DESIGNINGSCALABLE AND HIGH PERFORMANCE
ONE SIDED COMMUNICATION MIDDLEWARE FOR
MODERNINTERCONNECTS

DISSERTATION

Preserted in Partial Ful lment of the Requiremens for

the DegreeDoctor of Philosophy in the

Graduate Sdool of The Ohio State University
By

GopalakrishnanSarthanaraman, M. S

* % % * %

The Ohio State University

2009
Dissertation Committee: Approved by
Prof. D. K. Panda, Adviser
Prof. P. Sadgappan
. Yapp Adviser
Prof. F. Qin Graduate Program in
Dr. P. Balaji Computer Scienceand

Engineering

¢ Copyright by
GopalakrishnanSarthanaraman

2009

ABSTRA CT

High-endcomputing (HEC) systemsare enablingsciertists and engineerdo tackle
grand challengeproblemsin their respective domainsand make signi cant cortribu-
tions to their elds. Examplesof sud problemsinclude astro-physics, earthquake
analysis,weatherprediction, nanosciencenodeling, multiscale and multiph ysicsmod-
eling, biological computations, computational uid dynamics, etc. There has been
great emphasison designing,building and deploying ultra scaleHEC systemsto pro-
vide true petascaleperformancefor these grand challenge problems. At the same
time, Clusters built from commality PCs are being predominartly used as main
streamtools for high-end computing owing to their cost-e ectivenessand easyavail-
ability.

Comnunication subsystemplays a pivotal role in achieving scalableperformance
in clusters. Of late there hasbeena lot of interestin one-sidedcommunication model
and they are seenas a viable option for petascaleapplications. The one-sidedcom-
munication providesgood potential for computation comnunication overlap. In order
to provide high performanceand scalability, the one-sidedcomnunication subsystem
needsto be designedto leveragethe advanced capabilities of the modern intercon-

nects.

In this dissertation we study and explore various aspects of one-sidedcomrmuni-
cation like zero-copy, overlap, reducedremote CPU utilization, latency hiding tech-
niques,andnon-cortiguous data transfersin middleware libraries. We improved the
passive syndironization designto use RDMA atomic operations that provides high
overlap capability. We alsoproposeda hybrid designthat extendsthe above approat
to optimize intra-node comnunications as well. We have also explored the use of
remote completionsemarics for RDMA operationsin In niBand to improve the per-
formanceof fencesyndironization. To optimize non-cortiguous data communication,
we proposednovel zero-coly designsusing In niBand scatter/gather operationswith
reducedremote CPU utilization. Designsusing RDMA atomic primitiv es have been
proposedto improve the performanceof read-malify-write operations. Further we
have also proposedlatency hiding techniquesthat usesnon-blocking semarics and

aggregationmedanisms.

Dedicatedto my parerts

ACKNO WLEDGMENTS

| would like to thank my adviser,Prof. D. K. Pandafor guiding methroughout the
duration of my PhD study. I'm thankful for all the e orts hetook for my dissertation.

| would like to thank my committee menbers Prof. P. Sadgyappan and Dr. F.
Qin for their valuable guidanceand suggestions.

I'm grateful for nancial support by National ScienceFoundation (NSF) and De-
partment of Energy (DOE). I'm thankful to Dr. Jarek Nieplocha, Dr. Rajeev Thakur
and Dr. Pavan Balaji for their support and guidanceduring my summerinternships.

| would like to thank all my nowlab colleguegpast and presen. | am fortunate for
having worked with Sundeep Amith, Vishnu, Sayantan, Karthik, Ranjit, Jin, Pavan,
Darius, Juixing, Jiesheng,Adam, Matt, Wei, Lei, Weikuan, Qi, Rahul, KGK, Hari,
Jaidev, Tejus, Greg, Ping, Ouyang, Krishan, Sreeramand Jonathan.

| am esyecially grateful to my friends Sundeep Amith, Mallu, Chalaand Niranjan
for all their support during my stay at OSU

Finally | would like to thank my parerts, my brother Raj and my wife Harini for
their constart support and encouragemetn | would not have madeit this far without

them.

VIT A

August 1999- Dec2001 M.S Computer Engineering University
of South Carolina.
August 1994- July 1998 B.Ted Ceramic Engineering Institute

of Tedinology, BanarasHindu Univer-
sity, varanasi, India.

June 2008- Septenter 2008 Summerlintern,
Argonne National Laboratory,
Chicago,IL.

June 2005- Septenber 2005 SummerFellow,

Pacic NorthWest National Labora-
tory, Richland, WA.

PUBLICA TIONS

G. Sarthanaraman, J. Wu, W. Huang, and D. K. Panda, \Designing Zero-copy
MPI Derived Datatype Communication over In niBand: Alternativ e Approachesand
Performance Evaluation” ,The special Issue of the International Journal of High
PerformanceComputing Applications (IJHPCA).

V. Tipparaju, M. Krishnan, J. Nieplocha, G. Sarthanaraman, and D. K. Panda,
\Optimization and PerformanceEvaluation of Mechanismsfor Latency Tolerancein
Remote Memory AccessCommunication on Clusters”, The International Journal of
High PerformanceComputing and Networking (IJHPCN).

K. Kandalla, H. Subramoni, G. Sarthanaraman, M. Koop and D. K. Panda, \
Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters”, In
proceedingsof Workshop on Communication Architecture for Clusters (CAC 09).

G. Sarthanaraman, P. Balaji, K. Gopalakrishnan,R. Thakur, W. Gropp and D. K.
Panda, \Nativ ely Supporting True One-sidedCommunication in MPI on Multi-core

Vi

Systemswith InniBand ", In proceedingsof International Symposium on Cluster
Computing and the Grid (CCGrid'09).

R. Kumar, A. Mamidala, M. Koop, G. Sarthanaramanand D. K. Panda, \Lo ck free
asyndironous rendezwus designfor point to point comnunication ", In proceedings
of Europvm MPI 2008.

G. Sarthanaraman, S. Narravula, and D. K. Panda, \Designing Passive Syndironiza-
tion for MPI-2 One-SidedComnunication to Maximize Overlap",IEEE International
Parallel and Distributed ProcessingSymposium (IPDPS '08).

S. Narravula, A. R. Mamidala, A. Vishnu, G. Sarthanaraman and D. K. Panda,
\High PerformanceMPI over iWARP: Early Experiences',International Conference
on Parallel Processing(ICPP '07).

G. Sarthanaraman, S. Narravula, A. R. Mamidala and D. K. Panda, \MPI-2 One
Sided Usageand Implemertation for Read Modify Write operations: A casestudy
with HPCC ", In Proceedingsof EuroPVM/MPI1 '07.

A. Mamidala, S. Narravula, A. Vishnu, G. Sarthanaramanand D. K. Panda, \Using
Connection-Orierted vs. Connection-LessTransport for Performanceand Scalability
of Collective and One-sidedoperations: Trade-o s and Impact ", ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP '07).

W. Huang, G. Sarthanaraman, H. -W. Jin, and D. K. Panda, \Design of High
Performance MVAPICH2: MPI-2 over InniBand ", In Proceedingsof the Sixth
IEEE International Symposium on Cluster Computing and the Grid (CCGrid'06).

W. Huang, G. Sarthanaraman, H. -W. Jin, and D. K. Panda, \ DesignAlternativ es
and PerformanceTrade-o s for Implemerting MPI-2 over In niBand ", In Proceed-
ings of EuroPVM/MPI 2005.

A. Vishnu, G. Sarthanaraman, W. Huang, H. -W. Jin and D. K. Panda, \Supporting
MPI-2 One Sided Communication on Multi-Rail In niBand Clusters: Design Chal-
lengesand PerformanceBene ts ", In Proceedingsof the International Conferenceon
High PerformanceComputing(HiPC'05).

W. Huang, G. Sarthanaraman, H. -W. Jin and D. K. Panda, \Scheduling of MPI-2

One Sided Operations over In niBand ", In Proceedingsof Workshopon Communi-
cation Architecture on Clusters (CAC 05) .

