18, 10, 13, 17, 22, 15,
31, 16, 19, 12, 27, 35] have been devised to improve the
performance given by TCP/IP. However, these approaches
have had only limited success.
End systems incur CPU overhead for processing each net-

work packet or frame. These per packet costs include the
overhead to execute the TCP/IP protocol code, allocate
and release memory buffers, and field device interrupts for
packet arrival and transmit completion. TCP/IP implemen-
tations incur additional costs for each byte of data sent or
received. These include overheads to move data within the
end system and to compute and verify checksums.
Jacobson et. al., had proposed an optimization to integrate

checksum and copy on the transmission side to reduce the
per-byte overhead [11]. This optimization is used in the
current 2.4 linux kernels for the sender side. On the re-
ceiver side, after receiving the packet to the kernel buffer,
the TCP/IP stack verifies the data integrity by performing
checksum computation and then copies the data into the
user buffer.
A number of approaches have been proposed to minimize

the per-packet and the per-byte overheads in the TCP/IP
protocol implementation including jumbo frames and in-
terrupt coalescing, which have been previously studied. In
this paper, we focus on the TCP checksum offloading. The
checksum offloading approach deals with offloading the
data checksum computation and verification of TCP and IP
to hardware.

3 Workload and Experimental Setup

In this section we describe the characteristics of the work-
load that we used in the paper.

3.1 Workload Characteristics

Different workloads have different characteristics. Some
workloads may vary from high to low temporal locality,
following a Zipf-like distribution [6]. Similarly workloads
vary from small documents (e.g., online book stores, brows-
ing sites, etc.) to large documents (e.g., download sites,
etc.). Further, workloads might contain requests for sim-
ple cacheable static or time invariant content or more com-
plex dynamic or time variant content via CGI, PHP, and Java
servlets with a back-end database. Due to the varying char-
acteristics of workloads, we classified the workloads in four
broad categories:

� Static content (average file) based workload

� Dynamic content workload

� Zipf-like workload with varying Zipf factor

3

� Real workloads - world-cup trace

The static content based workloads generate requests for
files which are on an average of a particular file size. Typi-
cally, browsing sites have files which are a few kilobytes in
size. Streaming and download servers on the other hand,
may have large audio and video files which are a few
MBytes in size. In order to address all these workloads,
we used has a wide range of file sizes from 1 KB to 64
MB. Data-centers also serve dynamic content which typi-
cally require some amount of computation before they can
return the document to the user.
It has been well acknowledged in the community that most

of the workloads follow a Zipf-like distribution [6]. Zipf
law states that the relative probability of a request for the
i’th most popular document is proportional to

�������
, where

� is a factor that determines the randomness of file accesses.
In our experiments, we have used two different kinds of
workloads: (i) with a constant alpha value and varying
working set size, (ii) with varying alpha values. For syn-
thetic workloads, we varied the file sizes from 1 KB to 4
MB and for large workloads we varied file sizes till 64 MB.
To validate our research findings, we also evaluated the sys-
tem under real workloads like the world-cup trace [2].

3.2 Testbed Configuration

For all our experiments we used 3 clusters whose descrip-
tions are as follows:
Cluster1: A cluster system consisting of 8 nodes built

around SuperMicro SUPER P4DL6 motherboards and GC
chipsets which include 64-bit 133 MHz PCI-X interfaces.
Each node has two Intel Xeon 2.4 GHz processors with a
512 kB L2 cache and a 400 MHz front side bus and 512 MB
of main memory. We used the RedHat 9.0 Linux distribu-
tion with the kernel.org SMP kernel version 2.4.22smp.
Cluster2: A cluster system consisting of 16 nodes which

include 64-bit 33 MHz PCI interfaces. Each node has two
Pentium III 1 GHz processors with a 256 kB L2 cache and
a 400 MHz front side bus. We used the RedHat 7.1 Linux
distribution with the kernel.org SMP kernel version 2.4.18.
Cluster3: A cluster system consisting of 16 nodes which

include 64-bit 66 MHz PCI interfaces. Each node has four
Intel Pentium-III 700 MHz processors with 1 MB L2 cache
and a 400 MHz front side bus and 1 GB of main memory.
We used the RedHat 7.1 Linux distribution with the ker-
nel.org SMP kernel version 2.4.18.
All nodes in the three clusters were together connected us-

ing the Myrinet network with 133 MHz LANai 9.1 proces-
sors, connected through a Myrinet 2000 network. The GM
version used is 1.6.3.
In all our experiments, we used a total of 640,000 requests

with 8 clients on Cluster2 running 8 threads each. For all
experiments, the data-center was configured with 4 prox-

ies, 3 web/application servers and one database server. De-
pending on the experiment, we chose the cluster (1, 2 or 3)
to configure the data-center on. The actual cluster used for
each experiment is specified with the experiment descrip-
tions in the respective sections. The Apache version used is
2.0.48.
For the I/O experiments we had the following setup with

three disk systems (IDE, SCSI, software RAID). In the IDE
case, a 40 GB Seagate ATA 100 disk (Model: ST340016A)
is used. In the SCSI disk, a 18 GB FUJITSU (Model:
MAM3184MC) with 1500rpm SCSI disk is used. In the
RAID case, a RAID-0 software RAID is built on top of three
SCSI disks. The RAID stripe size is 4 KB. In all cases, an
ext3fs is mounted on the corresponding disk systems.

4 File System Requirements

In order to study the impact of the performance of the vari-
ous file systems in a cluster-based multi-tier data-center, we
performed various system-level micro-benchmarks and ap-
plication level tests. We broadly considered both local file
systems (ext3fs and ramfs) as well as cluster file systems
(PVFS). In this section, we first analyze the peak perfor-
mance achieved by these file systems and then try to study
their impact on the client’s response time in a multi-tier
data-center environment. All experiments had been per-
formed using IDE disks (configuration mentioned in Sec-
tion 3.2).

4.1 Basic Performance of Different File Systems

As mentioned earlier, we considered three file systems:
ramfs, ext3fs and PVFS. The ext3fs was mounted on the
IDE disk mentioned in Section 3.2. In the PVFS setup, three
I/O nodes are configured. The local file system on each I/O
node is ext3fs on the IDE disk and the stripe size was 64KB.

File systems Read (MB/s) Write (MB/s)
ramfs 775 800
ext3fs 39 40
PVFS 136 110

Table 1. Basic Performance of Different File
Systems

Table 1 shows the sequential read and write bandwidths of
these three file systems. In PVFS, since data is striped onto
three disks, each on a different node, when the access size
is large enough to access the three I/O nodes together, we
can realize almost three times the local ext3fs performance.
Figure 3a shows the peak read bandwidth achieved by all

three file system for various read and write buffer sizes.

