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Abstract—Network congestion is an important factor affecting
the performance of large scale jobs in supercomputing clusters,
especially with the wide deployment of multi-core processors. The
blocking nature of current day collectives makes such congestion
a critical factor in their performance. On the other hand, modern
interconnects like InfiniBand provide us with many novel features
such as Virtual Lanes aimed at delivering better performance to
end applications. Theoretical research in the field of network
congestion indicate Head of Line (HoL) blocking as a common
causes for congestion and the use of multiple virtual lanes as one
of the ways to alleviate it. In this context, we make use of the
multiple virtual lanes provided by the InfiniBand standard as a
means to alleviate network congestion and thereby improve the
performance of various high performance computing applications
on modern multi-core clusters. We integrate our scheme into the
MVAPICH2 MPI library. To the best of our knowledge, this is
the first such implementation that takes advantage of the use
of multiple virtual lanes at the MPI level. We perform various
experiments at native InfiniBand, microbenchmark as well as at
the application levels. The results of our experimental evaluation
show that the use of multiple virtual lanes can improve the
predictability of message arrival by up to 10 times in the presence
of network congestion. Our microbenchmark level evaluation
with multiple communication streams show that the use of
multiple virtual lanes can improve the bandwidth / latency /
message rate of medium sized messages by up to 13%. Through
the use of multiple virtual lanes, we are also able to improve
the performance of the Alltoall collective operation for medium
message sizes by up to 20%. Performance improvement of up
to 12% is also observed for Alltoall collective operation through
segregation of traffic into multiple virtual lanes when multiple
jobs compete for the same network resource. We also see that
our scheme can improve the performance of collective operations
used inside the CPMD application by 11% and the overall
performance of the CPMD application itself by up to 6%.

Index Terms—Virtual Lanes, InfiniBand, MPI, High Perfor-
mance Computing, QoS in InfiniBand

I. INTRODUCTION

The rapid increase in the size and scale of modern clusters

has resulted in a corresponding increase in the amount of

traffic generated on the interconnection network. Although the

network devices are being scaled up to meet the challenges

of the clusters of tomorrow, they lag behind the rate of

development of the various multi-core processors. This can

lead to congestion at the Host Channel Adapter (HCA) as well

as in the network fabric. With current rate of growth of multi-
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and many-core processors, this congestion is expected to

worsen in the future. The predictability of inter packet arrival

time is inversely proportional to the amount of congestion

in the network. Unpredictable or varying inter packet arrival

time at different destinations can have adverse impact on the

performance of supercomputing applications.

On the other hand, modern interconnects like InfiniBand

provide us with many novel features such as Virtual Lanes

(VL) and Service Levels (SL) aimed at delivering better

performance to the end applications. Theoretical research in

the field of network congestion indicate Head of Line (HoL)

blocking [1] as one of the common causes for congestion

and the use of multiple virtual lanes as one of the ways to

reduce this [2]. Unfortunately end users are not able to take

advantage of these features due to the lack of support from

the various implementations of popular programming models,

such as MPI, that are in use today.

MPI based applications such as CPMD [3], which rely

heavily on collective communication, will be badly affected

by un-predictable arrival of packets due to the large number

of processes taking part in the collective communication and

synchronization [4]. With such operations, a delay in the

reception of just one packet by any process can hold up the

progress of all other processes. This is especially true for

any tree-based collective algorithm where the amount of skew

increases as packets propagate down the tree during execution.

In this paper we propose a strategy to reduce the amount

of contention in the network and improve the performance

of end applications through the use of multiple virtual lanes.

We aim to improve the predictability of the arrival pattern of

packets, thereby reducing the amount of delay and achieving

better performance.