Vil

G. Sarthanaraman, J. Wu and D. K. Panda, \Zero-Copy MPI Derived Datatype
Communication over In niBand ", In Proceedingsof EuroPVM/MPI 2004.

V.Tipparaju, G. Sarthanaraman, J. Nieplocha and D. K. Panda, \Host-Assisted
Zero-Copy Remote Memory AccessCommunication on In niBand ", In Proceedings
of International Parallel and Distributed ProcessingSymposium (IPDPS 04).

V. Tipparaju, M. Krishnan, J. Nieplocha, G. Sarthanaraman and D. K. Panda, \
Optimizing Mechanismsfor Latency Tolerancein Remote Memory AccessComimu-
nication on Clusters”, In Proceedingsof IEEE Cluster Computing 2003.

J. Nieplocha, V. Tipparaju, M. Krishnan, G. Sarthanaraman, and D. K. Panda, \
Exploiting Nonblocking Remote Accesscommunication in Sciertic bendimarks on
Clusters ", In Proceedingsof International Conferenceon High PerformanceCom-
puting (HIPC 2003).

FIELDS OF STUD Y

Major Field: Computer Scienceand Engineering

Studiesin:

Computer Architecture Prof. D. K. Panda
Computer Networks Prof. D. Xuan
Software Systems Prof. S. Parthasarathy

viii

TABLE OF CONTENTS

Abstract e

Dedication. e e

Acknowledgmens

Vita . . e

Listof Tables

List of Figures
Chapters:

1. Introduction e

2. Badkground

2.1 InniBand Architecture Overview.

2.1.1 Send/RecvandRDMA

2.1.2 InniBand Scatter/Gather Capabilites.

2.1.3 Hardware RemoteAtomicsin InniBand

2.2 Multicore architecture

2.3 MPI Overview e

2.3.1 MPI Point-to-point Comnmunication

2.3.2 MPI One-sidedCommunication

2.3.3 MPI Non-cortiguous Data Communication

2.4 MVAPICH2 Overview it i it

2.4.1 Point-to-point MPI Operationsin MVAPICH2:

2.4.2 Point-to-p oint BasedOne-sidedoperations:

iX

Vi

Xiii

Xiv

O N O »

Passive Syndironization Mechanism

4.1 Passiwe syndironization Designusing In niBand Remote Atomics .
4.2 Improve Overlap Scope for MPI-2 One-SidedOperations
4.3 OverlapAnalysis
4.4 PerformanceEvaluation

4.4.1 Microbendmarks. L

4.4.2 Application ewaluation with SPLASH LU bendymark
45 RelatedWork

Migrating Locks for Multi-cores and High-speedNetworks

5.1 ProposedHybrid Design.
5.2 Migration Policies
5.3 Experimenrtal Resultsand Analysis
5.3.1 Intra-node Performance
5.3.2 Concurrencyand Contention
5.3.3 Inter-node Performance
5.3.4 Lock Migration
5.3.5 Hierarchical Task Sharing Communication Pattern Micro-
bendimark

5.3.6 Evaluation with SPLASH LU bendyhmark
5.3.7 DISCUSSION. i

54 RelatedWork

FenceSyndronization

6.1 DesignAlternatives.
6.2 DeferredMethod using two-sidedcommnunication (Fence-Dej . . .
6.3 Immediate Method using RDMA Sematiics
6.3.1 BasicDesignfor Fence(Fence-Imm-Naie)
6.3.2 Fencelmmediate with Optimization (Fence-Imm-Opt) . . .
6.3.3 NewScalableFenceDesignWith RemoteNoti cation (Fence-
Imm-RI)

6.4 Experimertal Results
6.4.1 Overlap e
6.4.2 BasicCollectivesPerformance.

X

6.4.3 FenceSyndironization Performance. 73

6.4.4 FenceSyndironization with Comnunication Performance. . 75

6.4.5 Halo ExchangeCommunication Pattern 76

6.5 RelatedWork 78

7. ReadModify Write Mechanisms. 79
7.1 HPCCBendwmark 79

7.2 OnesidedHPCC Random AccessBendimark: DesignAlternatives 81
7.2.1 HPCC Get-Modify-Put (HPCC_.GMP) 82

7.2.2 HPCC Accumulate (HPCC.ACC) 83

7.3 Optimizations e 84
7.3.1 Software Aggregation 84

7.3.2 Hardware basedDirect Accumulate 85

7.4 PerformanceEvaluation 86
7.4.1 DISCUSSION. o 91

7.5 RelatedWork 92

8. Non-Cortiguous Data-transfers 93
8.1 Non-corniguous Point-to-p oint Data-transfer. 95
8.1.1 ProposedSGRS(SendGather/Recv Scatter) Approach . . . 97

8.2 PerformanceEvaluation, 101

8.3 Non-corntiguous One-sidedData-transfer 113
8.3.1 Host-BasedBu ered Approach 113

8.3.2 Host-AssistedZero-Coy RMA 114

8.4 PerformanceEvaluation, 117

8.5 RelatedWork 123

9. Non-blocking One-sidedPrimitives 124
9.1 Ecient Non-blockingDesign 125

9.2 Implicit and Explicit Aggregation. 128

9.3 PerformanceEvaluation 134
9.3.1 OverheadTest 134

9.3.2 OverlapTest 134

9.3.3 NASbendmarks. 136

10. Sdeduling One-sidedOperations 140
10.1 Reorderingapproad 142
10.1.1 Interleaving 142

10.1.2 Prioritizing 144

10.2 Aggregation. e 145

10.3 PerformanceEvaluation 148
10.4 RelatedWork 152
11. SignicanceandImpact 153
12. Conclusionsand Future Work 155
12.1 Summary of Researt Contributions 156
122 Futurework e 158
Bibliography 160

Xil

LIST OF TABLES

Table Page
5.1 Inter-nodevsintra-nodelocks 58
5.2 NumofMigrations 60
6.1 BasicCollectivesPerformance(usecs). 73

Xiii

LIST OF FIGURES

Figure Page
2.1 InniBand Architecture (CourtesyIBTA) 7
2.2 InniBand Protocol Stack (Courtesy IBTA) 8
2.3 InniBand Transport Models: (a) Send/RecvModel and (b) RDMA

2.4

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Model 9
MVAPICH2 DesignOverview 14
Broad Overview 21
OVEIVIEW. o 24

Locking Medhanisms:(a)Handlingexclusive Lock and (b)Handling Shared
and Exclusive Lock 27

Computation and Communication Overlap: (a) SenderSide Overlap
and (b) Receier SideOverlap 30

Basic Passiwe Performanceof (a) Put and (b) Get operations 32
Overlap Bene ts of Basic One-sidedoperations: (a) Put and (b) Get 32

Overlap Bene ts with IncreasingNumber of Operations: (a) Put and
(b) Get. 32

Receier overlap capability with (a) two processand (b) multiple pro-
CESSES . . . o i e e 37

MPI-2 SPLASH LU bendimark: (a) Problem Size2048and (b) Prob-
lem Size3000 38

4.9 Timing Breakup of MPI-2 SPLASH LU: (a) Problem Size 2048 and

(b) Problem Size3000 38
51 OVeIVIEW. 44
5.2 Locking Medhanisms:Network Lock 46
5.3 Locking Mechanisms:CPU Lock 46
5.4 Locking Medhanisms: Lock Migration a7
5.5 Lock/Unlock Performance 49
5.6 Lock/Unlo ck Performancewith Remote Computation 50
5.7 Lock/Unlo ck Performancewith Network Cortention 51
5.8 Lock/Unlo ck Performancewith Lock Contention 52
5.9 Inter-node Performance. 54
5.10 Lock Migration Overhead 55
5.11 Hierarchical Task Sharing Communication Pattern 57
5.12 SPLASHLU Bendimark 59
6.1 OVeIVIEW. 62
6.2 FenceUsage. e 63
6.3 Barrier MessagesvertakingPut 65
6.4 Fence-Imm-Naie 66
6.5 Optimized Design(Fence-Imm-Opt). 68
6.6 Newdesign(Fence-lImm-RI) 69
6.7 Overlapperformance. 73