4

As mentione earlier, PVFS realizes thrice the bandwidth
when the read buffer size is more than three times the
stripe size. The ext3fs and ramfs realize a read bandwidth
of 39 MBytes/sec and 775 MBytes/sec respectively. Fig-
ure 3b shows the peak write bandwidth achieved by ext3fs,
ramfs and pvfs. ext3fs achieves a peak write bandwidth of
40 MBytes/sec compared to 110 MBytes/sec achieved by
PVFS and 91 MBytes/sec achieved by ramfs. As mentioned
above, the bandwidth of ramfs is very high since the data is
already in memory. As read buffer size increases we realize
three times the local disk read performance.
In the multi-tier data-center environment, web servers

and proxy servers often use sendfile(2) system call
to service data access requests. This is because send-
file() can combine a file read and a network write effi-
ciently. However, when we conducted our experiments with
Apache, we found that PVFS gives unstable results when
the sendfile option is enabled in Apache. Therefore, in our
tests, we disabled the sendfile option in Apache, i.e., the
Apache server uses a file read and a network send to serve
each request.

4.2 PVFS performance in a Data-Center Environ-
ment

In Figure 4a, we see the performance comparison of ext3fs
and pvfs under two scenarios using (i) read/write calls. (ii)
sendfile. sendfile is a useful user-level call which copies
data between one file descriptor to another. The copy is
done within the kernel and hence sendfile need not spend
time transferrring data to and from user space. In our mi-
crobenchmark test, we realized that sendfile was giving un-
stable results. In Figure 4b, we see that pvfs read/write
performs the best. pvfs takes advantage of the three disks
and realizes an aggregate bandwidth of three disks whereas
ext3fs realizes only a single disk bandwidth. Similarly we
see that in Figure 5a read/write performs better as we in-
crease the read buffer size from 64K to 192K. The default
stripe size used in this experiment was 64 KB.

4.3 Impact of File System in Data-Center

As shown in Table 1, the three studied file system setups
provide different raw performances. To show the impact
of their performance on different data-center workloads, we
conduct web benchmarks with five different workloads (Ta-
ble 2).
Figure 6 (a) shows the throughput achieved on ext3fs,

ramfs and pvfs for class 0, class 1 and class 2 workloads.
With these workloads, since nearly all the files can be
cached in the file system cache, ext3fs and ramfs do better.
PVFS does worse due to two reasons: (i) there is no cache
in the PVFS client side, therefore the Apache server needs

Class File Sizes Zipf alpha Working Set Size
Class 0 1K - 250K 0.9 25 MB
Class 1 1K - 1MB 0.9 100 MB
Class 2 1K - 4MB 0.9 450 MB
Class 3 1K - 16MB 0.9 2 GB
Class 4 1K - 64MB 0.9 6 GB

Table 2. Workload Classification

to read data from the PVFS I/O nodes every time. Though
data may be cached on the I/O node side, the performance is
limited by the network performance; (ii) open and close op-
erations in PVFS are much more expensive than both ext3fs
and ramfs due to the distributed nature of PVFS (or many
other cluster file systems1). In these workloads, accesses to
small files are dominant causing the overheads of open and
close operations to be significant compared to the time of
reading data.
Figure 6 (b) shows the throughput achieved on ext3fs,

ramfs and pvfs for class 3 and class 4 workloads. In these
workloads, the working set size is much larger than the file
system cache. In addition, the number of accesses to the
large files is also significant. Since ramfs cannot hold all
the data, only results on ext3fs and pvfs are presented. In the
class 3 workload, since most of files can still be cached in
the file system cache in ext3fs, ext3fs performs better than
PVFS. But the difference is reduced compared to the re-
sults in Figure 6 (a). In the class 4 workload, the Apache
server encounters very few cache hits. There are a signifi-
cant amount of disk I/O accesses in the ext3fs case, includ-
ing many accesses to large files. PVFS, on the other hand,
provides higher raw performance to access large files. This
benefit can be realized by applications in workloads such as
the class 4 workload.

4.4 Hybrid File System

As shown in Figure 6, caching has a significant impact on
the performance of the Apache server. Ideally, we expect
that the “hot” data files to always be cached. However, in
a busy web server, particularly when an ISP hosts multi-
ple websites, the behavior of the file system cache becomes
unpredictable. It is highly possible that a large file which
is seldom accessed may push many of the small but “hot”
files out of the cache. Due to the high frequency of accesses
of these small files, they tend to be highly sensitive to the
caching capability of the file system. Thus, it is desirable

1Some Cluster file systems such as NFS optimize on file open and close
operations by providing this control to the client itself when only one client
is accessing the data. However, since in a typical data-center environment
multiple nodes try to contact the file system server(s), such an optimization
might not be possible.

5

0

100

200

300

400

500

600

700

800

900

16K 64K 256K 1MB 4MB 16MB 64MB 256MB

Read Buffer Size

B
an

d
w

id
th

 (
M

B
yt

es
/s

ec
)

ext3fs ramfs pvfs

0

100

200

300

400

500

600

700

800

900

16K 64K 256K 1MB 4MB 16MB 64MB 256MB

Write Buffer Size

B
an

d
w

id
th

 (
M

B
yt

es
/s

ec
)

ext3fs ramfs pvfs

Figure 3. Performance of ext3fs, ramfs, pvfs (a) Read Bandwidth (b) Write Bandwidth

0

50

100

150

200

250

300

350

400

32K 64K 128K 192K 256K

Read Buffer Size

R
es

p
o

n
se

 T
im

e
(m

s)

PVFS sendfile ext3fs sendfile
PVFS readwrite ext3fs readwrite

0

200

400

600

800

1000

1200

32K 64K 128K 192K 256K

Read Buffer Size

R
es

p
o

n
se

 T
im

e
(m

s)

PVFS sendfile ext3fs sendfile
PVFS readwrite ext3fs readwrite

Figure 4. PVFS Performance for a 16 MB file (a) File in Cache (b) File not in Cache

0%

5%

10%

15%

20%

25%

64K 128K 192K 256K

File Stripe Size

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

16M 32M 64M 128M 256M

-5%

0%

5%

10%

15%

20%

25%

64K 128K 192K 256K

File Stripe Size

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

16M 32M 64M 128M 256M

Figure 5. PVFS Performance for a 16 MB file with different read buffer sizes (a) read/write (b) sendfile