We implement our schemes in the MVAPICH2 MPI li-

brary [5] and perform various tests at the native InfiniBand,

microbenchmark as well as application levels. To the best of

our knowledge, this is the first such implementation that takes

advantage of the use of multiple virtual lanes at the MPI

level. The results of our experimental evaluation show that

the use of multiple virtual lanes can improve the predictability

of message arrival by up to 10 times in presence of network

congestion. Our microbenchmark level evaluation with mul-

tiple communication streams show that the use of multiple

virtual lanes can improve the bandwidth / latency / message

rate of medium sized messages by up to 13%. Through the

use of multiple virtual lanes, we are also able to improve the

performance of the Alltoall collective operation for medium

message sizes by up to 20%. Performance improvement of



up to 12% is also observed through segregation of traffic into

multiple virtual lanes when multiple jobs compete for the same

network resource. We also see that our scheme can improve the

performance of collective operations used inside the CPMD

application by 11% and the overall performance of the CPMD

application itself by up to 6%.

The rest of the paper is organized as follows. Section II

presents the motivation for our work. In Section III we give a

brief overview of InfiniBand, MPI, and other technologies used

in this paper. Section IV explains the design methodology we

followed. Our experimental results and analysis are described

in Section V. Section VI gives an overview of the related work.

Finally we summarize our conclusions and possible future

work in Section VII.

II. MOTIVATION

Modern HPC systems like TACC Ranger [6] has many

thousands of jobs executing on it at any given point in time.

A large number of these are multi-node jobs, requiring the

use of the networking infrastructure. In such a scenario, it is

common for multiple processes to share the same physical link

for communication. Figure 1 gives a graphical representation

of the routes taken by a subset of jobs on TACC Ranger on

a given day. The lines represent the SDR (8 Gbps) physical

link between the various components of the system. Green

dots are Network Elements (NEMS), black dots are line card

switches and red dots are fabric card switches. The various

ovals represent the compute nodes with their logical identifiers

specified inside the oval. The line thickness and dot size is

proportional to the number of routes passing through that link

or switch. We also use the color of the lines to represent the

number of links going through it. Table I provides the mapping

of line colors to the number of routes passing through it. As

we can see, many links have multiple routes going through

them (as indicated by the thickness of the line). Such sharing

of physical links can lead to the degradation in performance

of the individual applications using the links.

TABLE I
MAPPING OF LINE COLOR TO NUMBER OF LINKS

Color Number of Links

Black 1
Blue 2
Red 3 - 4

Orange 5 - 8
Green > 8

In this context, we use the native InfiniBand (verbs) level

ping pong benchmark [7] to quantify the performance degrada-

tion that may occur if multiple processes use the same HCA /

link for communication. We measure the time elapsed between

two consecutive network level send / receive operations (i.e.,

inter packet arrival time) at the sender / receiver side respec-

tively and plot the frequency distribution curve of the elapsed

time in each case. In an ideal scenario, the pattern for such

a frequency distribution would be a sharp Gaussian curve [8]

with peak occurring around the latency value reported by the

verbs level test for that message size. There would also be

Fig. 1. Routing Diagram of Various Flows on TACC Ranger (Courtesy
TACC)

very few values (referred to as outliers) that lie far away

from the peak. As the number of processes using the system

increases, we will see increasingly higher number of outliers in

the frequency distribution curve. This lack of predictability in

the arrival times of packets will show up as increased execution

time at the application level. We do not expect the same lack

of predictability to affect the results of various benchmarking

suites like IMB [9] and OMB [10] due to the large number of

repetitions performed.

The verbs level tests were done on a pair of Intel Nehalem

E5530 nodes equipped with Mellanox QDR HCA’s and PCI-

Ex Gen2 interfaces. The two machines were connected through

a Mellanox QDR InfiniBand switch. Intel Nehalems have

eight cores so one to eight pairs of communication can be

performed. As the patterns for the elapsed time between two

consecutive send operations (inter packet transmission time)

and receive operations (inter packet arrival time) were similar,

we only show the frequency distribution graphs for the inter

packet arrival time in this paper. Figures 2 (a) and (b) show the

pattern of inter packet arrival for 99.999% of 50,000 packets of

size 1 MB for one and eight pairs of communicating processes,

respectively. As we can clearly see the arrival pattern is much

sharper with just one communicating thread than with eight.

Such widely dispersed arrival patterns will be more common

as the core counts of the systems increase. Although this test

was performed for packets of size 1 MB, the patterns observed

for other message sizes were similar.