XV

6.8 FencePerformancefor ZeroPut 74
6.9 FencePerformancefor SinglePut 75
6.10 FencePerformancefor Multiple Puts 76

6.11 Fence performancewith Halo Exchange: (a) 4 neighbors and (b) 8
neighbors L 77

7.1 OVEIVIEW. . . o o o i e e e e e e e e e 80
7.2 Code snippets of one-sidedversionsof HPCC RandomAccessbendimark 84
7.3 Basic Performance(a) Micro-bendimarks and (b) BasicHPCC GUPs 87

7.4 AggregationPerformanceBene ts (a) BasicAggregationMicro-bendmarks

and (b) HPCC with Aggregation 88
7.5 Direct Accumulate PerformanceBene ts: Micro-bendimarks 89
7.6 HPCC with Direct Accumulate 90
7.7 Software Aggregationvs Hardware Direct Accumulate benets 91
8.1 OVerview. 94
8.2 Bandwidth Comparisonover VAPI with 64Blocks. 96

8.3 Bandwidth Comparisonover VAPI with Varying Number of Blocks . 96
8.4 a)Basicldeaof the SGRSShemeand b) SGRSProtocol.. 98
8.5 MPI Level Vector Latency 64 blocks a)PCI-X and b)PCI-Express . . 106
8.6 MPI Level Vector Latency 128blocks a)PCI-X and b)PCI-Express. . 107
8.7 MPI Level Vector Bandwidth 64 blocks a)PCI-X and b)PCI-Express. 107

8.8 MPI Level Vector Bandwidth 128 blocks a)PCI-X and PCI-Express . 108

XVi

8.9 MPI Level Vector Bi-directional Bandwidth 64 blocks a)PCI-X and
D)PCI-EXPress. o o 108

8.10 MPI Level Vector Bi-directional Bandwidth 128 blocks a)PCI-X and

D)PCI-EXPress. o o o 109
8.11 MPI _Alltoall Vector Latency a)PCI-X and b)PCI-Express. 109
8.12 SendersideCPU overhead 111
8.13 ReceiversideCPU overhead 111
8.14 Overheadof Transferring Layout Information. 112
8.15 Host BasedBu ered Approach. 114
8.16 Host AssistedZero-cofy Approadh L. 118
8.17 Bandwidth Comparisonwith RemoteSideldle 119
8.18 Bandwidth Comaprisonwith RemoteSideBusy 120
8.19 OverlapPercertage 121
8.20 Performanceof Matrix Multiplication for SquareMatrices 121
8.21 Performanceof Matrix Multiplication for RectangularMatrices. . . . 122
9.1 OVEIVIEW. o o 125
9.2 Non-blocking transfer with implicit handle 127
9.3 Implicit AggregateData Transfer 129
9.4 Latency of ARMCI GetvsGM Get 136
9.5 Percenage of ComputationOverlap 137
9.6 Performancelmprovemen in NAS MG forClassB 137
9.7 Performancelmprovemen in NASCGforClassB. 138

Xvil

10.1 OVEIVIEW. o o e e e 141

10.2 Sequenal Issueof MPI_Getand MPI Put 143
10.3 Interleaved Issueof MPI _Getand MPI _Put 143
10.4 Potertial Benet by Giving Priority to MPI Get 145
10.5 Aggregationof RMA Operation and Syndronization 146
10.6 Aggregationof Multiple Small SizeRMA Operations 146
10.7 Impact of sdheduling on throughput on EM64T and IA32 148
10.8 Impact of stheduling on latency on EM64T and IA32 150
10.9 One sidedMPI _Put latency on EM64T andIA32 151
10.10ne sided MPI _Get latency on EM64T andIA32 151

Xvili

CHAPTER 1

INTR ODUCTION

High-endcomputing (HEC) systemsare enablingsciertists and engineerdo tackle
grand challengeproblemsin their respective domainsand make signi cant cortribu-
tions to their elds. Examplesof sud problemsinclude astro-physics, earthqualke
analysis,weatherprediction, nanosciencenodeling, multiscale and multiph ysicsmod-
eling, biological computations, computational uid dynamics, etc. There has been
great emphasison designing,building and deploying ultra scaleHEC systemsto pro-
vide true petascaleperformancefor these grand challenge problems. At the same
time, Clusters built from commality PCs are being predominartly used as main
streamtools for high-end computing owing to their cost-e ectivenessand easyavail-
ability. In fact, the top 500 list of supercomputers[6]] feature large scaleclusters
delivering TFlops of computational power. The easy availability of low cost com-
modity PC's together with scalableand high performanceinterconnection networks
is making Compute Clusters more a ordable and cost e ective. With the advent
of multi-core architecture, ead of the nodesare being equipped with multiple cores
allowing for ultra-scale cluster sizesup to hundreds of thousandsand even millions

of coresby the next decade.

Howewer, the performancethat applications can achieve on sud large-scalesys-
tems dependsheavily on their ability to avoid syndironization with other processes,
thus minimizing idlenesscausedby processskew. Towards this goal, scieri ¢ ap-
plications can use two models for minimizing sud syndronization requiremens|
clique-basedcommunication and implicit data movemen using one-sidedoperations.

Clique-basedcomnunication refersto the ability of applications to form small
sub-groupsof processesvith a majority of the communication happening within the
groups. Nearestneighbor (e.g., PDE solers, molecular dynamics simulations) and
cartesiangrids (e.g.,FFT solers) arepopular examplesof sucy comrmunication [5, 23,
8]. While clique-basedcommnunication reducesthe number of processegadt process
needsto syndironize with, it doesnot completely avoid syndironization. Similarly,
while the size of the clique grows slowly as comparedto the overall systemsize,on
ultra-scale systems,this can still be a concern. For example,in a 2-D cartesiangrid
communication alonga row of processespn a million processsystem,ead clique can
cortain as mary as a thousand processes.

Implicit data movemen using one-sidedoperations supplemens the bene ts of
clique-basedcommunication by allowing data to be moved from one process'memory
to another without requiring any syndronization.

A majority of the sciertic and engineeringapplication codes use MPI as the
programming model. MPI provides an easyand portable abstraction for exdang-
ing data betweenprocesseslt provides for a plethora of communication operations
with varying semarics and usage. The MPI-1 [30] standard provides comnunica-
tion semairtics for two-sided operations (send and receiw). It has support for both

point-to-p oint and collective commnunications. The MPI-2 standard [43] added new

one-sidedcomnunication semarics with various operations (Put,Get) and syndro-
nization semartics.

Most modern as well as legacy parallel programming models (e.g., MPI [31],
UPC [2], Global Arrays [4]) are increasingly providing constructs for sud one-sided
comnunication also known as RMA (remote memory access),where a processcan
read/write data from another processwithout necessarilyrequiring participation from
the remote process.

The one-sidedcommunication model can ideally minimize the needfor syndiro-
nization. Sincethe remote processneednot be involved in the data movemen, it can
perform its computation while the data transfer is happening. Thus this canleadto
good potertial for computation/communication overlap for the application.

Howeer, in spite of thesepotential bene ts, the adoption of these one-sidedse-
martics in scieni ¢ applications has beenslon. This hasbeenprimarily dueto two
reasons:(i) most legacyapplications have beenwritten using two-sidedMPIl seman-
tics and many times, writing these applications in one-sidedsemanics may need
changesto the algorithm and (ii) the one-sideddesignsare often implemerted on top
of two-sidedsemartics leadingto poor performance.

Of late there has beena lot of interest in one-sidedcommunication models and
with modern interconnectsproviding better hardware support for RMA capabilities,
they are seenas a viable option for petascaleapplications.