6

0

500

1000

1500

2000

2500

3000

Class 0 Class 1 Class 2

T
h

ro
u

g
h

p
u

t

ext3fs
ramfs
pvfs

0

20

40

60

80

100

120

140

160

Class 3 Class 4

T
h

ro
u

g
h

p
u

t

ext3fs
pvfs

Figure 6. Throughput over Different File Systems in a Data-Center Environment (a) Small Working
Sets (b) Large Working Sets

that “hot” files must be given a higher priority in the cache
or placed on a faster storage device. Since there is no direct
control to increase the priority of caching “hot” files, we try
placing the “hot” files on ramfs instead.
To show the impact of this hybrid distribution, we de-

signed a test to emulate an ISP provider which services re-
quests for two web sites on the same cluster. For the first
web site, we placed all the files in ext3fs over an IDE disk.
For the second web site, we set up two scenarios. In the
first scenario, all files are placed in ext3fs over an IDE disk.
In the second scenario, all small files (less than 1MB) are
placed in a ramfs, and all other files in ext3fs over an IDE
disk. Requests for both web sites are serviced simultane-
ously. The performance difference of the second website
between the two scenarios is our focus.
Figure 7 shows the improvement achieved by the second

web site while using ramfs to cache the small files. In the
figure, we call the workload on the first web site as back-
ground workload (shown as the x-axis in the figure), and
the workload on the second web site as foreground work-
load (shown as the legends in the figure). We can see that
the larger the working set of the background workload, the
higher the improvement that can be achieved. Compared
to placing the small files on ext3fs, placing them on ramfs
achieves a performance improvement of up to 40%. Simi-
larly compared to placing the small files on PVFS, placing
them on ramfs achieves a performance improvement of up
to a factor of 4.5. However, the improvement shrinks when
the working set size of the foreground workload increases.
Further, it is to be noted that the improvement in the PVFS
based environment is not due to the flushing of the client
side cache, but due to the fact that PVFS has no client side
cache.

5 I/O Requirements

Due to the increasing working set size in current web sites,
it might not be possible to fit all the data in the file system
cache. For such large workloads, the file system perfor-
mance is largely dependent on the performance of disk sys-
tems. In this section, we study the impact of three different
disk systems on the performance of the data-center: IDE,
SCSI, and a software RAID system.
For the I/O experiments in the data-center environment,

we used the workloads specified in Table 2 (Section 4).

5.1 Basic Performance of Disk Systems

Table 3 shows the basic sequential read and write band-
width results. We see that SCSI provides an improvement
of about 50% compared to IDE. RAID on the other hand al-
lows parallel access to disks providing an improvement of
up to a factor of 2 compared to SCSI.

Disk systems Read (MB/s) Write (MB/s)
IDE 35 39
SCSI 58 55
RAID 120 147

Table 3. Basic Performance of Different Disk
Systems

5.2 Impact of Disk Systems in Data-Center

The impact of disk systems in the data-center environment
depends on several factors, including the file system cache

7

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Class 2 Class 3 Class 4

Background Workload Traces

P
er

ce
n

ta
g

e
Im

p
ro

ve
m

en
t Class 0

Class 1
Class 2
Class 3

0%

50%

100%

150%

200%

250%

300%

350%

400%

Class 2 Class 3 Class 4

Background Workload Traces

P
er

ce
n

ta
g

e
Im

p
ro

ve
m

en
t

Class 0
Class 1
Class 2
Class 3

Figure 7. Impact of Hybrid File Distribution in A Multiple Website Environment (a) ramfs with ext3fs (b)
ramfs with pvfs

0

20

40

60

80

100

120

140

160

180

200

1K 4K 16K 64K 256K 1M 4M 16M
File Size

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
s) IDE

SCSI
RAID

0

50

100

150

200

250

300

350

400

450

1K 4K 16K 64K 256K 1M 4M 16M

File Size

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
s)

IDE
SCSI
RAID

Figure 8. Comparison between IDE, SCSI and RAID systems: (a) File in Cache (b) File not in Cache

8

hit ratio and the working set size. It also depends on how
we utilize the multiple disks present in the system.

5.2.1 Impact of Cache in Data-Center

A miss in the file system cache incurs a disk access. Fig-
ure 8a shows the average client response time achieved
by web servers with IDE, SCSI and Software RAID disk
systems when all files are not in file system cache. The
client response time seen is comparable with all three disks
for small file sizes. However for large file sizes, Software
RAID performs better than SCSI and IDE. Figure 8b shows
the average client response time achieved by web servers
with IDE, SCSI disks and Software RAID when files are in
cache. Since the files are already in cache, all three perform
equally for increasing file sizes.

5.2.2 Impact of Cache Hit Ratio

The impact of disk systems varies with different cache hit
ratios. We carried out an experiment to characterize this
impact. Three types of files with sizes of 4 KB, 64 KB
and 1 MB respectively are used. In each case, we control
the cache hit ratio manually by accessing different files of
similar sizes. The average client response times to access
these files are reported in Figure 9.

0

5

10

15

20

25

30

35

40

4K 64K 1MB 4K 64K 1MB 4K 64K 1MB

100% 50% 0%

Cache Hit Rate

A
vg

 R
es

p
o

n
se

 T
im

e
(m

s)

IDE
SCSI
RAID

Figure 9. Impact of Cache Hit Ratio

As shown in Figure 9, when the cache hit ratio is 100%, all
disk systems show similar performance. When the cache hit
ratio is varied from 100% to 50% to 0%, the end response
time seen by the user tends to separate out, following the
raw performances of the disk systems.

5.2.3 Impact of Working Set Size

Another factor that affects performance is the working set
size of files in each workload. As shown in Table 2, the
workloads we study have different working set sizes. Fig-
ure 10 shows their response times and average throughputs

over different disk systems. We do not see an improve-
ment in the response time for workloads with small work-
ing set sizes. This is because all the files get cached and
there is little or no disk access. However for large work-
ing set sizes (such as the class 3 workloads), we see some
improvement in the response time due to the fact that the
disk access time is increased. In Figure 10b we see that the
throughput improvement for SCSI and software RAID over
IDE disks increases as the working set size increases. For
class 0, the throughput improvements for SCSI and software
RAID disk systems are 6% and 10% respectively. However,
when the working set size increases (Class 3), we observe
that the throughput improvement achieved by SCSI and soft-
ware RAID go up to 40% and 100% respectively.
In order to get an in-depth understanding of the disk activ-

ity in the above tests, we further looked at the performance
of each file. For the class 0 workload, as shown in Fig-
ure 11a, since all files can be cached and the number of
accesses to each file is relatively large, the average response
time of each file is more or less the same. For the class
1 workload (Figure 11b), though all files can be cached,
since the number of files increases, the average number of
accesses to each file decreases (particularly for large files),
making the time for the first time accesses to these files sig-
nificant (cold start misses). So, the average response time of
each file is still sensitive to the disk system. We can a sim-
ilar trend for the Class 2 workload (Figure 12a). For larger
workloads (Figure 12b), the performance improvement is
purely due to the disk seek time since such workloads are
too large to fit in the file system cache.