III. BACKGROUND

In this section we give the necessary background on Infini-

Band and the latest QoS support for improving performance.

A. Overview of InfiniBand Architectural Support

InfiniBand Architecture (IBA) [11] defines a switched net-

work fabric for interconnecting processing nodes and I/O

2
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Fig. 2. Distribution of Inter Transmission Time of 99.999% of Packets for (a) One Pair of Processes and, (b) Eight Pairs of Processes

nodes using a queue-based model. A Queue Pair (QP) consists

of a send queue and a receive queue. The send queue contains

instructions for transmitting data and the receive queue con-

tains the instructions describing where the receive buffer is. At

the low level, InfiniBand supports different transport services

including Reliable Connection (RC) and Unreliable Datagram

(UD).

IBA supports QoS at two levels, using Service Level (SL)

at switch level and Traffic Class (TClass) at router level. SL is

a field in the Local Route Header (LRH) of a packet. The QoS

mechanism in IBA consists of three architectural components:

Virtual Lane (VL), Virtual Lane arbitration and link level flow

control. Although the IBA specifies that each port must have

a minimum of two and a maximum of 16 virtual lanes, most

current day HCA implementations (including the one used in

this paper) only offer upto a maximum of 8 virtual lanes.

Depending on the type of implementation, each virtual lane

can have different transmitting and receiving buffers.

Every network element in the subnet maintains a Service

Level to Virtual Lane (SL2VL) mapping table that specifies to

which virtual lane packets belonging to a service level should

be sent out. It also has a virtual lane arbitration (VLArb)

table which defines two strict priority levels - low priority and

high priority. The table containing the high priority entries is

processed before the one containing the low priority entries. In

each priority level, it defines a weighted round-robin scheme

of arbitration between the virtual lanes. It indicates the number

of data units that can be sent out through a virtual lane before

yielding to the next one. These two tables together ensure

that each packet will be forwarded according to its agreed

upon service level (priority) across the entire network. Note

that it is also possible to put a cap on the number of data

units that can be sent by all the high priority entries combined

before yielding to the low priority entries. This ensures that

the applications using the low priority queues are not starved.

Finally, link-level flow control protects the QoS on each virtual

lane by preventing it from being affected by the traffic on

other virtual lanes. At router level, TClass performs functions

similar to those of the SL and helps support QoS in a similar

way as described above.

All QoS architectural parameters are configured by the

InfiniBand subnet manager. We use the popular open

source implementation of the InfiniBand subnet manager -

OpenSM [12].

ConnectX: ConnectX [13] is the fourth generation Infini-

Band Host Channel Adapter (HCA) from Mellanox Technolo-

gies. It has two ports, with 8 virtual lanes for each. It provides

fine-grained end-to-end QoS and congestion control with the

latest drivers. Each port can be independently configured to

be used either as InfiniBand or 10 Gigabit Ethernet. Recently,

it also added the scalable connection solution XRC [14].

B. MPI

Message Passing Interface (MPI) [15] is one of the most

popular programming models for parallel computing. MVA-

PICH2 [5] is a high-performance MPI implementation over

InfiniBand clusters, used by more than 1,000 organizations

world-wide. Most MPI applications make use of the RC queue

pair for their communication needs. Small message (including

small data message and control message) and large message

passing have different performance requirements in terms of

latency. Although many MPI designs [5], [16] employ different

protocols for them, they do not differentiate their priorities. As

the hardware-based QoS support is maturing in IBA at multiple

layers, including verbs level, it is possible that we can utilize

this feature to provide QoS provisioning to different messages

in MPI.

C. OFED Perftest

The Open Fabrics Enterprise Distribution (OFED) [17]

software stack provides us with a set of native InfiniBand level

performance benchmarks used to measure the basic network

performance. We modify these benchmarks to keep track of

send and receive times and plot the corresponding frequency

distribution graphs. We also modify the benchmarks so that

it is now able to run multiple concurrent threads. We make

this modification so as to measure the ability of the network

devices to handle multiple flows.

IV. DESIGN AND METHODOLOGY

Advances in InfiniBand technology has led to the introduc-

tion of many novel features with which we can perform traffic

3



shaping as well as segregation. Such capability allows us to

ensure that multiple flows do not conflict with each other,

allowing us to improve their performance and predictability.