Recerly In niBand Architecture (IBA)[35], a newindustry proposedstandard is
making headway in the high performancenetworking domain. In addition to deliv-
ering low latenciesand high bandwidth, it provides a rich set of network primitiv es

like Remote Direct Memory Operations (RDMA), Remote Atomics, Scatter/Gather,

hardware-leel Multicast and Send/Shared-Rece Queuecapabilities. Also, the IBA
standard allows for four conduits of of messagéransport, Reliable Connection(RC),
Unreliable Connection, Reliable Datagram (RD) and Unreliable Datagram (UD) over
which thesenetwork primitiv escanbe layered. The RDMA capabilities of In niBand

provides a good match to the one-sidedRMA semattics.

The main objective of this dissertationis to designa High Performanceand Scal-
able One sided Communication subsystemin MPI for the next-generationHEC sys-
tems. Sud a systemwould exhibit good performancescaling while e ectively har-
nessingthe primitiv es exposedby the underlying high performanceinterconnect. In

particular, we aim to addressthe following questionsin the dissertation:

How can we leveragethe medanisms of modern interconnectsto build scal-
able and high performanceone-sidedcomnunication and syndronization prim-

itives?

How can comnunication and syndironization medanismsbe redesignedo en-

able high overlap of computation and communication?

What are the challengesassaiated in optimizing non-cortiguous data commu-

nication and can the designsbene t from In niBand hardware support?

Canwe improve the performanceof one-sidedcomrunication by designingnon-

blocking semattics and using techniqueslike re-orderingand aggregation?

As the number of coreswithin a node increaseswhat kind of intra-node opti-

mizations can one-sidedcomnunication bene t from?

The objectivesdescriked above all involve multiple challengesn terms of performance,
scalability and easeof use. In this dissertation we study and investigate all these
challengesto designan e cient and scalable one-sidedcomnunication subsystem
that can provide bene ts to applications.

The rest of this dissertation is organized as follows: In Chapter 2 we discuss
existing technologieswhich provide badkground for our work including In niBand,
multicore architecture, MPI, and details of one-sidedcommnunication middleware.
Chapter 3 descrikesin detail the problemsthat are addressedin this dissertation.
Chapters 4-10 discussthe detailed approates and results for these problems. The
signi cance and impact of the work in terms of open-sourcesoftware deweloped aspart
of this dissertation is descriked in Chapter 11. Chapter 12 provides the conclusion

and possiblefuture researt directions

CHAPTER 2

BA CK GR OUND

In this section we provide an overview of the In niBand Architecture and its
features. Speci cally, we explain the di erent comnunication semarics provided by
IBA and the assaiated transports on which these are basedon. Then we give a
brief overview of multi-core architecture. Further, we also explain brie y the design
overview of MVAPICH2 which is a popular MPI over In niBand and a brief overview

of ARMCI which is another one-sidedcommunication library.

2.1 InniBand Arc hitecture Overview

In niBand Architecture (IBA) [35]is an industry standard that de nes a System
Area Network (SAN) to designclusterso ering low latency and high bandwidth. As
shown in Figure 2.1, a typical IBA cluster consistsof switched serial links for inter-
connectingprocessingnodesand the 1/0 nodes. The processingnodesare connected
to the fabric by Host Channel Adapters(HCA). HCA's semartic interfaceto to the
consumersis speci ed in the form of IB Verbs. The interface preserted by Channel
Adapters to consumersbelongsto the transport layer. A queue-pairbasedmodel is
usedin this interface. Each QueuePair is a communication endpoint. This can be

seenin Figure 2.2. A QueuePair consistsof a sendqueueand a receiwe queue. Two

6

Processor Node
[cpu |[CPU | soo [cPU |

Processor Node
[HCA }-[Mem [HCA | [cpu][CPU | vos [cPU |
T

Processor Node
[cru][€PU] voa [cpru |

Fabric
| Simney

A -

-~
Other IB Subnets
| WANs
LANs
%, Processor Nodes

~ i 0
o

l |

“\\ storage -1
| Subsystem [~

:\[Storagﬁ = [

/e

_ Chassis

)
~ Chassis

scsi
HCA = InfiniBand Channe! Adapter in processor node

Ethernet Fmre*crmnne\ Graphics TCA = InfiniBand Channel Adapter in 110 node
hub & FC

devices

Figure 2.1: In niBand Architecture (Courtesy IBTA)

QPsondi erent nodescanbe connectedto eat other to form a logical bi-directional
communication channel. An application can have multiple QPs. Communication
requestsare initiated by posting descriptors (WQRSs) to these queues. In niBand
supports di erent classesf transport services. Theseare explainedin the following

section.
2.1.1 Send/Recv and RDMA

IBA supports two typesof comrmunication primitiv es: Send/Recvwith Channel
Sematics and RDMA with Memory Semarics. In Channel sematics, ead send
requesthas a correspnding receiwe requestat the remote end. Thus there is a one-
to-one corresppndencebetweenevery sendand receive operation. Receie operations
require bu ers posted on ead of the communicating QP, which amourt to a large

number. In order to allow sharing of communication bu ers, IBA allows the use of

Consumer Transactions,
Operations, etc

Consumer «g--~--->-—--g(Consumer |
B (IBA Operations) --
Channel
Adapter = CQE L CQE
WOEy 2 WQE A

IBA Operations

alrity “"'Eé&ﬁé&&é{"*gg}é

b
Transport —| |—= g
Layer Send Rcv IBA Packets Send Rcv -E-
Network | Transport | ----------- : 3
Layer Transport Transport E
Link Layer | Packet Relay I E
Q
A A A A
Packet Packet Packet
Y Y Y Y
PHY Layer Port | Portl | Portl | Port |
Physical Link ‘ A Physical Link A
(Symbols) e (Symbols)

Figure 2.2: In niBand Protocol Stadk (Courtesy IBT A)

SharedReceie Queues(SRQ). SRQs allow multiple QPsto have a commonReceie
Queue. In memory semarics, Remote Direct Memory Access(RDMA) operations
are used. These operations do not require a receiwe descriptor at the remote end
and are transparert to it. For RDMA, the sendrequestitself cortains the virtual
addressedor both the local transmit bu er and the receiwe bu er on the remote
end. The RDMA operations are available with the RC Transport. These RDMA
operations are a good match for one-sidedoperations sincethe receiwer side can be
transparert to the operation.

Figure 2.3 shaws the basicworking of both the RDMA and the Send/Recvmod-
els. The main stepsinvolved are labeledwith sequenceaumbers. The main di erence

betweenthe two is the requiremen of posting a receie descriptor for the send/recv

model. In addition to these, In niBand also provides RDMA Write with Immedi-
ate operationswhich o ers the exibilit y of providing noti cation that the data has

readed the memoryin addition to directly placing the data in the remote memory

el oATA :
? |
MEMORY | !

Figure 2.3: InniBand Transport Models: (a) Send/Recv Model and (b) RDMA
Model

2.1.2 InniBand Scatter/Gather Capabilities

In niBand also provides Scatter/Gather capabilities to certain extert. In chan-
nel semarics, the sendercan gather data from multiple locationsin one operation.
Similarly, the receiver canreceiwe data into multiple locations. In memory semairics,
non-coniguity is allowed only in one side. InniBand provides RDMA Read with
Gather and RDMA Write with Satter feature. RDMA Write can gather multiple
data segmets togetherand write all data into a cortiguous bu er on the remotenode
in onesingleoperation. RDMA Readcanscatter data into multiple local bu ers from

a cortiguous bu er on the remote node.

2.1.3 Hardw are Remote Atomics in In niBand

One of the notable featuresprovided by the In niBand Architecture is hardware
atomic support. In niBand provides two network level remote atomic operations,
namely, fetch.and.add and compare_.and swap The network interface card (NIC) on
the remote node guararteesthe atomicity of theseoperations. Theseoperations act
on 64-bit values. In the atomic fetch.and_add operation, the issuingprocessspeci es
the value that needsto be added and the remote addressof the 64-bit location to
which this value is to be added. On the other hand, in an atomic compare_and_swap
operation, the issuingprocessspeci es a comparevalue' and a ‘newvalue'. The value
at the remote location is atomically comparedwith the "‘comparevalue' speci ed by
the issuingprocess.If both the valuesare equal, the original remotevalue is swapped
with the new value which is also provided by the issuing process.If thesevaluesare
not the same,swapping does not take place. In both the casesthe original value is
returned to the issuing process. It is to be noted that these operations are atomic

only with respect to other In niBand atomic operations.