5.2.4 Impact of File distribution on disks

As mentioned earlier, RAID over SCSI achieves a higher
performance compared to a single SCSI disk. However, it
is not very clear whether this overall improvement is due
to the parallelization of access for each file (RAID stripes a
file over multiple disks for parallel disk access) or because
of the fact that the amount of I/O for each disk is lesser (in
our testbed, we used three disks per node to form the RAID
disk system).
To understand this, in this section, we analyze the perfor-

mance of the normal SCSI based disk system using the same
number of disks as the RAID disk system. The files are dis-
tributed over these disks in various fashions as described in
Table 4. We also compare the performance of these distri-
butions with the normal SCSI based disk system (with one
disk on every node) and that of the RAID disk system.
In the first strategy (Random), the files are randomly dis-

tributed on the disks. In the second strategy (Popular), we
sort the files based on popularity in an increasing order and
place them on the three disks in a round-robin fashion. In
the third strategy (Size), we follow a similar approach as the

9

0

1

2

3

4

5

6

7

8

Class 0 Class 1 Class 2 Class 3

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
s)

IDE
SCSI
RAID

0

200

400

600

800

1000

1200

1400

1600

Class 0 Class 1 Class 2 Class 3

T
h

ro
u

g
h

p
u

t

IDE
SCSI
RAID

Figure 10. Comparison between IDE, SCSI and RAID systems: (a) Response Time (b) Throughput

Class 0 Trace

0

0.005

0.01

0.015

0.02

0.025

10
00

13
08

17
11

22
39

29
29

38
32

50
13

65
58

85
79

11
22

3

14
68

2

19
20

6

25
12

6

32
87

0

43
00

1

56
25

4

73
59

2

96
27

4

12
59

47

16
47

65

21
55

47

File Size

A
vg

 R
es

p
o

n
se

 T
im

e(
se

c)

IDE
SCSI
RAID

Class 1 Trace

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

25
27

46

27
09

78

29
05

25

31
14

82

33
39

51

35
80

40

38
38

68

41
15

58

44
12

46

47
30

75

50
72

01

54
37

88

58
30

14

62
50

70

67
01

60

71
85

02

77
03

32

82
59

00

88
54

76

94
93

50

File Size

A
vg

 R
es

p
o

n
se

 T
im

e
(s

ec
)

IDE
SCSI
RAID

Figure 11. Comparison of IDE vs SCSI vs software RAID: (a) Class 0 Zipf Trace, (b) Class 1 Zipf Trace

Class 2 Trace

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10
17

83
2

10
91

25
4

11
69

97
2

12
54

36
8

13
44

85
2

14
41

86
4

15
45

87
3

16
57

38
5

17
76

94
1

19
05

12
2

20
42

54
8

21
89

88
8

23
47

85
7

25
17

22
0

26
98

80
1

28
93

47
9

31
02

20
2

33
25

98
0

35
65

90
1

38
23

12
8

40
98

91
1

File Size

A
vg

 R
es

p
o

n
se

 T
im

e
(s

ec
)

IDE
SCSI
RAID

Class 3 Trace

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

42
23

11
2

45
27

74
7.

7

48
54

35
8.

4

52
04

52
9.

2

55
79

95
9.

8

59
82

47
2.

2

64
14

01
9.

9

68
76

69
7.

5

73
72

75
0.

5

79
04

58
6.

4

84
74

78
6.

5

90
86

11
8.

3

97
41

54
8.

6

10
44

42
59

11
19

76
59

12
00

54
06

12
87

14
20

13
79

99
05

14
79

53
66

15
86

26
34

File Size

A
vg

 R
es

p
o

n
se

 T
im

e
(s

ec
) IDE

SCSI
RAID

Figure 12. Comparison of IDE vs SCSI vs RAID: (a) Class 2 Zipf Trace, (b) Class 3 Zipf Trace

10

0

0.005

0.01

0.015

0.02

0.025

0.03

270978 333951 407483 497207 606687 740273 903274 949350

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(s
ec

)

Single Disk Random Popular
Size RAID RAID-Single

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

45
27

74
8

55
79

96
0

68
08

61
1

83
07

80
0

10
13

70
95

12
36

91
82

15
09

27
52

15
86

26
34

Class 3

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(s
ec

)

Single Disk Random Popular
Size RAID RAID-Single

Figure 13. Impact of File Distribution on Multiple Disks: (a) Small Working Set (Class 1), (b) Large
Working Set (Class 3)

Distribution Description
Single Disk Distribute all the files on

single disk on three servers
Random Randomly distribute the files on

multiple disks on three servers
Popularity Sort the files based on popularity and

distribute on multiple disks on three servers
Size-based Sort the files based on file size and

distribute on multiple disks on three servers
RAID-Single Stripe each file on multiple disks

on one server
RAID Stripe each file on multiple disks

on three servers

Table 4. File Distribution on disks

second strategy, except that the files are sorted according to
size. We compare these three distribution strategies with the
software RAID and the single SCSI disk cases. The response
times for various workloads are reported in Figure 13.
Interestingly, we see that in Figure 13a, for Class 1 work-

loads, distributing the files randomly, based on popularity
or size gives us a comparable performance to that of the
software RAID. This points to the fact that most of the per-
formance for these classes of workloads is because of the
reduced per disk I/O rather than the parallelization of disk
I/O. Internet Service Providers can use this approach to dis-
tribute files among various disks and increase their perfor-
mance.
In Figure 13b, for Class 3 workload, we see that all three

distributions perform more or less the same. Software RAID
does the best since large files get accessed. All three dis-
tributions give comparable performance to the single disk
case. However for RAID-Single case for Class 3 work-

loads, using a Software RAID with only one server gives
significant performance improvement. Increasing the num-
ber of the servers in this case also leads to significant im-
provement. Based on this results, we can say that for these
workloads, most of the benefit is achieved from the paral-
lelization of disk access rather than the reduced per disk I/O.
This shows that using the same number of disks in a parallel
fashion (using a software RAID) can provide a significantly
higher performance. ISPs which host such workloads can
take advantage of this characteristic by reorganizing their
disks to provide parallel access.