One such mechanism provided by the InfiniBand standard

is the ability to direct desired flows into separate channels

called Virtual Lanes (VL). The Subnet Manager (SM) is

used to configure all the network devices with the necessary

instructions to properly direct traffic. Consequently, once the

packets have been assigned to different virtual lanes at the

sender side, the InfiniBand fabric ensures that this mapping

is maintained throughout the lifetime of the packet in the

network.

As we saw in Section II, the predictability arrival of packets

degrades when we increase the load on the system. The

most obvious reason for this could be contention for network

resources at the HCA as well as at the link levels. As long

as the total traffic flowing through the physical link does

not exceed the capacity of the physical medium, we should

not face any problems with transmitting the packet over the

physical link. But the criteria for resource contention at the

HCA are different. The two resources the HCA has to offer

are network buffers and CPU time. Due to the nature of the

virtual lane arbitration scheme, the amount of time spent by

the processing unit in the HCA at each virtual lane will be

proportional to the number of virtual lanes and hence can

be considered as constant for our purposes. That leaves the

network buffers as the major cause for resource contention at

the HCA.

As mentioned in Section III, the network buffer pool of an

InfiniBand HCA can be broadly classified as those allocated

to a particular virtual lane and those that are common to all

the virtual lanes (common buffer pool). Depending on the

hardware vendor, there are various ways that the buffers can

be split up among the virtual lanes. Figure 3 shows a common

implementation followed by InfiniBand HCA vendors.

Arbitrer

Lane

Virtual

Physical Link

Private VL

Buffer
Pool

Buffer

Common

VL 0

VL 1

VL 2

VL 15

Fig. 3. Buffer Organization in ConnectX IB HCA

No open source MPI implementation, regardless of the

underlying communication protocol (RC or UD), leverages

virtual lanes as of now. Such usage can result in Head of

Line (HoL) blocking [1]. Prior theoretical research in the field

of HoL blocking avoidance [2] indicates that using multiple

virtual lanes with individual buffers is a good to way to

achieve this. In this context we design a scheme, as depicted in

Figure 4, to efficiently distribute the traffic across all available

virtual lanes, there by reducing contention. Multiple service

levels are defined in the MPI library. These service levels can

be used to convey any performance characteristics we want.

Depending on whether we need distribution or segregation of

traffic, we can use one of the following schemes.

• Traffic distribution and,

• Traffic segregation

Virtual Lane 15

Virtual Lane 0

Virtual Lane 1
Application

Arbitrer

Lane

Virtual

Service Level

MPI Library HCA

Service Level

Service Level

IB Link

Job Scheduler

Fig. 4. Traffic Distribution using Multiple VL’s

In traffic distribution based scheme, we distribute the traffic

of the entire job evenly across all the available virtual lanes.

This kind of distribution would be helpful when we have

uniform distribution of load across all the processes, i.e. all

processes perform same amount of communication - there

is no imbalance. But if there are any imbalances in com-

munication or load distribution among the various processes

taking part in the application it could be that one of the

processes hogs all the resources of the system. In such a

scenario, it would be desirable for us to segregate the traffic

instead of distributing it evenly across all the virtual lanes.

The segregation based scheme can also be used when we

need to isolate applications as much as possible from being

adversely impacted by other applications running on the same

system. As most of the applications tend to distribute the load

evenly across all the available processes, we focus mainly

on the Traffic Distribution scheme in the remainder of the

paper. Figure 5 shows the design of the Traffic Distribution

scheme. As our requirement here is to purely perform some

form of load distribution across virtual lanes, we define all the

service levels to have similar performance metrics. RC queue

pairs are created between processes to transmit data. Packet

transmission through multiple virtual lanes takes place in a

round robin manner.

One point to note here is that, by increasing the number of

virtual lanes, we force the Virtual Lane Arbiter to poll more

number of virtual lanes than it normally otherwise would. This

could cause a decrease in the amount of time the Virtual Lane

Arbiter spends on each virtual lane. Though this could have

a possible performance impact, we believe that the benefits

gained in terms of performance and predictability will out-

weigh it. The code has been implemented in such a way that all

schemes described in this paper can be controlled at job launch

time by the user through the use of environment variables.

