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Abstract
Currently, I/O device virtualization models in virtual

machine (VM) environments require involvement of a
virtual machine monitor (VMM) and/or a privileged VM
for each I/O operation, which may turn out to be a per-
formance bottleneck for systems with high I/O demands,
especially those equipped with modern high speed inter-
connects such as InfiniBand.

In this paper, we propose a new device virtualization
model called VMM-bypass I/O, which extends the idea
of OS-bypass originated from user-level communication.
Essentially, VMM-bypass allows time-critical I/O oper-
ations to be carried out directly in guest VMs without
involvement of the VMM and/or a privileged VM. By ex-
ploiting the intelligence found in modern high speed net-
work interfaces, VMM-bypass can significantly improve
I/O and communication performance for VMs without
sacrificing safety or isolation.

To demonstrate the idea of VMM-bypass, we have de-
veloped a prototype called Xen-IB, which offers Infini-
Band virtualization support in the Xen 3.0 VM environ-
ment. Xen-IB runs with current InfiniBand hardware and
does not require modifications to existing user-level ap-
plications or kernel-level drivers that use InfiniBand. Our
performance measurements show that Xen-IB is able to
achieve nearly the same raw performance as the original
InfiniBand driver running in a non-virtualized environ-
ment.

1 Introduction
Virtual machine (VM) technologies were first introduced
in the 1960s [14], but are experiencing a resurgence in
recent years and becoming more and more attractive to
both the industry and the research communities [35]. A
key component in a VM environment is the virtual ma-
chine monitor (VMM) (also called hypervisor), which is
implemented directly on top of hardware and provides
virtualized hardware interfaces to VMs. With the help of
VMMs, VM technologies allow running many different

virtual machines in a single physical box, with each vir-
tual machine possibly hosting a different operating sys-
tem. VMs can also provide secure and portable environ-
ments to meet the demanding resource requirements of
modern computing systems [9].

In VM environments, device I/O access in guest op-
erating systems can be handled in different ways. For
instance, in VMware Workstation, device I/O relies on
switching back to the host operating system and user-
level emulation [37]. In VMware ESX Server, guest VM
I/O operations trap into the VMM, which makes direct
access to I/O devices [42]. In Xen [11], device I/O fol-
lows a split-driver model. Only an isolated device do-
main (IDD) has access to the hardware using native de-
vice drivers. All other virtual machines (guest VMs, or
domains) need to pass the I/O requests to the IDD to ac-
cess the devices. This control transfer between domains
needs involvement of the VMM.

In recent years, network interconnects that provide
very low latency (less than 5µs) and very high band-
width (multiple Gbps) are emerging. Examples of these
high speed interconnects include Virtual Interface Archi-
tecture (VIA) [12], InfiniBand [19], Quadrics [34], and
Myrinet [25]. Due to their excellent performance, these
interconnects have become strong players in areas such
as high performance computing (HPC). To achieve high
performance, these interconnects usually have intelligent
network interface cards (NICs) which can be used to of-
fload a large part of the host communication protocol
processing. The intelligence in the NICs also supports
user-level communication, which enables safe direct I/O
access from user-level processes (OS-bypass I/O) and
contributes to reduced latency and CPU overhead.

VM technologies can greatly benefit computing sys-
tems built from the aforementioned high speed intercon-
nects by not only simplifying cluster management for
these systems, but also offering much cleaner solutions
to tasks such as check-pointing and fail-over. Recently,
as these high speed interconnects become more and more



commoditized with their cost going down, they are also
used for providing remote I/O access in high-end enter-
prise systems, which increasingly run in virtualized envi-
ronments. Therefore, it is very important to provide VM
support to high-end systems equipped with these high
speed interconnects. However, performance and scal-
ability requirements of these systems pose some chal-
lenges. In all the VM I/O access approaches mentioned
previously, VMMs have to be involved to make sure that
I/O accesses are safe and do not compromise integrity
of the system. Therefore, current device I/O access in
virtual machines requires context switches between the
VMM and guest VMs. Thus, I/O access can suffer from
longer latency and higher CPU overhead compared to na-
tive I/O access in non-virtualized environments. In some
cases, the VMM may also become a performance bot-
tleneck which limits I/O performance in guest VMs. In
some of the aforementioned approaches (VM Worksta-
tion and Xen), a host operating system or another virtual
machine is also involved in the I/O access path. Although
these approaches can greatly simplify VMM design by
moving device drivers out of the VMM, they may lead
to even higher I/O access overhead when requiring con-
text switches between the host operating system and the
guest VM or two different VMs.

In this paper, we present a VMM-bypass approach for
I/O access in VM environments. Our approach takes ad-
vantages of features found in modern high speed intelli-
gent network interfaces to allow time-critical operations
to be carried out directly in guest VMs while still main-
taining system integrity and isolation. With this method,
we can remove the bottleneck of going through the VMM
or a separate VM for many I/O operations and signif-
icantly improve communication and I/O performance.
The key idea of our VMM-bypass approach is based on
the OS-bypass design of modern high speed network in-
terfaces, which allows user processes to access I/O de-
vices directly in a safe way without going through oper-
ating systems. OS-bypass was originally proposed by re-
search communities [41, 40, 29, 6, 33] and later adopted
by some commercial interconnects such as InfiniBand.
Our idea can be regarded as an extension of OS-bypass
designs in the context of VM environments.

To demonstrate the idea of VMM-bypass, we have de-
signed and implemented a prototype called Xen-IB to
provide virtualization support for InfiniBand in Xen. Ba-
sically, our implementation presents to each guest VM a
para-virtualized InfiniBand device. Our design requires
no modification to existing hardware. Also, through a
technique called high-level virtualization, we allow cur-
rent user-level applications and kernel-level modules that
utilize InfiniBand to run without changes. Our perfor-
mance results, which includes benchmarks at the basic
InfiniBand level as well as evaluation of upper-layer In-

finiBand protocols such as IP over InfiniBand (IPoIB) [1]
and MPI [36], demonstrate that performance of our
VMM-bypass approach comes close to that in a native,
non-virtualized environment. Although our current im-
plementation is for InfiniBand and Xen, the basic VMM-
bypass idea and many of our implementation techniques
can be readily applied to other high-speed interconnects
and other VMMs.