6 Network Processing Requirements

In this section, we study the impact of partial offloads of
network processing requirements on the network adapter
would have in the data-center environment. We will first
look at the micro-benchmark results in the form of the base
latency and bandwidth achievable by TCP/IP over Myrinet.
Next, we will analyze the response time and throughput in
the data-center environment.
We also focus on the transmit and receive side process-

ing overheads of the host based TCP/IP stack. We perform
detailed measurements to understand the characteristics of
TCP/IP processing in the data-center environment and ana-
lyze the potential benefits of protocol offloads.

6.1 Performance of TCP/IP

In this section, we compare the basic TCP/IP performance
over Myrinet on several platforms that have different CPU
speeds and I/O bus speeds.
Figure 14a shows the one-way latency achieved under the

different platforms for various message sizes. On Cluster 1,
TCP/IP achieves a latency of around 27 � s for 4 byte mes-

11

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Message Size (bytes)

L
at

en
cy

 (
u

se
c)

Cluster 3
Cluster 2
Cluster 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Message Size (bytes)

B
an

d
w

id
th

 (
M

b
p

s) Cluster 3
Cluster 2
Cluster 1

Figure 14. Micro-Benchmarks (Homogeneous Machines): (a) Latency, (b) Bandwidth

sages compared to the 45 � s achieved on Cluster 2 and the
59 � s achieved on Cluster 3. With increasing message sizes,
the difference between the latency achieved by all three
clusters tends to increase. For message sizes greater than
1KB, Cluster 3 (700 MHz CPU) performs better than Clus-
ter 2 (1 GHz CPU). This is attributed to the I/O bus speed.
Cluster 3 has a 66 MHz PCI compared to the 33MHz PCI on
Cluster 2. This shows that for large message sizes, the PCI
bus speed is a very critical factor that decides the network
performance.
Figure 14b compares the bandwidth achieved by TCP/IP

on different platforms. Cluster 1 achieves a peak throughput
of 1748 Mbps compared to a 500 Mbps achieved by Cluster
2 and 914 Mbps achieved by Cluster 3. Again, Cluster 2
achieves a lower bandwidth compared to Cluster 3 due to
the slow PCI bus.

6.2 Impact of TCP/IP in Data Center

In this section, we measure the response time and through-
put achieved by TCP/IP in the data-center environment with
Zipf based traces, varying the access pattern. The access
pattern is varied with the � coefficient. A high value of �

represents a trace with a high temporal locality, i.e., most of
the requests are for a small fraction of the documents. Simi-
larly, a low value of � represents a trace with a low temporal
locality.
Figure 15 shows the response time and throughput mea-

sured on the client side varying the access pattern value of
Zipf. As expected, Cluster 1 gives the best performance
compared to other two. Cluster 3 achieves better perfor-
mance than Cluster 2 because of the better PCI bus speed,
as we have mentioned earlier.
We can observe that the performance difference is in-

versely proportional to the access pattern value. The reason
is that, in case of a large access pattern value, most data that
the clients request is in the proxy tier because requests of

clients concentrate on a specific hot set of files. On the other
hand, in case of a small access pattern value, we cannot take
much advantage of the caching at the proxy tier and most
requests have to be passed to the web server tier. There-
fore, more communication is realized and the difference of
response time and throughput between the three machines
becomes larger. In other words, if the cache hit ratio on the
proxy tier in the data-center is low, the response time and
throughput is largely affected by the intra-cluster network
performance of the data-center.

6.3 Checksum Computation Offload

In this section, we study the potential benefits of the check-
sum processing offload in the data-center environment.
As mentioned earlier, TCP/IP has two kinds of overheads

in the message passing path: (i) per-byte overheads and
(ii) per-packet overheads. Checksum and Copy are the two
main per-byte overheads associated with the TCP/IP stack.
In this paper we only consider the checksum offloading be-
cause the data copy offloading requires applications to be
modified [15]. Since the Myrinet NIC provides a DMA en-
gine that has the ability to perform checksum computation,
we try to estimate the benefits attainable by utilizing this
to implement the checksum offloading. We analyzed the
TCP/IP stack in linux in detail and measured the various
components of the per-byte overheads.

6.3.1 Per-byte Operation Overhead

Table 5 shows the per-byte operations overhead for each 1
KB data size on Cluster 3. On the sender side, to maxi-
mize the cache effect, Linux performs checksum compu-
tation and data copy simultaneously (Jacobson optimiza-
tion [11]), so we could not separate them. In order to under-
stand the results presented in the table, we describe the path
taken by the data in the two cases: (i) with no checksum

12

0

5

10

15

20

25

30

35

� = 0.75 � = 0.50 � = 0.25 � = 0.10

Zipf Trace

R
es

p
o

n
se

 T
im

e
(m

s) Cluster 3
Cluster 2
Cluster 1

0
100
200
300
400
500
600
700
800
900

� = 0.75 � = 0.50 � = 0.25 � = 0.10
Zipf Trace

T
h

ro
u

g
h

p
u

t

Cluster 3
Cluster 2
Cluster 1

Figure 15. Zipf Trace (a) Response Time (b) Throughput

offload where the host performs the checksum computation
and verification and (ii) with the checksum computation and
verification offloaded.
In the first case, when the checksum is performed by

the host itself, on the sender side both the checksum and
copy are integrated. On the receiver side, these are per-
formed separately. However, the interesting thing to note is
that when the checksum is performed, the socket buffer is
fetched to cache and the copy of the data to the user buffer
takes place from cache. However, when the checksum is of-
floaded, the data is not present in cache (the corresponding
cache lines would be invalidated by the memory I/O con-
troller to allow the DMA operation to proceed to memory).
This means that the copy of the data to the user buffer takes
place from out of cache, increasing its overall cost. This
is the difference we observe in the performance of copy
with and without checksum offload in Table 5. Also, on
the sender side, the checksum is always performed with the
buffer in cache, while for the receiver the data is never in
cache since it is performed directly after the DMA opera-
tion (which requires invalidation of the cache lines by the
memory I/O controller). This is also reflected in the values
observed in the table.