V. PERFORMANCE EVALUATION AND RESULTS

We detail the results of our experimental evaluation in

this section. All tests were run on a quiet system without

4
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Fig. 5. Overall Design Framework for using Virtual Lanes in MPI

any background traffic. Hence, we expect the improvement

in performance seen on production systems with cross traffic

to be much higher.

A. Experimental Setup

Figure 6 shows the basic experimental setup. Each node

of our testbed has eight Intel Xeon cores running at 2.40

Ghz with 8192 KB L2 cache. The cores are organized as

two sockets with four cores per socket. Each node also has

12 GB of memory and Gen2 PCI-Express bus. They are

equipped with MT26428 QDR ConnectX HCAs with PCI-

Ex interfaces. We use a 36-port Mellanox QDR switch to

connect all the nodes. Each node is connected to the switch

using one QDR link. The HCA as well as the switches use

the latest firmware. The operating system used is Red Hat

Enterprise Linux Server release 5.3 (Tikanga). OFED version

1.4.2 is used on all machines, and the OpenSM version is 3.1.6.

We use the modified version of OFED perftest [7] for all the

verbs level tests. We use the mpiBench collective benchmark

suite [18] and CPMD [3] application for higher level tests. All

microbenchmark level tests were run for 50,000 packets each.

Host

Host

Host

Host

Host

Host

Host Host

Mellanox QDR Switch

Fig. 6. Experimental Setup

B. Native InfiniBand Level Performance Results

Here, we analyze the difference in performance observed

while running our modified version of the OFED perftest

mentioned in Section III-C. Eight parallel streams of native

IB level latency test are performed for varying message sizes

between two host nodes in our experimental testbed. In all

our tests, we use eight virtual lanes for multiple virtual lane

case. The frequency distribution graphs show the distribution

of inter packet arrival time for 99.999% of 50,000 packets.

Figures 7 (a) and (b) show the impact of using multiple

virtual lanes on the native IB latency of 2 KB and 4 KB

messages respectively. Although using multiple virtual lanes

seems to increase the average latency of most the packets by

a small amount, it also has the effect of making the pattern

more predictable in terms of inter packet arrival times as seen

in Figures 8 and 9. The use of multiple virtual lanes also elim-

inates the number of packets which arrive with extremely high

delay, which is the main cause of lack of predictability and

performance at the microbenchmark and application levels.

The results at the microbenchmark, collective and application

levels are detailed in the coming sections.

Figures 8 (a) and (b) shows the frequency distribution of

inter packet arrival time for packets of size 2 KB with single

and multiple virtual lanes respectively. As we can see from

Figure 8 (b), the inter packet arrival times form a very sharp

Gaussian curve with very few outliers when we use multiple

virtual lanes. Such a sharp distribution will result in less delay

when running large scale applications. On the other hand, we

see many outliers on running the same benchmark with all

processes using just one virtual lane as depicted in Figure 8

(a). The performance varies on a wide range which is not

desirable. Furthermore, we observe that the largest inter packet

arrival time in the case of one virtual lane is almost 10 times

worse than what is seen when we use multiple virtual lanes.

This result hints at the possible level of process skew that

can occur if the virtual lanes are used in an over subscribed

manner.

Figures 9 (a) and (b) show the behavior for 4 KB message

size. As we can see, the behavior for both the 4 KB and 2 KB

messages are similar. We also observe that, by using multiple

virtual lanes we improve the predictability of the results almost

by a factor of 10.

C. Microbenchmark Level Performance Results

We ran various microbenchmark level tests from the

OMB [10] suite. As we were focusing mainly on the effect

that multiple streams of traffic have on each other, we used the

multi-pair bandwidth, multi-pair message rate and the multi-

pair latency tests. These tests were run with eight pairs of

processes across two of the nodes in our experimental setup.

As expected, little variation was seen with very small message

sizes as enough data was not generated to cause congestion

even for one virtual lane. Very large messages on the other

hand are capable of using up all the available link bandwidth

so that the effects of traffic distribution are effectively nullified.