In summary, the main contributions of our work are:

• We proposed the VMM-bypass approach for I/O ac-
cesses in VM environments for modern high speed
interconnects. Using this approach, many I/O op-
erations can be performed directly without involve-
ment of a VMM or another VM. Thus, I/O perfor-
mance can be greatly improved.

• Based on the idea of VMM-bypass, we imple-
mented a prototype, Xen-IB, to virtualize Infini-
Band devices in Xen guest VMs. Our prototype
supports running existing InfiniBand applications
and kernel modules in guest VMs without any mod-
ification.

• We carried out extensive performance evaluation of
our prototype. Our results show that performance of
our virtualized InfiniBand device is very close to na-
tive InfiniBand devices running in a non-virtualized
environment.

The rest of the paper is organized as follows: In Sec-
tion 2, we present background information, including the
Xen VM environment and the InfiniBand architecture. In
Section 3, we present the basic idea of VMM-bypass I/O.
In Section 4, we discuss the detailed design and imple-
mentation of our Xen-IB prototype. In Section 5, we dis-
cuss several related issues and limitations of our current
implementation and how they can be addressed in future.
Performance evaluation results are given in Section 6.
We discuss related work in Section 7 and conclude the
paper in Section 8.

2 Background
In this section, we provide background information for
our work. In Section 2.1, we describe how I/O device ac-
cess is handled in several popular VM environments. In
Section 2.3, we describe the OS-bypass feature in mod-
ern high speed network interfaces. Since our prototype
is based on Xen and InfiniBand, we introduce them in
Sections 2.2 and 2.4, respectively.

2.1 I/O Device Access in Virtual Machines
In a VM environment, the VMM plays the central role of
virtualizing hardware resources such as CPUs, memory,
and I/O devices. To maximize performance, the VMM



can let guest VMs access these resources directly when-
ever possible. Taking CPU virtualization as an example,
a guest VM can execute all non-privileged instructions
natively in hardware without intervention of the VMM.
However, privileged instructions executed in guest VMs
will generate a trap into the VMM. The VMM will then
take necessary steps to make sure that the execution can
continue without compromising system integrity. Since
many CPU intensive workloads seldom use privileged
instructions (This is especially true for applications in
HPC area.), they can achieve excellent performance even
when executed in a VM.

I/O device access in VMs, however, is a completely
different story. Since I/O devices are usually shared
among all VMs in a physical machine, the VMM has
to make sure that accesses to them are legal and con-
sistent. Currently, this requires VMM intervention on
every I/O access from guest VMs. For example, in
VMware ESX Server [42], all physical I/O accesses
are carried out within the VMM, which includes device
drivers for popular server hardware. System integrity
is achieved with every I/O access going through the
VMM. Furthermore, the VMM can serve as an arbitra-
tor/multiplexer/demultiplexer to implement useful fea-
tures such as QoS control among VMs. However, VMM
intervention also leads to longer I/O latency and higher
CPU overhead due to the context switches between guest
VMs and the VMM. Since the VMM serves as a central
control point for all I/O accesses, it may also become a
performance bottleneck for I/O intensive workloads.

Having device I/O access in the VMM also compli-
cates the design of the VMM itself. It significantly
limits the range of supported physical devices because
new device drivers have to be developed to work within
the VMM. To address this problem, VMware worksta-
tion [37] and Xen [13] carry out I/O operations in a host
operating system or a special privileged VM called iso-
lated device domain (IDD), which can run popular op-
erating systems such as Windows and Linux that have a
large number of existing device drivers. Although this
approach can greatly simplify the VMM design and in-
crease the range of supported hardware, it does not di-
rectly address performance issues with the approach used
in VMware ESX Server. In fact, I/O accesses now may
result in expensive operations called a world switch (a
switch between the host OS and a guest VM) or a domain
switch (a switch between two different VMs), which can
lead to even worse I/O performance.

2.2 Overview of the Xen Virtual Machine
Monitor

Xen is a popular high performance VMM. It uses para-
virtualization [43], in which host operating systems need
to be explicitly ported to the Xen architecture. This ar-

chitecture is similar to native hardware such as the x86
architecture, with only slight modifications to support ef-
ficient virtualization. Since Xen does not require changes
to the application binary interface (ABI), existing user
applications can run without any modification.
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Figure 1: The structure of the Xen hypervisor, hosting
three xenoLinux operating systems (courtesy [32])

Figure 1 illustrates the structure of a physical machine
running Xen. The Xen hypervisor is at the lowest level
and has direct access to the hardware. The hypervi-
sor, instead of the guest operating systems, is running
in the most privileged processor-level. Xen provides ba-
sic control interfaces needed to perform complex policy
decisions. Above the hypervisor are the Xen domains
(VMs). There can be many domains running simultane-
ously. Guest VMs are prevented from directly execut-
ing privileged processor instructions. A special domain
called domain0, which is created at boot time, is allowed
to access the control interface provided by the hypervi-
sor. The guest OS in domain0 hosts application-level
management software and perform the tasks to create,
terminate or migrate other domains through the control
interface.

There is no guarantee that a domain will get a con-
tinuous stretch of physical memory to run a guest OS.
Xen makes a distinction between machine memory and
pseudo-physical memory. Machine memory refers to the
physical memory installed in a machine, while pseudo-
physical memory is a per-domain abstraction, allowing
a guest OS to treat its memory as a contiguous range of
physical pages. Xen maintains the mapping between the
machine and the pseudo-physical memory. Only a cer-
tain parts of the operating system needs to understand
the difference between these two abstractions. Guest
OSes allocate and manage their own hardware page ta-
bles, with minimal involvement of the Xen hypervisor to
ensure safety and isolation.