Environment Perbyte Operations Sender Receiver
Microbenchmark Checksum 3.69 8.42
Microbenchmark Copy w/o Cks Off 1.95
Microbenchmark Copy w/ Cks Off 1.95 8.40
Data-center Checksum 3.69 8.42
Data-center Copy w/o Cks Off 5.17
Data-center Copy w/ Cks Off 3.65 8.40

Table 5. Per-byte Operation Overhead for 1KB
data Size on Sender and Receiver in Micro-
benchmark and Data-Center Environments

In Table 5, we have distinguished between the micro-
benchmark tests and the data-center based tests. Micro-
benchmark tests utilize the same buffer for every measure-
ment iteration, and there is no other process running on the
system. Therefore, we can maximize the processor cache
effect during the test. However, offloading the checksum
to the network adapter would maximize these cache misses
and would lead to minimal performance benefits in this
case. Further, it is to be noted that this is the pure com-
munication micro-benchmark test. In an environment such
as the data-center, where this communication is only a part
of the overall performance, the benefit can be expected to
be even lesser. Figure 16 shows the estimated performance
of the pure micro-benchmark test with checksum offload-
ing. This result is in accordance with the previous studies
on checksum offload engines [14].

Micro-benchmark

0

50

100

150

200

250

300

1024 4096 16384

Message Size

R
es

p
o

n
se

 T
im

e
(u

se
cs

)

Initial Latency Improved Latency

Figure 16. Checksum Offload benefits in
Micro-Benchmark Tests

However, when we have a look at the difference between
the copy with checksum offload and without checksum of-
fload costs in Table 5, we see that the difference between

13

these two values is significantly lesser for the data-center
environment as compared to the micro-benchmark tests.
This suggests that in the data-center environment, the num-
ber of cache misses might be higher than that in the micro-
benchmark test.
To verify this, we measured the number of L2 cache

misses2 occurring in the micro-benchmark test as well as
the data-center test (Figure 17a) using the Pentium Perfor-
mance Measurement Counters (PMCs). We can see that the
number of cache misses is significantly higher for the data-
center test compared to the micro-benchmark test. This
shows that by offloading the checksum computation to the
network adapter, we will not be introducing many addi-
tional cache misses; and hence can expect some benefit for
checksum offload engines in the data-center environment.
Figure 17b shows the estimated benefits for checksum of-

fload in the data-center environment. We can see that check-
sum offload engines provide a benefit of up to 15% for a
16KB message. It is to be noted that this is the improve-
ment in the end-user performance. The actual improvement
in the communication part of the test can be expected to be
much higher than this.

6.3.2 Per-packet Operation Overhead

As discussed in the previous section, per-packet overhead
includes the overhead associated with the TCP/IP proto-
col, allocation and release of memory buffers and interrupts
from the network device for packet arrival and transmis-
sion. Since TCP/IP protocol is complex, it is very diffi-
cult to implement all per-packet processing onto the hard-
ware. On the other hand, if we offload them to firmware,
we cannot expect a benefit. Therefore, the policy that of-
floads a part of per-packet processing into NIC and imple-
ments a hardware for a large portion of it would be benefi-
cial. Figure 18 shows the estimated benefits of offloading
the per-packet overhead in the form of partial or complete
TCP offload engines (partly on the firmware and partly on
the hardware (H/w), shown as the legend in the figure). We
see that the TCP offload engines provide benefits only when
there is significant offloading to the hardware (ASIC based).
This is because protocol offload onto the firmware increases
the per-packet overhead mainly due low CPU speed at the
firmware (the host CPU speed is 700 MHz and firmware
speed is 132 MHz in this experiment).

7 Compute Requirements

In this section, we study the implications of varying the
compute resources on the overall performance of the data-
center. In particular, we study two scenarios: (i) varying the

2The values presented are actually the number of cache lines being
fetched to L2 and not exactly the L2 cache misses.

0

5

10

15

20

25

30

35

25% Offload 50% Offload 75% Offload 100% Offload

Partial/Complete Protocol Offload

P
er

-P
ac

ke
t

O
ve

rh
ea

d
 w

it
h

O

ff
lo

ad

0

5

10

15

20

25

30

35

P
er

-P
ac

ke
t

O
ve

rh
ea

d

w
it

h
o

u
t

O
ff

lo
ad

50% H/w 60% H/w 70% H/w 80% H/w
90% H/w 100% H/w pkt overhead

L

Figure 18. Estimated benefits of Par-
tial/Complete Offload on per-packet Over-
head

host CPU speed and (ii) varying the number of host CPUs.
We first present basic data-center level response time and
throughput measurements and then follow it up with more
detailed benchmarks to understand the implications of vary-
ing the compute resources.

7.1 Data-Center Response Time and Throughput
Measurements

In this section, we discuss the base performance of the
data-center with static and dynamic content.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

WorldCup Zipf_95

T
h

ro
u

g
h

p
u

t

Cluster 3
Cluster 2
Cluster 1

Figure 22. Throughput in a Worldcup trace

Figure 19a shows the response times seen by the client
for various average file sizes. As expected, Cluster 1 gives
a faster response time compared to the other two due to a
better CPU speed (2.4 GHz). Further, for small file sizes,
we see that all clusters give equal performance. Figure 19b
shows the client response time for dynamic content. As seen
in Figure 19a, Cluster 1 does better than Clusters 2 and 3.
Figure 20a shows the throughput seen at the client side for

14

0

100

200

300

400

500

600

1024 4096 16384

Message Size (bytes)

C

ac
h

e
L

in
es

 F
ill

ed

sender Micro L2 sender Data-Center L2
receiver Micro L2 receiver Data-Center L2

Data-Center

0.00

500.00

1000.00

1500.00

2000.00

1024 4096 16384

Message Size

R
es

p
o

n
se

 T
im

e
(u

se
cs

)

Initial Latency Improved Latency

Figure 17. (a) Cache Lines Filled during copy operation (b) Improved Data-Center Response Time
with Checksum Offload