2.2 Multicore architecture

Emerging trends in processortechnology has led to Multicore Processors(also
known asChip-level Multipro cessingor CMP) which provideslargenumber of coreson
a singlenodethusincreasingthe processingcapabilities of current generationsystems.
Dual-core (two coresper die) and Quad-core (four coresper die) architectures are
widely available from various industry leadersincluding Intel, AMD, Sun (up to 8
cores)and IBM. the negligible cost assaiated with placing an extra processingcore

on the samedie has allowed these architectures to increasethe capabilities of the

10

applications signi cantly. Recertly, Intel has announcedthat it will be introducing
an 80-coredie [6] within the next few years. Other industries are expectedto follow
this trend. Most HPC platforms are multi-core basedin order to provide peta scale
level computing. This brings an interesting trend that lots of commnunication can now

happen within a node.

2.3 MPI Overview

MessagePassinginterface (MPI) [55 was proposedasa standard comnunication
interface for parallel applications. It speci es an APl and its mapping to di erent
programming languagessud as Fortran, C and C++. Sinceits introduction, MPI
has beenimplemerted in many di erent systemsand has becomethe de facto stan-
dard for writing parallel applications. The main comnunication paradigm de ned
in MPI is messageassing. Howewer, MPI is alsoimplemerted in systemsthat sup-
ports sharedmemory [29, 34]. Therefore, parallel applications written with MPI are
highly portable. They can be usedin di erent systemsas long as there are MPI

implemertations available.
2.3.1 MPI Point-to-p oint Comm unication

In an MPI program, two processesan comrmunicate using MPI point-to-p oint
commnunication functions. Oneprocessnitiates the commnunication by usingMPI1 _Send
function. The other processeceiesthis messagdy issuingMPI _Recvfunction. Des-
tination processesieedto be speci ed in both functions. In addition, both sidesspec-
ify atag A sendfunction and a receiwe function match only if they have compatible

tags.

11

MPI _Sendand MPI _Recv are the most frequenlly usedMPI point-to-p oint func-
tions. Howewer, they have many variations. MPI point-to-p oint communication
supports di erent modes for send and receive. The mode usedin MPI_Send and
MPI _Recvis called standaid mode. There are other MPI functionsthat support other
modessud as synchionous, bu ered and ready modes. Communication bu ers spec-
ied in MPI_Sendand MPI_Recv must be cortiguous. Howeer, there are also vari-
ations of MPI_Sendand MPI _Recv functions that supports non-cortiguous bu ers.
Finally, any sendor receiwe functions in MPI can be divided into two parts: oneto
initiate the operation and the other oneto nish the operation. Thesefunctions are
called non-blacking MPI functions. For example,MPI _Sendfunction can be replaced
with two functions: MPI _Isend and MPI_Wait. By using MPI non-blocking func-
tions, MPI programmerscan potentially overlap commnunication with computation,

and thereforeincreaseperformanceof MPI applications.
2.3.2 MPI One-sided Comm unication

The MPI one-sidedcomnunication model is also known asthe Remote Memory
Access(RMA). In this model, a processde nes a memorywindow in its local address
spaceasthe target for remote memory operations by other processesvithin the same
MPI communicator. In one-sidedcommnunication, the origin process(the process
that issuesthe RMA operation) can accessa target process'remote addressspace
alsoreferredto asthe window directly. In this model, the origin processprovides all
the parametersneededfor accessinghe memory areaon the target process.

Data transfer happensthrough the one-sidedoperations: put, get and/or accu-

mulate. In a put operation, the origin processwrites data into the target's memory

12

window. In a get operation, the origin processreadsdata from the target's memory
window to its local bu er. In an accunulate operation, the origin processcan update
atomically remote locations by conbining the cortent of the local bu er with the
remote memory bu er. Any of the prede ned reduction operations like MPI _SUM,
MPI_MAX, MPI_MIN, MPI_PROD, MPI_XOR, etc. can be performed. This one-
sided operation combines comrmunication and computation in a singleinterface.

To syndironize betweenthe target (who providesthe memoryregion) and the ori-
gin (who issueghe data transfers) processesMPI one-sidednodel de nes both active
and passivesyndironization. Activ e syndironization involvesboth the origin and tar-
get processesnd has either point-to-p oint semairtics (post/start wait/complete) or
collective semattics (fence). The post/start wait/complete medanism allows only a
subsetof processe$o syndironize. The fencehascollective semartics that requiresthe
participation of all processesn the group. Passive syndironization provides shared
or exclusiwe lock semattics on the ertire remote memorywindow and needsto involve

only the origin processand the target processis uninvolved.
2.3.3 MPI Non-con tiguous Data Comm unication

One of the important featuresprovided by MPI is derived datatypes. MPI pro-
vides derived datatypesto enableusersto descrite noncortiguous memory layouts
compactly and to usethis compactrepresetation in MPI communication functions.
Derived datatypesalsoenablean MPI implemertation to optimize the transfer of non-
cortiguous data. The MPI standard supports derived datatypes for both one-sided

aswell astwo sided comnunication primitiv es.

13

MPI 2
ADI3 .
CH3 EXT
TCP Socket SHMEM RDMA
Channel Channel Channel
S

SHMEM

Sys VvV o
Shared Memo InfiniBand
T

Figure 2.4: MVAPICH2 DesignOverview

—

2.4 MV APICH2 Overview

We now provide a high-level design overview of Point-to-Point and One-sided
Communication support in the MVAPICH2 stadk. MVAPICH2 [46]is a popular MPI
over In niBand usedworldwide. MVAPICH2 is an ADI3 level implemertation on
top of the MPICH2 stadk. As a successoof MPICH, MPICH2 [9] supports MPI-1 as
well asMPI-2 extensiondncluding one-sidedcommunication. In addition MVAPICH2
supports RDMA-based active one-sidedcomrmunication by extendingthe CH3 layer

asshown in Figure 2.4.
2.4.1 Point-to-p oint MPlI Operations in MV APICH2:

The two main protocolsusedfor MPI point-to-p oint primitiv esare the eagerand
rendezwusprotocols. In the eagerprotocol, the messagés copiedinto communication
bu ers at the senderand destination processbeforeit is copiedinto the userbu er.
Thesecopiesare not presei if rendezwus protocol is used. However, in this casean

extra handshale is required to exdiangeuserbu er information for zero-coly of the

14

message.For intra-node comnunication, a separatesharedmemory channel is used

for commnunication.
2.4.2 Point-to-p oint Based One-sided operations:

In MVAPICHZ2, all the one-sidedoperations discussedabove in Section2.3.2are
implemenrted over Point-to-P oint operations. They are not optimal, but they are very
portable. However when hardware support is availableit is desirableto have a design

that giveshigh performanceand true one-sidedcommnunication.
2.4.3 Direct One-sided Op erations:

As discussedabove, one-sidedoperations implemerted directly over the IBA can
lead to signi cant performancegains. In fact, the basic get and put operations and
active syndironization medanismsare already implemened using RDMA Readand
RDMA Write operations. The focus of this dissertationis to leveragemedanismsof
RDMA , atomic operationsand scatter gather support to provide optimized one-sided

commnunication support in MVAPICH2.

2.5 ARMCI Overview

In addition to MPI, there are a few other libraries which provide one-sidedpro-
gramming model. Aggregate Remote Memory Copy Interface (ARMCI) [47]is a
portable RMA communication library compatible with message-passingraries suth
as MPI or PVM. It hasbeenusedfor implemening distributed array libraries such
as Global Arrays [50], other comnunication libraries sut as GeneralizedPortable
SHMEM [1] or the portable Co-Array Fortran compiler[19]at Rice University. ARMCI

o ers the following set of functionality in the areaof RMA commnunication: 1) data

15

transfer operations; 2) atomic operations; 3) memory managemeh and syndroniza-
tion operations; and 4) locks. In scieric computing, applications often require
transfers of noncortiguous data that correspndsto fragmerts of multidimensional
arrays, sparsematrices, or other more complex data structures. With remote mem-
ory comrmunication APIs that support only cortiguous data transfers, it is necessary
to transfer nonconiguous data using multiple commnunication operations. This often
leadsto ine cien t network utilization and involvesincreasedoverhead. ARMCI o ers
explicit noncortiguous data interfaces: strided and generalized/O vector that allow
description of the data layout sothat it could, in principle, be transferredin a single

message.