In Xen, domains can communicate with each other
through shared pages and event channels. Event chan-
nels provide an asynchronous notification mechanism
between domains. Each domain has a set of end-points



(or ports) which may be bounded to an event source.
When a pair of end-points in two domains are bound
together, a “send” operation on one side will cause an
event to be received by the destination domain, which
may in turn cause an interrupt. Event channels are only
intended for sending notifications between domains. So
if a domain wants to send data to another, the typical
scheme is for a source domain to grant access to local
memory pages to the destination domain. Then, these
shared pages are used to transfer data.

Virtual machines in Xen usually do not have direct
access to hardware. Since most existing device drivers
assume they have complete control of the device, there
cannot be multiple instantiations of such drivers in dif-
ferent domains for a single device. To ensure manage-
ability and safe access, device virtualization in Xen fol-
lows a split device driver model [13]. Each device driver
is expected to run in an isolated device domain (IDD),
which hosts a backend driver to serve access requests
from guest domains. Each guest OS uses a frontend
driver to communicate with the backend. The split driver
organization provides security: misbehaving code in a
guest domain will not result in failure of other guest do-
mains. The split device driver model requires the devel-
opment of frontend and backend drivers for each device
class. A number of popular device classes such as virtual
disk and virtual network are currently supported in guest
domains.

2.3 OS-bypass I/O
Traditionally, device I/O accesses are carried out inside
the OS kernel on behalf of application processes. How-
ever, this approach imposes several problems such as
overhead caused by context switches between user pro-
cesses and OS kernels and extra data copies which de-
grade I/O performance [5]. It can also result in QoS
crosstalk [17] due to lacking of proper accounting for
costs of I/O accesses carried out by the kernel on behalf
of applications.

To address these problems, a concept called user-level
communication was introduced by the research commu-
nity. One of the notable features of user-level commu-
nication is OS-bypass, with which I/O (communication)
operations can be achieved directly by user processes
without involvement of OS kernels. OS-bypass was later
adopted by commercial products, many of which have
become popular in areas such as high performance com-
puting where low latency is vital to applications. It
should be noted that OS-bypass does not mean all I/O
operations bypass the OS kernel. Usually, devices al-
low OS-bypass for frequent and time-critical operations
while other operations, such as setup and management
operations, can go through OS kernels and are handled
by a privileged module, as illustrated in Figure 2.
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Figure 2: OS-Bypass Communication and I/O

The key challenge to implement OS-bypass I/O is to
enable safe access to a device shared by many differ-
ent applications. To achieve this, OS-bypass capable de-
vices usually require more intelligence in the hardware
than traditional I/O devices. Typically, an OS-bypass ca-
pable device is able to present virtual access points to
different user applications. Hardware data structures for
virtual access points can be encapsulated into different
I/O pages. With the help of an OS kernel, the I/O pages
can be mapped into the virtual address spaces of different
user processes. Thus, different processes can access their
own virtual access points safely, thanks to the protection
provided by the virtual memory mechanism. Although
the idea of user-level communication and OS-bypass was
developed for traditional, non-virtualized systems, the
intelligence and self-virtualizing characteristic of OS-
bypass devices lend themselves nicely to a virtualized
environment, as we will see later.

2.4 InfiniBand Architecture
InfiniBand [19] is a high speed interconnect offering high
performance as well as features such as OS-bypass. In-
finiBand host channel adapters (HCAs) are the equiva-
lent of network interface cards (NICs) in traditional net-
works. InfiniBand uses a queue-based model for com-
munication. A Queue Pair (QP) consists of a send queue
and a receive queue. The send queue holds instructions
to transmit data and the receive queue holds instructions
that describe where received data is to be placed. Com-
munication instructions are described in Work Queue
Requests (WQR), or descriptors, and submitted to the
queue pairs. The completion of the communication is
reported through Completion Queues (CQs) using Com-
pletion Queue Entries (CQEs). CQEs can be accessed by
using polling or event handlers.

Initiating data transfers (posting descriptors) and noti-
fication of their completion (polling for completion) are
time-critical tasks which use OS-bypass. In the Mel-
lanox [21] approach, which represents a typical imple-
mentation of the InfiniBand specification, posting de-
scriptors is done by ringing a doorbell. Doorbells are
rung by writing to the registers that form the User Ac-



cess Region (UAR). Each UAR is a 4k I/O page mapped
into a process’s virtual address space. Posting a work
request includes putting the descriptors to a QP buffer
and writing the doorbell to the UAR, which is completed
without the involvement of the operating system. CQ
buffers, where the CQEs are located, can also be directly
accessed from the process virtual address space. These
OS-bypass features make it possible for InfiniBand to
provide very low communication latency.

InfiniBand also provides a comprehensive manage-
ment scheme. Management communication is achieved
by sending management datagrams (MADs) to well-
known QPs (QP0 and QP1).

InfiniBand requires all buffers involved in commu-
nication be registered before they can be used in data
transfers. In Mellanox HCAs, the purpose of registra-
tion is two-fold. First, an HCA needs to keep an en-
try in the Translation and Protection Table (TPT) so that
it can perform virtual-to-physical translation and protec-
tion checks during data transfer. Second, the memory
buffer needs to be pinned in memory so that HCA can
DMA directly into the target buffer. Upon the success of
registration, a local key and a remote key are returned,
which can be used later for local and remote (RDMA)
accesses. QP and CQ buffers described above are just
normal buffers that are directly allocated from the pro-
cess virtual memory space and registered with HCA.
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User −level Infiniband Service

User−level Application

Core Infiniband Modules

HCA Driver

InfiniBand HCA

User−space

Kernel
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Figure 3: Architectural overview of OpenIB Gen2 stack

There are two popular stacks for InfiniBand drivers.
VAPI [23] is the Mellanox implementation and OpenIB
Gen2 [28] recently have come out as a new generation of
IB stack provided by the OpenIB community. In this pa-
per, our prototype implement is based on OpenIB Gen2,
whose architecture is illustrated in Figure 3.