0

5

10

15

20

25

30

35

1k 4k 16k 64k 256k 1m

File Sizes

R
es

p
o

n
se

 T
im

e
(m

s) Cluster 3
Cluster 2
Cluster 1

0

100

200

300

400

500

600

700

800

900

1k 2k 4k 8k 16k 32k 64k

File Sizes

R
es

p
o

n
se

 T
im

e
(m

s) Cluster 3
Cluster 2
Cluster 1

Figure 19. Data-Center Response Time (a) Static Content (b) Dynamic Content

0

2000

4000

6000

8000

10000

12000

14000

1k 4k 16k 64k 256k 1m
Message Size

T
h

ro
u

g
h

p
u

t

Cluster 3
Cluster 2
Cluster 1

0

2000

4000

6000

8000

10000

12000

14000

1k 2k 4k 8k 16k 32k

Message Size

T
h

ro
u

g
h

p
u

t

Cluster 3
Cluster 2
Cluster 1

Figure 20. Data-Center Throughput (a) Static Content (b) Dynamic Content

15

0

2000

4000

6000

8000

10000

12000

14000

1k 4k 16k 64k 256k 1m

Average File Size

T
h

ro
u

g
h

p
u

t
1 CPU
2 CPU
3 CPU
4 CPU

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1k 4k 16k 64k 256k 1m

Average File Size

T
h

ro
u

g
h

p
u

t

Cluster 3 (1 CPU) Cluster 3 (2 CPU)
Cluster 1 (1 CPU) Cluster 1 (2 CPU)

Figure 21. Throughput variation (a) Number of CPUs (b) CPU Speed

static content. Surprisingly, for small file sizes slower ma-
chines with more CPUs perform better compared to faster
machines with fewer CPUs! This result was initially puz-
zling, but the reason soon became apparent. Web workloads
typically tend to have portions of compute and I/O inter-
leaved. This characteristic of web requests makes the CPU
speed a less critical aspect for the overall performance of
the data-center. On the other hand, having more CPUs al-
lows more threads to run in a parallel fashion resulting in
a higher throughput. For the response time test, since there
is only one request in the data-center at any point of time,
the node with more CPUs is not able to allow a higher con-
currency in the access. On the other hand, a faster CPU
can perform better for the intermittent compute parts in the
overall request to show a better response time in Figure 19a.
For large file size requests, however, faster machines tend

to be better than the slower machines. This is because the
I/O part for large messages becomes significantly larger
than the compute part resulting in an imbalance in the in-
terleaving of the compute and I/O parts. We see a similar
trend for real traces in Figure 22.
Figure 20 shows the throughput achieved by the three clus-

ters for dynamic content. The compute intensive nature of
typical dynamic content ensures a high compute to I/O in-
terleaving even for large messages. It is to be noted that in
our experiments, the amount of computation was set to be
proportional to the file size in order to have a more deter-
ministic value for the amount of computation involved with
each request.

7.2 Impact of CPU in a multi-tier data-center

In order to verify the impact of multiple CPUs on the over-
all performance of the data-center, we performed two ex-
periments. In the first experiment, we varied the number of
CPUs on the same machine to see the actual improvement
in the performance per CPU. The second experiment shows

the performance of two machines with the same number of
CPUs but with different processing speeds.
In order to reduce the number of CPUs present in a sys-

tem, a kernel module was written so that it can reschedule
a job on a particular processor every time the process gets
swapped out. We spawned all apache threads on different
CPUs depending on the experiments. Figure 21a shows the
throughput seen in the multi-tier data-center with varying
number of CPUs. This figure shows that as the number
of CPUs increase, the throughput obtained increases lin-
early for small message sizes. However for large file sizes,
since I/O becomes the bottleneck, increasing the number
of CPUs does not improve performance. In Figure 21b we
compare the throughput for different clusters with different
CPU speeds and varying number of CPUs. One interesting
observation is that for workloads with small file sizes we
see a significant performance improvement with a slower
machine with more number of CPUs than a faster machine
with fewer CPUs. This result again re-verifies the observa-
tion we made in Section 7.1. This shows that ISPs which
host such workloads can take advantage of this character-
istic by adding more processors in their environment and
thereby increasing their availability rather than trying to up-
grade the processing speed as such.

8 Conclusions and Future Work

The phenomenal growth and popularity of cluster-based
multi-tier data-centers has not been accompanied by a
system-wide understanding of the various resources and
their deployment strategies. Due to the large variation in
the kind of workloads present in today’s data-center envi-
ronments, there’s no study which characterizes these work-
loads with respect to the architectural requirements they
have. In other words, the implications of the various system
resources such as CPU, file system, disk, network, I/O on
these different kinds of workloads have not been previously

16

studied.
This paper presents a detailed analysis of the various ar-

chitectural components in a cluster-based multi-tier data-
center environment and their influence on each tier in gen-
eral and the overall performance of the data-center in par-
ticular. Specifically, we focused on resources associated
with the file system (ext3fs, ramfs, and PVFS), I/O (IDE,
SCSI, and software RAID), the TCP/IP protocol stack and
the compute resources (number of CPUs and CPU speed) in
the data-center. We evaluated these resources with micro-
benchmarks and studied their impact in a multi-tier data-
center environment. Together with studying the implica-
tions of each of these resources on the performance of the
data-center, we have also suggested various approaches in
which data-center administrators can maximize their perfor-
mance based on the resources they have.
As a future work, we propose to develop an analytical

model for multi-tier data-centers and evaluate it using the
above mentioned workloads.

9 Related Work

Recently Boston university [5] developed a tool which
gives complete insight of Web Server activity and helps
in identifying the performance bottlenecks. Several others
have studied the performance of a busy WWW server [1,
21, 23].
Spasojevic [30] suggest using a wide-area file system

within the World-Wide Web. Martin F. Arlitt et all [3] have
studied workload characteristics that are common to differ-
ent workloads and emphasized the importance of caching
and performance issues in web servers. Also, Jaidev et all
[26] have looked at network processing overhead in web
servers. They claim that protocol offload would give signif-
icant benefits for static workloads (compute-intensive) and
not for I/O intensive workloads. However, to the best of our
knowledge, our study is unique since we analyze various
components of a cluster-based multi-tier data-center in an
integrated manner which tightly couples with the expected
workload characteristics.

10 Acknowledgments

We would like to thank Sundeep Narravula, Savitha Kr-
ishnamoorthy and Sayantan Sur for all the technical support
they provided in this paper. We would also like to thank the
PVFS team at the Argonne National Laboratory and Clem-
son University for giving us access to the latest version of
the PVFS implementation and for providing us with crucial
insights into the implementation details.

References

[1] Jussara Almeida, Virgilio Almeida, and David Yates.
Measuring the behavior of a world-wide web server.
Technical Report 1996-025, 29, 1996.

[2] The Internet Traffic Archive. http://ita.ee.lbl.gov/html/
traces.html.

[3] Martin F. Arlitt and Carey L. Williamson. Web server
workload characterization: The search for invariants.
In Measurement and Modeling of Computer Systems,
pages 126–137, 1996.