16

CHAPTER 3

PROBLEM STATEMENT AND METHODOLOGY

There hasbeena lot of interest and researt being donein the eld of one-sided
communication modelsrecerly. The main advantage of using this kind of model is
that it supports asyndironous comrmunication. There is no needto syndironize in
terms of matching send/recvfor every comnunication. In a one-sidedcommunication
model ideally only oneprocesss involvedin the communication and candirectly read
or write from the addressspaceof the target process. The remote or target process
neednot be involved in this communication and can perform computation simultane-
ously. This can potertially leadto better computation/communication overlap. The
MPI-2 standard provides one-sidedcomrmunication or remote accessnemory (RMA)
sematics in addition to two-sidedsemarnics. Howewer the one-sidedprimitiv es are
often implemerted on top of two-sidedprimitiv esthus resulting in poor performance.
Also someof the semattics are restrictive for an application writer to take advantage
of theseoperations. This hasresultedin slonv adoption of thesesematrtics in scierti ¢

applications. At the sametime, seeral applications like PS-DNS [3], ENZO [25],

17

AWM-Olsen [68], mpiBlast [20] have commnunication characteristicsthat can poten-
tially benet from one-sidedcommunication model. Modern Interconnectslike In ni-
Band provide a lot of network featuresthat are a closematch for these one-sidedor
RMA operations.

The main objective of this dissertation is to \Design a High Performane and
SalableOne-sidel Communiation Subsystemevemgingdirectly the di er ent network
primitives of modern Interconnects for next-geneation HPC systems"

Speci cally, the dissertation aims to addressthe following challenges:

Syndironization: Can we designtruly one-sidedpassive syndironization using
In niBand's hardware atomic operationsto maximize overlap potential? How
much of theseoverlap bene ts canbe translated to actual performanceimprove-
mert in one-sidedapplications? Can existing designfor collective syndroniza-
tion like Fencebe enhancedto improve scope for overlap aswell asreduceany

bottleneds and hotspots in the network?

In Chapter 4, we designsupport for passie syndironization using In niBand

atomic operations. We also enhancethe one-sidedcommunication progressto
provide scope for better overlap. In Chapter 6, we evaluate the di erent de-
sign options for implemening fencemedanism and proposea novel fencesyn-
chronization medanismwhich usesin niBand's RDMA Write with Immediate

capability to notify remote completions.

Intra-node Optimizations for Multi-Core Architectures: Can we use the fast

atomic locks provided by processoiarchitecturesfor e cien t intra-nodelocking?

18

What are the challengesto designsupport for fast CPU locks for intra-node

operations and network basedlocks for remote operations?

In Chapter 5 we study the bene ts of using fast CPU basedlocks for intra-
node operations. We comeup with a hybrid designthat can migrate between
CPU basedlocks and network locks depending on the migration policies. We

demonstratethe bene ts of this designfor di erent comnunication patterns.

Read-Mdlify-Write Mechanisms: Read-Madify-Write operations are important
for one-sidedapplications. The MPI one-sidedsemarics does not explicitly
provide this interface. How can one-sidedapplications be written using exist-
ing one-sidedinterface for read-mdaify-write functionality? Can In niBand's
features sud as atomic operations be usedto achieve high performanceand
scalability for read-mdify-write operations? What kind of hardware/network

medanismsare neededto further optimize theseoperations?

In Chapter 7, we study the HPCC Random Accessbendimark which primarily
usesread-malify-write operations. We ewaluate di erent approades of e -

ciertly implemerting these operations using MPI-2 one-sidedcomnunication
sematics. We also proposean implemertation of MPI Accumulate that can
make use of In niBand hardware fetch and add operations that yields good

performance.

Non-Cortiguous operations: In se\eral applications the data communication
are often non-cortiguous. The genericapproad to handle non-cortiguity is to
perform padcking and unpading of data into cortiguous bu ers. This requires

heary CPU involvemen on the origin and target side to copy the data into

19

cortiguous bu er and copying the data out of cortiguous bu ers. Can the scat-
ter/gather capabilities be utilized to achieve zero copy cost as well asreduced
remote CPU involvemen for non-cortiguous data transfers for both point-to-

point and two-sideddata transfers? What are the trade-o s involved and what

kind of application bene ts can be achieved?

In Chapter 8, we discussthe various challengesin designing non-coriguous
data commnunication for both two-sided as well as one-sidedcommnunication.
The main overheadfor non-cortiguous communication is the overheadof data
copieson both the senderand receier sides. We proposenew zero-coly designs
for implemerting non-cortiguous data movemern using In niBand's hardware

basedscatter/gather capability.

Non-Blocking primitiv es: In order to obtain good computation comrmunication
overlap, the RMA one-sideddesignshould support e cien t non-blocking oper-
ations. How can we implemert e cient non-blocking primitiv esthat provides
good scope for computation comnunication overlap? What are the challenges

and what are the assaiated bene ts of providing non-blocking primitiv es?

In Chapter 9 we discussthe designissuesin implemerting non-blocking one-
sided operations. We also demonstrate the performance bene ts of a non-

blocking designover a blocking design.

Re-orderingand scheduling: MPI-2 standard allows the actual commnunication

for RMA operationshappen at syndironization time and alsoallows re-ordering

20

of operationswithin an accessepoch. Can we designsthhemesthat take advan-
tage of this exibilit y to achieve latency and better network bandwidth utiliza-
tion? Can these sdemesshav performancebene ts for somecommunication

patterns?

In Chapter 10 we proposedesignsthat cantake advantage of the re-orderingse-
martics to interleave, prioritize and aggregatethe operations. We demonstrate

the performancebene ts of theseapproadesfor di erent communication sce-

narios.
Petascale SCIENTIFIC APPLICATIONS AND BENCHMARKS
Applications ™
One-sided API
Data transfer Synchronization
(put,get,accumulate),datatype) (active,collective,passive)
Y
Designs and Optimizations
3_nded-lsided _ Enit:[l)r;gbiﬁt\)/’erlap Read-Modify Non-contiguous Intra-Node
iddieware Write data transfer Optimizations
Non-blocking
Optimized Re-ordering &
Passive sync Fence sync scheduling
I

_______________________ ‘

Advanced InfiniBand Primitives

Modern
Interconnects

Figure 3.1: Broad Overview

21

Figure 4.1 provides an overview of all the above mertioned componerts. The
componerts that we focusin this dissertation are lightly shaded. We descrike the
detailed designand the results of the various componerts of this dissertation in the

following sections.

22

CHAPTER 4

PASSIVE SYNCHR ONIZA TION MECHANISM

The one-sidedcomnunication model decouplesdata transfer and syndronization
operations. The syndronization operations ensurethat the issuedoperations are
completeand appropriate semartics are maintained. Depending on the type of syn-
chronization, localand remotecompletionsneedto be ensured.Thesesyndironization
operations are very important in one-sidedcomrmunication and it is very essehal to
provide e cient and low overheadsyndronization medanisms.

The MPI one-sidedmodel providestwo modesof syndironization.

Activ e syndironization: whereboth the origin and target node are involved in
the syndironization. It hasboth point-to-p oint semairics (post/start,w ait/complete)
as well as collective sematics (fence). The post/start wait/complete meda-
nism allows only a subsetof processeso syndironize. The fencehas collective

semattics that requiresthe participation of all processesn the group.

Passiwe syndironization: only the origin processis involved in the syndironiza-
tion. In MPI-2 passive one-sidedcommunication, the target processdoes not
make any MPI callsto cooperate with the origin processfor comnunication or
syndironization. The syndronization is donethrough lock and unlock calls by
the origin processon the window located on the target node.