3 VMM-Bypass I/O
VMM-bypass I/O can be viewed as an extension to the
idea of OS-bypass I/O in the context of VM environ-
ments. In this section, we describe the basic design of
VMM-bypass I/O. Two key ideas in our design are para-
virtualization and high-level virtualization.

In some VM environments, I/O devices are virtualized
at the hardware level [37]. Each I/O instruction to ac-
cess a device is virtualized by the VMM. With this ap-

proach, existing device drivers can be used in the guest
VMs without any modification. However, it significantly
increases the complexity of virtualizing devices. For
example, one popular InfiniBand card (MT23108 from
Mellanox [24]) presents itself as a PCI-X device to the
system. After initialization, it can be accessed by the
OS using memory mapped I/O. Virtualizing this device
at the hardware level would require us to not only under-
stand all the hardware commands issued through mem-
ory mapped I/O, but also implement a virtual PCI-X bus
in the guest VM. Another problem with this approach is
performance. Since existing physical devices are typi-
cally not designed to run in a virtualized environment,
the interfaces presented at the hardware level may ex-
hibit significant performance degradation when they are
virtualized.
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Figure 4: VM-Bypass I/O (I/O Handled by VMM Di-
rectly)

Our VMM-bypass I/O virtualization design is based
on the idea of para-virtualization, similar to [11]
and [44]. We do not preserve hardware interfaces of
existing devices. To virtualize a device in a guest VM,
we implement a device driver called guest module in the
OS of the guest VM. The guest module is responsible
for handling all the privileged accesses to the device. In
order to achieve VMM-bypass device access, the guest
module also needs to set things up properly so that I/O
operations can be carried out directly in the guest VM.
This means that the guest module must be able to cre-
ate virtual access points on behalf of the guest OS and
map them into the addresses of user processes. Since the
guest module does not have direct access to the device
hardware, we need to introduce another software com-
ponent called backend module, which provides device
hardware access for different guest modules. If devices
are accessed inside the VMM, the backend module can
be implemented as part of the VMM. It is possible to let
the backend module talk to the device directly. However,
we can greatly simplify its design by reusing the original
privilege module of the OS-bypass device driver. In addi-



tion to serving as a proxy for device hardware access, the
backend module also coordinates accesses among differ-
ent VMs so that system integrity can be maintained. The
VMM-bypass I/O design is illustrated in Figure 4.

If device accesses are provided by another VM (device
driver VM), the backend module can be implemented
within the device driver VM. The communication be-
tween guest modules and the backend module can be
achieved through the inter-VM communication mecha-
nism provided by the VM environment. This approach is
shown in Figure 5.
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Figure 5: VM-Bypass I/O (I/O Handled by Another VM)

Para-virtualization can lead to compatibility problems
because a para-virtualized device does not conform to
any existing hardware interfaces. However, in our de-
sign, these problems can be addressed by maintaining ex-
isting interfaces which are at a higher level than the hard-
ware interface (a technique we dubbed high-level virtual-
ization). Modern interconnects such as InfiniBand have
their own standardized access interfaces. For example,
InfiniBand specification defines a VERBS interface for a
host to talk to an InfiniBand device. The VERBS inter-
face is usually implemented in the form of an API set
through a combination of software and hardware. Our
high-level virtualization approach maintains the same
VERBS interface within a guest VM. Therefore, existing
kernel drivers and applications that use InfiniBand will
be able to run without any modification. Although in
theory a driver or an application can bypass the VERBS
interface and talk to InfiniBand devices directly, this sel-
dom happens because it leads to poor portability due to
the fact that different InfiniBand devices may have dif-
ferent hardware interfaces.

4 Prototype Design and Implementation
In this section, we present the design and implementa-
tion of Xen-IB, our InfiniBand virtualization driver for
Xen. We describe details of the design and how we en-
able accessing the HCA from guest domains directly for
time-critical tasks.

4.1 Overview
Like many other device drivers, InfiniBand drivers can-
not have multiple instantiations for a single HCA. Thus,
a split driver model approach is required to share a single
HCA among multiple Xen domains.

Figure 6 illustrates a basic design of our Xen-IB driver.
The backend runs as a kernel daemon on top of the native
InfiniBand driver in the isolated device domain (IDD),
which is domain0 is our current implementation. It waits
for incoming requests from the frontend drivers in the
guest domains. The frontend driver, which corresponds
to the guest module mentioned in Section 3, replaces the
kernel HCA driver in OpenIB Gen2 stack. Once the fron-
tend is loaded, it establishes two event channels with the
backend daemon. The first channel, together with shared
memory pages, forms a device channel [13] which is
used to process requests initiated from the guest domain.
The second channel is used for sending InfiniBand CQ
and QP events to the guest domain and will be discussed
in detail later.
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Figure 6: The Xen-IB driver structure with the split
driver model

The Xen-IB frontend driver provides the same set of
interfaces as a normal Gen2 stack for kernel modules.
It is a relatively thin layer whose tasks include packing
a request together with necessary parameters and send-
ing it to the backend through the device channel. The
backend driver reconstructs the commands, performs the
operation using the native kernel HCA driver on behalf
of the guest domain, and returns the result to the frontend
driver.

The split device driver model in Xen poses difficulties
for user-level direct HCA access in Xen guest domains.
To enable VMM-bypass, we need to let guest domains
have direct access to certain HCA resources such as the
UARs and the QP/CQ buffers.