[4] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krish-
namoorthy, J. Wu, and D. K. Panda. Sockets Direct
Protocol over InfiniBand in Clusters: Is it Beneficial?
In the Proceedings of the IEEE International Sympo-
sium on Performance Analysis of Systems and Soft-
ware, Austin, Texas, March 10-12 2004.

[5] Azer Bestavros, Robert L. Carter, Mark E. Crov-
ella, Carlos R. Cunha, Abdelsalam Heddaya, and
Sulaiman A. Mirdad. Application-level document
caching in the Internet. In Proceedings of the 2nd In-
ternational Workshop in Distributed and Networked
Environments (IEEE SDNE ’95), Whistler, British
Columbia, 1995.

[6] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and
Scott Shenker. Web caching and zipf-like distribu-
tions: Evidence and implications. In INFOCOM (1),
pages 126–134, 1999.

[7] P. H. Carns, W. B. Ligon III, R. B. Ross, and
R. Thakur. PVFS: A Parallel File System for Linux
Clusters. In 4th Annual Linux Showcase and Confer-
ence. USENIX Association, 2000.

[8] J. Chase, A. Gallatin, and K. Yocum. End system opti-
mizations for high-speed TCP. IEEE Communications
Magazine, 39(4):68–74, 2001.

[9] A. Ching, A. Choudhary, W. Liao, R. Ross, and
W. Gropp. Noncontiguous I/O through PVFS. In Clus-
ter Computing, 02.

[10] Guo Chuanxiong and Zheng Shaoren. Analysis and
Evaluation of the TCP/IP Protocol Stack of Linux.
http://www.ifip.or.at/con2000/icct2000/icct452.pdf.

[11] D. Clark, V. Jacobson, J. Romkey, and H.Salwen. An
Analysis of TCP processing overhead. IEEE Commu-
nications, June 1989.

17

[12] D. D. Clark and D. L. Tennenhouse. Architectural
considerations for a new generation of protocols. In
Proceedings of the ACM symposium on Communica-
tions architectures & protocols, pages 200–208. ACM
Press, 1990.

[13] Aaron Falk and Mark Allman. On the effective evalua-
tion of TCP. ACM Computer Communication Review,
5(29), 1999.

[14] Annie Foong, Herbet Hum, Tom Huff, Jaidev Pat-
wardhan, and Greg Regnier. TCP Performance Re-
visited. In the Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and
Software, 2003.

[15] Andrew Gallatin, Jeff Chase, and Ken Yocum.
Trapeze/IP: TCP/IP at near-gigabit speeds. pages 109–
120.

[16] Robert Horst. IP Storage and the CPU Consumption
Myth.

[17] Jau-Hsiung Huang and Chi-Wen Chen. On Per-
formance Measurements of TCP/IP and its Device
Driver. Proc. 17th Annual Local Computer Network
Conference, Minneapolis.

[18] Jonathan Kay and Joseph Pasquale. The Importance of
Non-Data Touching Processing Overheads in TCP/IP.
In Proceedings of the 1993 SIGCOMM, pp. 259–268,
San Francisco, CA, September 1993.

[19] Jonathan Kay and Joseph Pasquale. Measurement,
analysis, and improvement of UDP/IP throughput for
the DECstation 5000. In USENIX Winter, pages 249–
258, 1993.

[20] Hyok Kim, Hongki Sung, and Hoonbock Lee. Perfor-
mance Analysis of the TCP/IP Protocol under UNIX
Operating Systems for High Performance Computing
and Communications. In the Proceedings of Interna-
tional Conference on High Performance Computing
(HPC), 1997.

[21] A. Mahanti. Web proxy workload characterisation and
modelling, 1999.

[22] Evangelos P. Markatos. Speeding up TCP / IP : Faster
processors are not enough. Technical Report 297,
2001.

[23] J. C. Mogul. Network behavior of a busy web server
and its clients. Technical Report Technical Report
WRL 95/5, DEC Western Research Laboratory, Palo
Alto, CA, 1995.

[24] David Mosberger, Larry L. Peterson, Patrick G.
Bridges, and Sean O’Malley. Analysis of Techniques
to Improve Protocol Processing Latency. Technical re-
port, University of Arizona, 1996.

[25] S. Narravula, P. Balaji, K. Vaidyanathan, S. Krish-
namoorthy, J. Wu, and D. K. Panda. Supporting
Strong Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. In SAN, 2004.

[26] Jaidev P. Patwardhan, Alvin R. Lebeck, and Daniel J.
Sorin. Communication breakdown: Analyzing cpu us-
age in commericial web workloads. In IEEE Interna-
tion Symposium on Performance Analysis of Systems
and Software, 2004.

[27] Vern Paxson. End-to-end internet packet dynamics.
IEEE/ACM Transactions on Networking, pages 277–
292, 1997.

[28] Hemal V. Shah, Dave B. Minturn, Annie Foong,
Gary L. McAlpine, Rajesh S. Madukkarumukumana,
and Greg J. Regnier. CSP: A Novel System Archi-
tecture for Scalable Internet and Communication Ser-
vices. In the Proceedings of the 3rd USENIX Sym-
posium on Internet Technologies and Systems, pages
pages 61–72, San Francisco, CA, March 2001.

[29] Huseyin Simitci, Chris Malakapalli, and Vamsi Gun-
turu. Evaluation of SCSI over TCP/IP and SCSI over
Fibre Channel Connections.

[30] Mirjana Spasojevic, C. Mic Bowman, and Alfred
Spector. Using a wide-area file system within the
World Wide Web. 1994.

[31] Evan Speight, Hazim Shafi, and John K. Bennett. WS-
DLite: A lightweight alternative to windows sockets
direct path. pages 113–124.

[32] W. Richard Stevens. TCP/IP Illustrated, Volume I: The
Protocols. Addison Wesley, 2nd edition, 2000.

[33] R. Thakur, W. Gropp, and E. Lusk. On Implement-
ing MPI-IO Portably and with High Performance. In
the 6th Workshop on I/O in Parallel and Distributed
Systems, 1999.

[34] Gary R. Wright and W. Richard Stevens. TCP/IP Il-
lustrated, Volume II: The Implementation. Addison
Wesley, 2nd edition, 2000.

[35] Eric Yeh, Herman Chao, Venu Mannem, Joe Gervais,
and Bradley Booth. Introduction to TCP/IP Offload
Engine (TOE). http://www.10gea.org, May 2002.

18