23

Petascale SCIENTIFIC APPLICATIONS AND BENCHMARKS
Applications —
One-sided API
Data transfer Synchronization
(put,get,accumulate),datatype (active,collective,passive)
|
Y
Designs and Optimizations
3nded|5ided — Enit;lg;%i(l?t\)llerlap Read-Modify Non-contiguous Intra-Node
iddleware Write data transfer Optimizations
Non-blocking
Optimized Re-ordering &
Fence sync scheduling
|

Advanced InfiniBand Primitives

Modern
Interconnects

Figure 4.1: Overview

The passie syndironization o ers true one-sidedbene ts. However most existing
implemertations do not provide thesebene ts becauseof limitations of current de-
signs. In this chapter, we explain how the H/W atomic primitiv escan be leveraged
for providing e cient and truly one-sidedpassive syndironzation medanism which
provides good overlap capability. Specically we work on the highlighted part in

Figure 4.1 of our proposedreseart framework.

4.1 Passive synchronization Design using InniBand Remote
Atomics

In this section we discussthe issuesand design challengesin implemerting an

e cient MPI-2 passie one-sidedcommunications. Locks are usedto protect accesses

24

to the protected target window a ected by RMA calls issuedbetweenlock and un-
lock calls and to protect local load/store accesset$o a locked local window executed
betweenthe lock and unlock call. MPI-2 passive syndironization supports locking in
two modes: (i) exclusive mode and (ii) sharedmode. Accesseshat are protected by
exclusiwe locks will not be concurrent at the window site with other accesse$o the
samewindow that are lock protected, i.e, only one processcan have exclusive access
to awindow at a time. Sharedlock mode allows multiple processegreaders/writers)
to accesdhe target window simultaneously Accesseshat are protected by a shared
lock will not be concurrent at the window site with accessegrotected by exclusive
lock to the samewindow.

There are se\eral di erent approadesfor implemerting passive syndironization.
The passive syndironization could be implemerted on top of two-sided communi-
cation. Another approad to implemernt passive syndironization when the memory
window is not directly accessibldoy all the origin processess by the useof an asyn-
chronousagen at the target. This agen can causeprogressto occur. One approat
is to usea thread that periodically wakesup and cheds for any pending one-sided
requests.If there is underlying hardware support, then it can be exploited to provide
truly one-sidedpassie syndironization.

There arese\eral optimizations that areapplicableto two-sidedbasedapproates[6(].
WMPI explored thread based one-sidedcomnunication and syndironization [44].
Previous work in MVAPICH2 usedIn niBand atomic operations to implemert ex-
clusive locks [37]. This designhas somelimitations that it considersonly locking in
the exclusive mode. In addition, this designdoesnot guarartee immediate progress

of the one-sidedoperationswhich are deferredto the unlock phase. This canhurt the

25

overlap potential. Our new designtakesa step further and aimsto addressthe above
limitations while taking a similar approad of using hardware atomic operations. We
useMVAPICH2 [46] asthe framework for our design. In the current versionof MVA-
PICH2, the passie syndironization support is basedon two-sided comnunication
primitiv es.

In this context we describe the two main aspectsof our design: (i) e cient passiwe
syndironization with support for locking in both exclusive and sharedmodesand (ii)
enhancemen of the scoge for providing good overlap that the one-sidedapplications
can potentially leverage. The following sectionslook at the designin further detail.

E cien t passive syndironization support can be designedusing In niBand's re-
mote atomic operations. Locking in exclusive mode can be implemerted using In-
niBand's atomic compareand swap operations. This approat doesnot involve the
remote process,and henceis a truly one-sidedmedanism for passie syndironiza-
tion. Howewer, since MPI-2 allows for both sharedand exclusive modes of locking
for passie syndironization, it is imperative that our designallows for sharedmode
locking to co-existaswell. The currenr MVAPICH2 designprovidestwo-sidedbased
shared mode locking and this can be extendedto work coheretly with our design
basedon remote atomic operations for exclusive mode locking.

For every window on a target processwe maintain a 64-bit global lock state that
is registeredwith the NIC to support remote atomic operations. This 64-bit variable
can be accessedising RDMA atomic operations. This global lock state variable can
be in one of 3 states: (i) unlocked, (ii) locked in exclusive mode and (iii) locked in

sharedmode.

26

Origin Process Target Process w Origin Processes Target Process

MPI_Win_lock ‘ MPI_Win_lock N Compare
| I ETR Two-sig| and
Compare i o ; -Slded Requests
and __ Global State | I IEREEERE e tund IO Swap
Swap ! : e : ©+-= Global State
s | |
Acquired !
\ MPI_Get | B MPI_Get | MPI_Get
MPI_Get = MPI Put ~ MPI_Put | -
MPI_Put |
MPI_Put §
MPI_Win_unlock : MPI_Win_unlock \\
Compare Global State : e
and | | .
Lock __| ! Compare
Released | and
i Swap
| Global State
Process 1 Process 2 : Process 1 Process 2 Process 3 Process 4

(@ | (b)

Figure 4.2: Locking Mechanisms:(a)Handlingexclusive Lock and (b)Handling Shared
and Exclusive Lock

This variableis by default initialized to the unlocked state during window creation.
MPI_Commsize is usedto indicate this unlocked state. To obtain an exclusiwe lock
asseenin Figure 4.2(a), a network basedatomic compare-and-swapoperation is done
on this variable. If the compare-and-swapis successfulthen the lock is obtained and
the global state variable is set to the processrank of the origin processindicating
that it is the current holder of the lock. During the unlock operation, this valueis set
bad to the default value. Other processedrying to obtain a lock at the sametime
would fail and would keeptrying till they obtain the lock oncethe holding process
relinquishesthe lock.

In the caseof a sharedlock, we usethe existing two-sidedapproad in which a

messages sert to an agert on the remote node. The agent queuesup the requests

27

and performsthe issuingof lock and unlock operationslocally. Howeer, this canlead
to conicts with the exclusive mode locking and additional medanismsare needed
to handle this case.

To allow both sharedand exclusive mode locking we usethe following coordina-
tion medanism. When a sharedlock requestis received by the remote agert it also
performsan atomic compare-and-swapoperation with the global lock state variable.
If it can obtain the lock, that meansthere are no exclusiwe locks on this window, it
setsthe variable to a prede ned value (MPI_Comm.size+ 1) indicating that the lock
is currertly issuedin sharedmode and thereforeall exclusiwe lock operationswill be
stalled. This agert alsokeepsa courter for the number of sharedlock requests.When
unlock operationsare called, it decreaseshe courter variable. Oncethe courter vari-
able reacheszero,it performsa compare-and-swapoperation on global state variable
resetting the global state value to the default no lock state. Figure 4.2(b) shaws the
basicprotocol for sharedmode locking. The dotted arrowsin the gure indicatesthe
operations that could be deferredto actually occur in the unlock phasewhen using
the two-sidedmedanism for obtaining sharedlocks.

The hardware basedremote atomic operations have good scalability, but they
might have the problem of o oding the network when the contention for locks is
very high. Howewer, medanismslike exponernial badk o can be usedto improve
performancein sud scenarios[37]. Sincethis is an orthogonal issuefrom the focus
in this work, we have not incorporated this in our currernt design. We would like to

incorporate this in the future.

28

4.2 Impro ve Overlap Scope for MPI-2 One-Sided Op erations

Another aspect we aim to highlight by using the truly one-sidedpassie syn-
chronization is to improve the overlap potential of the application. When two-sided
approades are used, the commnunication operations are often delayed to the syn-
chronization phaseand in somecasescombined with an unlock syndronization call.
In order to improve the progress,which leadsto better overlap, we make sure that
the one-sidedoperations within the passiwe epoch are issuedimmediately using the
RDMA Write and RDMA ReadIn niBand operations. The completion of theseoper-
ations are handledin the unlock operation. In niBand haslimitations on the number
of outstanding RDMA read and write operations. Henceto handlethis in our design,
additional requestsbeyond this limit are queuedup internally and issuedas soon as

possible.