4.2 InfiniBand Privileged Accesses
In the following, we discuss in general how we support
all privileged InfiniBand operations, including initializa-
tion, InfiniBand resource management, memory registra-



tion and event handling.
Initialization and resource management: Before

applications can communicate using InfiniBand, it must
finish several preparation steps including opening HCA,
creating CQ, creating QP, and modifying QP status, etc.
Those operations are usually not in the time critical path
and can be implemented in a straightforward way. Basi-
cally, the guest domains forward these commands to the
device driver domain (IDD) and wait for the acknowl-
edgments after the operations are completed. All the re-
sources are managed in the backend and the frontends
refer to these resources by handles. Validation checks
must be conducted in IDD to ensure that all references
are legal.

Memory Registration: The InfiniBand specification
requires all the memory regions involved in data trans-
fers to be registered with the HCA. With Xen’s para-
virtualization approach, real machine addresses are di-
rectly visible to user domains. (Note that access control
is still achieved because Xen makes sure a user domain
cannot arbitrarily map a machine page.) Thus, a domain
can easily figure out the DMA addresses of buffers and
there is no extra need for address translation (assuming
that no IOMMU is used). The information needed by
memory registration is a list of DMA addresses that de-
scribes the physical locations of the buffers, access flags
and the virtual address that the application will use when
accessing the buffers. Again, the registration happens
in the device domain. The frontend driver sends above
information to the backend driver and get back the lo-
cal and remote keys. Note that since the Translation and
Protection Table (TPT) on HCA is indexed by keys, mul-
tiple guest domains are allowed to register with the same
virtual address.

For security reasons, the backend driver can verify if
the frontend driver offers valid DMA addresses belong-
ing to the specific domain in which it is running. This
check makes sure that all later communication activities
of guest domains are within the valid address spaces.

Event Handling: InfiniBand supports several kinds of
CQ and QP events. The most commonly used is the com-
pletion event. Event handlers are associated with CQs or
QPs when they are created. An application can subscribe
for event notification by writing a command to the UAR
page. When those subscribed events happen, the HCA
driver will first be notified by the HCA and then dispatch
the event to different CQs or QPs according to the event
type. Then the application/driver that owns the CQ/QP
will get a callback on the event handler.

For Xen-IB, events are generated for the device do-
main, where all QPs and CQs are actually created. But
the device domain cannot directly give a callback on the
event handlers in the guest domains. To address this is-
sue, we create a dedicated event channel between a fron-

tend and the backend driver. The backend driver asso-
ciates a special event handler to each CQ/QP created due
to requests from guest domains. Each time the HCA gen-
erates an event to these CQs/QPs, this special event han-
dler gets executed and forwards information such as the
event type and the CQ/QP identifier to the guest domain
through the event channel. The frontend driver binds an
event dispatcher as a callback handler to one end of the
event channel after the channel is created. The event
handlers given by the applications are associated to the
CQs or QPs after they are successfully created. Fron-
tend driver also maintains a translation table between
the CQ/QP identifiers and the actual CQ/QPs. Once the
event dispatcher gets an event notification from the back-
end driver, it checks the identifier and gives the corre-
sponding CQ/QP a callback on the associated handler.

4.3 VMM-Bypass Accesses
In InfiniBand, QP accesses (posting descriptors) include
writing WQEs to the QP buffers and ringing doorbells
(writing to UAR pages) to notify the HCA. Then the
HCA can use DMA to transfer the WQEs to internal
HCA memory and perform the send/receive or RDMA
operations. Once a work request is completed, HCA will
put a completion entry (CQE) in the CQ buffer. In Infini-
Band, QP access functions are used for initiating com-
munication. To detect completion of communication,
CQ polling can be used. QP access and CQ polling func-
tions are typically used in the critical path of communi-
cation. Therefore, it is very important to optimize their
performance by using VMM-bypass. The basic architec-
ture of the VMM-bypass design is shown in Figure 7.
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Figure 7: VMM-Bypass design of Xen-IB driver

Supporting VMM-bypass for QP access and CQ
polling imposes two requirements on our design of Xen-
IB: first, UAR pages must be accessible from a guest do-
main; second, both QP and CQ buffers should be directly
visible in the guest domain.

When a frontend driver is loaded, the backend driver



allocates a UAR page and returns its page frame number
(machine address) to the frontend. The frontend driver
then remaps this page to its own address space so that
it can directly access the UAR in the guest domain to
serve requests from the kernel drivers. (We have applied
a small patch to Xen to enable access to I/O pages in
guest domains.) In the same way, when a user applica-
tion starts, the frontend driver applies for a UAR page
from the backend and remaps the page to the applica-
tion’s virtual memory address space, which can be later
accessed directly from the user space. Since all UARs
are managed in a centralized manner in the IDD, there
will be no conflicts between UARs in different guest do-
mains.

To make QP and CQ buffers accessible to guest do-
mains, creating CQs/QPs has to go through two stages.
In the first stage, QP or CQ buffers are allocated in the
guest domains and registered through the IDD. During
the second stage, the frontend sends the CQ/QP creation
commands to the IDD along with the keys returned from
the registration stage to complete the creation process.
Address translations are indexed by keys, so in later op-
erations the HCA can directly read WQRs from and write
the CQEs back to the buffers (using DMA) located in the
guest domains.

Since we also allocate UARs to user space applica-
tions in guest domains, the user level InfiniBand library
now keeps its OS-bypass feature. The VMM-bypass IB-
Xen workflow is illustrated in Figure 8.

It should be noted that since VMM-bypass accesses di-
rectly interact with the HCA, they are usually hardware
dependent and the frontends need to know how to deal
with different types of InfiniBand HCAs. However, ex-
isting InfiniBand drivers and user-level libraries already
include code for direct access and it can be reused with-
out spending new development efforts.
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Figure 8: Working flow of the VMM-bypass Xen-IB
driver

4.4 Virtualizing InfiniBand Management
Operations

In an InfiniBand network, management and administra-
tive tasks are achieved through the use of Management
Datagrams (MADs). MADs are sent and received just
like normal InfiniBand communication, except that they
must use two well-known queue-pairs: QP0 and QP1.
Since there is only one set of such queue pairs in ev-
ery HCA, their access must be virtualized for access-
ing from many different VMs, which means we must
treat them differently than normal queue-pairs. However,
since queue-pair accesses can be done directly in guest
VMs in our VMM-bypass approach, it would be very dif-
ficult to track each queue-pair access and take different
actions based on whether it is a management queue-pair
or a normal one.