Figures 10, 11 and, 12 shows the performance of medium

message sizes in multi-pair bandwidth, multi-pair message

rate and multi-pair latency tests respectively. We can see

that using multiple virtual lanes has a significant impact on

the performance. We observe up to a 15% improvement in
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performance of 2 KB message size in the multi-pair bandwidth

and from 20% - 30% improvement in performance of 64 KB

- 512 KB message size in the multi-pair latency tests.
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Fig. 10. Impact of Traffic Distribution on Multi-Pair Bandwidth of Medium
Size Messages

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1K 4K 16K 64K

M
e

s
s
a

g
e

 R
a

te
 (

M
ill

io
n

s
 o

f 
M

e
s
s
a

g
e

s
 /

 S
e

c
)

Message Size (Bytes)

1 Virtual Lane
8 Virtual Lanes

Fig. 11. Impact of Traffic Distribution on Multi-Pair Message Rate of
Medium Size Messages

 0

 20

 40

 60

 80

 100

 120

 140

1K 4K 16K 64K

M
u

lt
i-
L

a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

1 Virtual Lane
8 Virtual Lanes

Fig. 12. Impact of Traffic Distribution on Multi-Pair Latency of Medium
Size Messages

D. Collective Level Performance Results

We examine the performance of various collective al-

gorithms in this section. A stripped down version of the
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Fig. 13. Impact of Traffic Distribution on Performance of 64 Process Alltoall
Collective for Medium Message Sizes

mpiBench collective benchmark suite [18] is used for our tests.

Figure 13 shows the performance of a 64 process Alltoall

collective operation for medium message sizes. We see that

a performance benefit of up to 20% can be obtained through

the use of multiple virtual lanes as opposed to a single virtual

lane. Figures 14 (a) and (b) shows distribution of execution

times of the Alltoall operation for 4 KB message size. As we

can see, the average execution time of the collective operation

increases when we have only one virtual lane as opposed to

eight virtual lanes. This is a clear indicator that we should use

multiple virtual lanes in order to enhance the performance of

collective operations.

Figures 15 (a) and (b) show the distribution of execution

times of the Gather collective algorithm for a message size

of 512 bytes with one virtual lane and multiple virtual lanes

respectively. Figures 16 (a) and (b) show similar performance

numbers for the Allgather collective algorithm. As we can

see, irrespective of the underlying communication algorithm

in use, using multiple virtual lanes improves the predictability

of collective algorithms by reducing the amount of delay

introduced. This enhanced predictability will show up as

improvement in run times at application levels.

E. Impact of Traffic Segregation on Performance of Collectives

Figure 17 shows the impact of using multiple virtual lanes

for segregating traffic into different flows. We run two eight

process (4x2) Alltoall collective operations between two of the

nodes in our test setup. Due to limitations of our experimental

setup, both sets of operations are run on the same pair of

nodes. As the nodes have eight cores each, there is no over

subscription of cores that occur here. The Base line shows

the performance that would have been obtained if only one

instance of the eight process Alltoall operation was executing

on the nodes (only half of the total available cores are utilized

on either system). With Segregation and Without Segregation

shows the average performance of two eight Alltoall collective

operations executing on the same nodes with and without the

use of multiple virtual lanes to segregate the traffic respectively

(in effect, a 16 process Alltoall). We can see that the use of
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Fig. 14. Impact of Traffic Distribution on Performance of 64 Process Alltoall for 4KB Message Size with (a) One VL and, (b) Eight VL’s

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160  180

F
re

q
u

e
n

c
y

Execution Time of Collective (us)

1 Virtual Lane

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160  180

F
re

q
u

e
n

c
y

Execution Time of Collective (us)

8 Virtual Lanes

Fig. 15. Impact of Traffic Distribution on Performance of 64 Process Gather for 512 Byte Message Size with (a) One VL and, (b) Eight VL’s
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multiple virtual lanes helps us improve the performance of the

Alltoall operation for medium message sizes by up to 12%.
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Fig. 17. Impact of Traffic Segregation on Performance of Alltoall Collective
for Medium Message Sizes

F. Application Level Performance Results

We show the performance results obtained by running a

64 process CPMD job on a sample work-set in this section.