To address this difficulty, we use the idea of high-level
virtualization. This is based on the fact that although
MAD is the basic mechanism for InfiniBand manage-
ment, applications and kernel drivers seldom use it di-
rectly. Instead, different management tasks are achieved
through more user-friendly and standard API sets which
are implemented on top of MADs. For example, the
kernel IPoIB protocol makes use of the subnet adminis-
tration (SA) services, which are offered through a high-
level, standardized SA API. Therefore, instead of track-
ing each queue-pair access, we virtualize management
functions at the API level by providing our own imple-
mentation for guest VMs. Most functions can be im-
plemented in a similar manner as privileged InfiniBand
operations, which typically includes sending a request to
the backend driver, executing the request (backend), and
getting a reply. Since management functions are rarely in
time-critical paths, the implementation will not bring any
significant performance degradation. However, it does
require us to implement every function provided by all
the different management interfaces. Fortunately, there
are only a couple of such interfaces and the implementa-
tion effort is not significant.

5 Discussions
In this section, we discuss issues related to our prototype
implementation such as how safe device access is en-
sured, how performance isolation between different VMs
can be achieved, and challenges in implementing VM
check-pointing and migration with VMM-bypass. We
also point out several limitations of our current prototype
and how we can address them in future.

5.1 Safe Device Access
To ensure that accesses to virtual InfiniBand devices
by different VMs will not compromise system integrity,
we need to make sure that both privileged accesses and
VMM-bypass accesses are safe. Since all privileged



accesses need to go through the backend module, ac-
cess checks are implemented there to guarantee safety.
VMM-bypass operations are achieved through accessing
the memory-mapped UAR pages which contain virtual
access points. Setting-up these mappings is privileged
and can be checked. InfiniBand allows using both virtual
and physical addresses for sending and receiving mes-
sages or carrying out RDMA operations, as long as a
valid memory key is presented. Since the key is obtained
through InfiniBand memory registration, which is also
a privileged operation, we implement necessary safety
checks in the backend module to ensure that a VM can
only carry out valid memory registration operations. It
should be noted that once a memory buffer is registered,
its physical memory pages cannot be reclaimed by the
VMM. Therefore, we should limit the total size of buffers
that can be registered by a single VM. This limit check
can also be implemented in the backend module.

Memory registration is an expensive operation in In-
finiBand. In our virtual InfiniBand implementation,
memory registration cost is even higher due to inter-
domain communication. This may lead to performance
degradation in cases where buffers cannot be registered
in advance. Techniques such as pin-down cache can
be applied when buffers are reused frequently, but it is
not always effective. To address this issue, some exist-
ing InfiniBand kernel drivers creates and uses an DMA
key through which all physical pages can be accessed.
Currently, our prototype supports DMA keys. However,
this leaves a security hole because all physical memory
pages (including those belonging to other VMs) can be
accessed. In future, we plan to address this problem by
letting the DMA keys only authorize access to physical
pages in the current VM. However, this also means that
we need to update the keys whenever the VMM changes
the physical pages allocated to a VM.

5.2 Performance Isolation
Although our current prototype does not yet implement
performance isolation or QoS among different VMs,
this issue can be addressed by taking advantage of QoS
mechanisms which are present in the current hardware.
For example, Mellanox InfiniBand HCAs support a QoS
scheme in which a weighted round-robin algorithm is
used to schedule different queue-pairs. In this scheme,
QoS policy parameters are assigned when queue-pairs
are created and initialized. After that, the HCA hard-
ware is responsible for taking necessary steps to ensure
QoS policies. Since queue-pair creations are privileged,
we can create desired QoS policies in the backend when
queue-pairs are created. These QoS policies will later be
enforced by device hardware. We plan to explore more
along this direction in future.

5.3 VM Check-pointing and Migration
VMM-bypass I/O poses new challenges for implement-
ing VM check-pointing and migration. This is due to two
reasons. First, the VMM does not have complete knowl-
edge of VMs with respect to device accesses. This is in
contrast to traditional device virtualization approaches in
which the VMM is involved in every I/O operation and
it can easily suspend and buffer these operations when
check-pointing or migration starts. The second prob-
lem is that VMM-bypass I/O exploits intelligent devices
which can store a large part of the VM system states.
For example, an InfiniBand HCA has onboard mem-
ory which stores information such as registered buffers,
queue-pair data structures, and so on. Some of the state
information on an HCA can only be changed as side ef-
fects of VERBS functions calls. It does not allow chang-
ing it in an arbitrary way. This makes it difficult for
check-pointing and migrations because when a VM is re-
stored from a previous checkpoint or migrated to another
node, the corresponding state information on the HCA
needs to be restored also.

There are two directions to address the above prob-
lems. The first one is to involve VMs in the process of
check-pointing and migration. For example, the VMs
can bring themselves to some determined states which
simplify check-pointing and migration. Another way is
to introduce some hardware/firmware changes. We are
currently working on both directions.

6 Performance Evaluation
In this section, we first evaluate the performance of our
Xen-IB prototype using a set of InfiniBand layer micro-
benchmarks. Then, we present performance results for
the IPoIB protocol based on Xen-IB. We also provide
performance numbers of MPI on Xen-IB at both micro-
benchmark and application levels.

6.1 Experimental Setup
Our experimental testbed is an InfiniBand cluster. Each
system in the cluster is equipped with dual Intel Xeon
3.0GHz CPUs, 2 GB memory and a Mellanox MT23108
PCI-X InfiniBand HCA. The PCI-X buses on the sys-
tems are 64 bit and run at 133 MHz. The systems are
connected with an InfiniScale InfiniBand switch. The
operating systems are RedHat AS4 with 2.6.12 kernel.
Xen 3.0 is used for all our experiments, with each guest
domain ran with single virtual CPU and 512 MB mem-
ory.

6.2 InfiniBand Latency and Bandwidth
In this subsection, we compared user-level latency and
bandwidth performance between Xen-IB and native In-
finiBand. Xen-IB results were obtained from two guest
domains on two different physical machines. Polling was
used for detecting completion of communication.



The latency tests were carried out in a ping-pong fash-
ion. They were repeated many times and the average half
round-trip time was reported as one-way latency. Fig-
ures 9 and 10 show the latency for InfiniBand RDMA
write and send/receive operations, respectively. There is
very little performance difference between Xen-IB and
native InfiniBand. This is because in the tests, InfiniBand
communication was carried out by directly accessing the
HCA from the guest domains with VMM-bypass. The
lowest latency achieved by both was around 4.2 µs for
RDMA write and 6.6 µs for send/receive.

In the bandwidth tests, a sender sent a number of mes-
sages to a receiver and then waited for an acknowledg-
ment. The bandwidth was obtained by dividing the num-
ber of bytes transferred from the sender by the elapsed
time of the test. From Figures 11 and 12, we again see
virtually no difference between Xen-IB and native Infini-
Band. Both of them were able to achieve bandwidth up
to 880 MByte/s, which was limited by the bandwidth of
the PCI-X bus.
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Figure 9: InfiniBand RDMA Write Latency
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Figure 10: InfiniBand Send/Receive Latency

6.3 Event/Interrupt Handling Overhead
The latency numbers we showed in the previous sub-
section were based on polling schemes. In this section,
we characterize the overhead of event/interrupt handling
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Figure 11: InfiniBand RDMA Write Bandwidth
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Figure 12: InfiniBand Send/Receive Bandwidth
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Figure 14: Send/Receive Latency Using Blocking
VERBS Functions



in Xen-IB by showing send/receive latency results with
blocking InfiniBand user-level VERBS functions.

Compared with native InfiniBand event/interrupt pro-
cessing, Xen-IB introduces extra overhead because it re-
quires forwarding an event from domain0 to a guest do-
main, which involves Xen inter-domain communication.
In Figure 13, we show performance of Xen inter-domain
communication. We can see that the overhead increases
with the amount of data transferred. However, even with
very small messages, there is an overhead of about 10 µs.

Figure 14 shows the send/receive one-way latency us-
ing blocking VERBS. The test is almost the same as
the send/receive latency test using polling. The differ-
ence is that a process will block and wait for a com-
pletion event instead of busy polling on the completion
queue. From the figure, we see that Xen-IB has higher
latency due to overhead caused by inter-domain commu-
nication. For each message, Xen-IB needs to use inter-
domain communication twice, one for send completion
and one for receive completion. For large messages, we
observe that the difference between Xen-IB and native
InfiniBand is around 18–20 µs, which is roughly twice
the inter-domain communication latency. However, for
small messages, the difference is much less. For exam-
ple, native InfiniBand latency is only 3 µs better for 1
byte messages. This difference gradually increases with
message sizes until it reaches around 20 µs. Our pro-
filing reveals that this is due to “event batching”. For
small messages, the inter-domain latency is much higher
than InfiniBand latency. Thus, when a send completion
event is delivered to a guest domain, a reply may have
already come back from the other side. Therefore, the
guest domain can process two completions with a single
inter-domain communication operation, which results in
reduced latency. For small messages, event batching hap-
pens very often. As message size increases, it becomes
less and less frequent and the difference between Xen-IB
and native IB increases.

6.4 Memory Registration
Memory registration is generally a costly operation in In-
finiBand. Figure 15 shows the registration time of Xen-
IB and native InfiniBand. The benchmark registers and
unregisters a trunk of user buffers multiple times and
measures the average time for each registration.

As we can see from the graph, Xen-IB adds consis-
tently around 25%-35% overhead to the registration cost.
The overhead increases with the number of pages in-
volved in registration. This is because Xen-IB needs
to use inter-domain communication to send a message
which contains machine addresses of all the pages. The
more pages we register, the bigger the size of message
we need to send to the device domain through the inter-
domain device channel. This observation indicates that
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Figure 15: Memory Registration Time
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Figure 16: IPoIB Netperf Throughput

if the registration is a time critical operation of an appli-
cation, we need to use techniques such as an efficient im-
plementation of registration cache [38] to reduce costs.

6.5 IPoIB Performance
IPoIB allows one to run TCP/IP protocol suites over In-
finiBand. In this subsection, we compared IPoIB per-
formance between Xen-IB and native InfiniBand using
Netperf [2]. For Xen-IB performance, the netperf server
is hosted in a guest domain with Xen-IB while the client
process is running with native InfiniBand.

Figure 16 illustrates the bulk data transfer rates over
TCP stream using the following commands:

netperf -H $host -l 60 -- -s$size -S$size

Due to the increased cost of interrupt/event process-
ing, we cannot achieve the same throughput while the
server is hosted with Xen-IB compared with native In-
finiBand. However, Xen-IB is still able to reach more
than 90% of the native InfiniBand performance for large
messages.

We notice that IPoIB achieved much less bandwidth
compared with raw InfiniBand. This is because of two
reasons. First, IPoIB uses InfiniBand unreliable data-
gram service, which has significantly lower bandwidth
than the more frequently used reliable connection service
due to the current implementation of Mellanox HCAs.
Second, in IPoIB, due to the limit of MTU, large mes-



sages are divided into small packets, which can cause a
large number of interrupts and degrade performance.