As in previous sections, we repeat the experiments with one

and multiple virtual lanes. Figure 18 shows the performance

comparison of average of multiple runs with one and multiple

virtual lanes in terms of normalized time. We normalize the

time against the time taken to execute the application with

one virtual lane. Apart from the total execution time, we also

profile the main communication time by Alltoall collective.

For 64 process runs of the CPMD application, the time taken

by Alltoall accounts for about 20% of the total execution time.

We observe from our experiments that we get an overall gain in

performance about 6% and a 11% gain in the performance of

the time taken for Alltoall collective (which forms a significant

part of communication of any CPMD application).

Fig. 18. Impact of Traffic Distribution on Performance of 64 Process CPMD
Application

VI. RELATED WORK

Some researchers have investigated how to use the IB QoS

support to improve performance. In [19], authors defined the

QoS problem and provided a generalized approach using IBA

mechanisms. The papers [20], [21] studied how to configure

InfiniBand VL arbitration table to optimize required perfor-

mance, and how to manage the time sensitive traffic through

IBA QoS support, respectively. In [22], the same group also

proposed an effective strategy for configuring the IBA net-

works to provide QoS for each kind of traffic, and improved

the arbitration algorithm in [22] to maximize the number of

requests to be allocated in the arbitration table that the output

ports have. They further made a lot of efforts [23], [24], [25]

on improving the cluster QoS based on IBA supported mech-

anism and trying to establish a unified system architecture.

Although all of these research stems from InfiniBand QoS

specification, they mainly focus on the theoretical exploitation

based on simulation. On the contrary, in [26] authors made

investigation on real IB cluster and experimented its QoS

provisioning capability by assigning different service levels to

different traffic. The paper also presents the possible sources

of bottleneck that constrains the application to achieve desired

QoS performance. Other works in the area of congestion and

flow control include [27], [28], [29]. Multiple ways exist that

allow us to decouple the process from the skews introduced

by the communication operations. The use of non-blocking

collectives [30], [31], [32], [33], [34] is one of the proposed

approaches. This is also slated to go into the MPI-3 standard

[35]. Offloading communication operations to the HCA is

another emerging trend intended to decouple this [36] [37].

Both these approaches are complimentary to our work as our

scheme can be used to enhance the performance of either one

of these approaches. More details about other aspects of our

work are included in the OSU technical report [38].

VII. CONCLUSIONS AND FUTURE WORK

In this paper we explore the use of virtual lanes provided

by the InfiniBand standard to improve the predictability and

performance of high performance computing applications.

We explore how the use of multiple virtual lanes helps to

reduce the number of outliers in InfiniBand communication.

The experiments run at the verbs level clearly shows the

impact multiple concurrent streams can have in the arrival

patterns of InfiniBand packets. We integrate our scheme into

the MVAPICH2 MPI library and perform various experiments

with collective benchmarks as well as end applications. The

results of our experimental evaluation show that the use

of multiple virtual lanes can improve the predictability of

message arrival by up to 10 times in presence of network

congestion. Our microbenchmark level evaluation with mul-

tiple communication streams show that the use of multiple

virtual lanes can improve the bandwidth / latency / message

rate of medium sized messages by up to 13%. Through the

use of multiple virtual lanes, we are also able to improve the

performance of the Alltoall collective operation for medium

message sizes by up to 20%. Performance improvement of

up to 12% is also observed through segregation of traffic into

9



multiple virtual lanes when multiple jobs compete for the same

network resource. We also see that our scheme can improve the

performance of collective operations used inside the CPMD

application by 11% and the overall performance of the CPMD

application itself by up to 6%.

As part of future work, we plan to delve deeper into the

reasons for the small degradation in latency observed during

the use of multiple virtual lanes. As well as explore the ideas

of Inter Job and Intra Job bandwidth provisioning. We also

plan to conduct large scale experiments on supercomputing

clusters like TACC Ranger to study the impact the proposed

schemes have on production systems.
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