Figure 17 shows the request/response performance
measured by Netperf (transactions/second) using:

netperf -l 60 -H $host -tTCP RR -- -r $size,$size

Again, Xen-IB performs worse than native InfiniBand,
especially for small messages where interrupt/event cost
plays a dominant role for performance. Xen-IB per-
forms more comparable to native InfiniBand for large
messages.
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Figure 17: Netperf Transaction Test
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Figure 18: MPI Latency

6.6 MPI Performance
MPI is a communication protocol used in high perfor-
mance computing. For tests in this subsection, we have
used MVAPICH [27, 20], which is a popular MPI imple-
mentation over InfiniBand.

Figures 18 and 19 compare Xen-IB and native Infini-
Band in terms of MPI one-way latency and bandwidth.
The tests were run between two physical machines in the
cluster. Since MVAPICH uses polling for all underlying
InfiniBand communication, Xen-IB was able achieve the
same performance as native InfiniBand by using VMM-
bypass. The smallest latency achieved by MPI with Xen-
IB was 5.4 µs. The peak bandwidth was 870 MBytes/s.

Figure 20 shows performance of IS, FT, SP and BT ap-
plications from the NAS Parallel Benchmarks suite [26]
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Figure 19: MPI Bandwidth

Figure 20: MPI NAS Benchmarks

(class A), which is frequently used by researchers in the
area of high performance computing. We show normal-
ized execution time based on native InfiniBand. In these
tests, two physical nodes were used with two guest do-
mains per node for Xen-IB. For native InfiniBand, two
MPI processes were launched for each node. We can
see that Xen-IB performs comparably with native In-
finiBand, even for communication intensive applications
such as IS. IB-Xen performs about 4% worse for FT and
around 2–3% better for SP and BT. We believe the differ-
ence is due to the fact that MVAPICH uses shared mem-
ory communication for processes in a single node. Al-
though MVAPICH with Xen-IB currently does not have
this feature, it can be added by taking advantage of the
page sharing mechanism provided by Xen.

7 Related Work
In Section 2.1, we have discussed current I/O device vir-
tualization approaches such as those in VMware Work-
station [37], VMware ESX Server [42], and Xen [13].
All of them require the involvement of the VMM or a
privileged VM to handle every I/O operation. In our
VMM-bypass approach, many time-critical I/O opera-
tions can be executed directly by guest VMs. Since this
method makes use of intelligence in modern high speed
network interfaces, it is limited to a relatively small range



of devices which are used mostly in high-end systems.
The traditional approaches can be applied to a much
wider ranges of devices.

OS-bypass is a feature found in user-level communica-
tion protocols such as active messages [41], U-Net [40],
FM [29], VMMC [6], and Arsenic [33]. Later, it was
adopted by the industry [12, 19] and found its way into
commercial products [25, 34]. Our work extends the idea
of OS-bypass to VM environments. With VMM-bypass,
I/O and communication operations can be initiated di-
rectly by user space applications, bypassing the guest
OS, the VMM, and the device driver VM. VMM-bypass
also allows an OS in a guest VM to carry out many I/O
operations directly, although virtualizing interrupts still
needs the involvement of the VMM.

The idea of direct device access from a VM has been
proposed earlier. For example, [7] describes a method to
implement direct I/O access from a VM for IBM main-
frames. However, it requires an I/O device to be dedi-
cated to a specific VM. The VMM-bypass approach not
only enables direct device access, but allows for safe
device sharing among many different VMs. Recently,
the industry has started working on standardization of
I/O virtualization by extending the PCI Express standard
[30] to allow a physical device to present itself as multi-
ple virtual devices to the system [31]. This approach can
potentially allow a VM to directly interact with a virtual
device. However, it requires building new hardware sup-
port into PCI devices while our VMM-bypass approach
is based on existing hardware. At about the same time
when we were working on our virtualization support for
InfiniBand in Xen, others in the InfiniBand community
proposed similar ideas [39, 22]. However, details regard-
ing their implementations are currently not available.

Our InfiniBand virtualization support for Xen uses
a para-virtualization approach. As a technique to im-
prove VM performance by introducing small changes in
guest OSes, para-virtualization has been used in many
VM environments [8, 16, 44, 11]. Essentially, para-
virtualization presents a different abstraction to the guest
OSes than native hardware, which lends itself to eas-
ier and faster virtualization. The same idea can be ap-
plied to the virtualization of both CPU and I/O devices.
Para-virtualization usually trades compatibility for en-
hanced performance. However, our InfiniBand virtual-
ization support achieves both high performance and good
compatibility by maintaining the same interface as native
InfiniBand drivers at a higher level than hardware. As a
result, our implementation is able to support existing ker-
nel drivers and user applications. Virtualization at higher
levels than native hardware is used in a number of other
systems. For example, novel operating systems such as
Mach [15], K42 [4], and L4 [18] use OS level API or
ABI emulation to support traditional OSes such as Unix

and Linux. Several popular VM projects also use this
approach [10, 3].

8 Conclusions and Future Work
In this paper, we presented the idea of VMM-bypass,
which allows time-critical I/O commands to be processed
directly in guest VMs without involvement of a VMM
or a privileged VM. VMM-bypass can significantly im-
prove I/O performance in VMs by eliminating context
switching overhead between a VM and the VMM or
two different VMs caused by current I/O virtualization
approaches. To demonstrate the idea of VMM-bypass,
we described the design and implementation of Xen-IB,
an VMM-bypass capable InfiniBand driver for the Xen
VM environment. Xen-IB runs with current InfiniBand
hardware and does not require modification to applica-
tions or kernel drivers which use InfiniBand. Our perfor-
mance evaluations showed that Xen-IB can provide per-
formance close to native hardware under most circum-
stances, with expected degradation on event/interrupt
handling and memory registration.

Currently, we are working on providing check-
pointing and migration support for our Xen-IB proto-
type. We are also investigating how to provide perfor-
mance isolation by implementing QoS support in Xen-
IB. In future, we plan to study the possibility to introduce
VMs into high performance computing area. We will ex-
plore how to take advantages of Xen to provide better
support of check-pointing, QoS and cluster management
with minimum loss of computing power.
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