4.3 Overlap Analysis

In this section we analyzethe di erent designsto understand the potential for
overlap while using passie syndironization. In a passie syndironization mode over-
lap can be achieved at the senderside as well as the receiver side. In the sender
side case,overlap can be more easilyunderstood. Within the passive syndironization
accesgpoch we could have computation and one-sidedcomnunication operations. If
the one-sidedroutines are non blocking and can be initiated, then potertially we can
perform computation while the initiated commnunication occursin the badkground.
More explicitly, we can do computation between MP1_Get or MPI _Put and the en-
suing MP1 _Win _unlock operation aslong asthis computation is independert or does

not needthe data from the one-sidedoperation. We refer to this asthe senderside

29

Origin Process Target Process | Origin Process Target Process

(Sender) (Receivert) E (Sender) (Receiver)
MPL_Win_lock | \w:b(:k
i
1 MPL_Get
MPI_Get I =
: e o)
Sender Side : \\. e R‘eccivcr Sidc
i | } Computation
Computation '
MPL_Win_unlock i MPL_Win_unlock
T |
1
i

(a) i (b)

Figure 4.3: Computation and Communication Overlap: (a) SenderSide Overlap and
(b) Receiwer Side Overlap

overlap asshown in Figure 4.3(a). In addition to the senderside overlap in a passie
syndironization mode we can have computation on the target node while commnuni-
cations are occurring in its target window. This could be thought of asreceiver side
overlap as seenin Figure 4.3(b). An MPI-2 one-sidedlibrary gearedtowards maxi-
mizing overlap should provide both thesekinds of overlap bene ts to the application
to the extert possible.

In this cortext, we try to analyzethe two described approadesfrom the overlap
perspective. In the current two-sided approad there is a remote agert or receiver
(in the MPI library) that handlesall the one-sidedcommnunication/synchronization
requestsincluding lock, unlock, get, put. On the senderside (origin process)the lock
is a local operation that is queued. The data transfersare alsoqueuedand it is only

in the unlock phasethat the ertire lock/data transfer and unlock occurs. This kind

30

of implementation is good when there is a requiremen for lower overheadsyndro-
nization operations. Further, in this casethe data transfer and the syndronization
messagesan be combined thus reducing the number of required network operations
leadingto bene ts in certain scenarios.Howeer, this resultsin extremely poor over-
lap capability for an application. Though lowering the overheador latency of the
syndironization is important, it should not comeat the cost of reducing the overlap
potertial. Sincethe data transfer occursin the unlock phase,any computation in the
passiwe epoch cannot be overlapped at all. Also the two-sidedapproad requiresthe
target node to be involved in both the computation as well as the syndironization
calls. Hencethis a ects the on-goingcomputation on the target node thusresulting in
lower receier overlap too. Whereasin the direct passiveapproad, the syndironiza-
tions aswell asthe communication operationsare issuedasearly aspossible. Further
all theseoperations are truly one-sidedbecausethey usethe underlying RDMA op-
erations. Hencewe expect better computation and comrmnunication overlap on both

the senderand receier side for the direct passiveapproad.

4.4 Performance Evaluation

In this sectionwe presen the experimertal evaluation of our direct passiveimple-
mertation. We analyzethe overlap scope with the two-sidedbasedand direct passive
implemertations. It is to be noted that we uselocks in exclusive mode for our eval-
uation. We then descrite the results for the modi ed MPI-2 versionof the SPLASH
LU bendmark [54]. This version was obtained by modifying a shmem version of

SPLASH LU bendimark to use MPI-2 one-sidedcalls with passive syndronization.

31

70 70
60 - 60
—~ 50 A 50
8
g 40 § 40
1]
g 30 2 30
2 &
3 20 3 20
3
10 0
0 T B — ———T— 0 T — T — T
N N x ®,0 > N BE aF ot A6 e
LN R P R v O A F PPl N d g
Message size (bytes) Message size (bytes)
[~direct passive -=two sided based | [~s~direct passive -=two sided based |

Figure 4.4: Basic Passiwe Performanceof (a) Put and (b) Get operations

70 70
60 60
50 4 50 -
D D
[o2] [o2]
S 40 & 40
c c
D D
§ 30 S 30
Q. Q.
Qo Qo
g 20 g 204
@ @
> >
S 10 | O 10
0 0
32 128 512 2k 8k 16k 32k 64k 32 128 512 2k 8k 16k 32k 64k
Message size (bytes) Message size (bytes)
[mdirect passive mtwo sided based | [o@direct passive miwo sided based |

Figure 4.5: Overlap Bene ts of Basic One-sidedoperations: (a) Put and (b) Get

90)
80 80 |
% 70 1 70
£ 60 | 8 o |
§50 B § 50
540 - g 40 |
% 30 4 5‘ 30 4
8 20 g 20
10 10
0~ 0
1 4 8 16 32 64 128 1 4 8 16 32 64 128
Number of operations in epoch Number of operations in epoch
\ odirect passive mtwo sided based | [odirectpassive miwo sided based |

Figure 4.6: Overlap Bene ts with IncreasingNumber of Operations: (a) Put and (b)
Get

32

We further pro le the resultsof this SPLASH bendimark to analyzethe performance
in greater detail.

Our experimertal testbed is a 64 node Intel cluster. Each node of our testbed
is a dual processor(2.33 GHz quad-core) system with 4 GB main memory The
CPUs support the EM64T technology and run in 64 bit mode. The nodes support
8x PCI Expressinterfacesand are equipped with MT25208 HCAs with PCI Express
interfaces. A Silverstorm 144 port switch is usedto connectall the nodes. The

operating systemusedis RedHat Linux AS4.
4.4.1 Microb enchmarks

In this sectionwe compareour new passie designwith the existing designusing

microbendimarks that measurelatency and overlap capabilities.

Overall Latency using Passive Synchronization

First we comparethe basic performanceof the two approades: not just the cost
of syndironization, but from the perspective of data communication using passiwe
syndironization. This is often more represetativ e of application behavior. We mea-
sure the time taken or latency for a lock operation followed by put and an unlock
operation for various messagesizes. This bendimark shows the overall latency of the
two approadies.

The resultsare shovn in Figure 4.4. As seenin the gure, the two-sidedapproadh
performsbetter than the direct passivesthemefor small messagesThis is becausdor
small messageshe syndironization overheadis a signi cant ratio of the total time.
i.e. the direct passivesdhiemeneedstwo RDMA atomic compareand swap operations

for syndironization in addition to RDMA read/write comnunication operation. The

33

overheadis lower in the two-sidedapproad sinceit can conbine the comnunication
and syndironization in a single message. For larger messagesthe direct passive
stheme performs better or equally well, as the cost of data transfer is dominart.
Howewer aswe have discussedn earlier sections,latency aloneis not the main metric.
The amourt of the overlap capability the implemertation can provide is critical to
the performanceof a one-sidedapplication. Hencewe study the designsfrom the

overlap perspective in depth in the following section.

Overlap Potential

In this sectionwe comeup with a set of micro-bendmarks that can evaluate the
overlap potertial both at the origin aswell asthe target process.

Sender Side Overlap: In this bendhmark we ewaluate the senderside overlap.
The following is a brief description of the bendimark. ProcessO (origin process)
does a lock/put/unlo ck on the window located on the remote target process. The
test estimatesthe time for the lock/put/unlo ck sequence.Betweenthe get call and
unlock syndironization call, increasingamourts of computation as a percernage of
the estimated time are introduced. As long as the overall executiontime does not
change, it implies that the computation time is being absorked or overlapped with
the issuedcommunication call. The results for this are shovn in Figure 4.5(a). The
direct passiveimplemertation shows very good overlap for large messagesvhereasin
the two-sidedapproad virtually no overlap is possiblebecauseall the data transfer
operations occur in the unlock phase. Pleasenote that for the sale of visibility
in the graph, we have shovn a small value for the two-sided approad which can
essetially be ignored. Similar results are seenfor lock/get/unlo ck sequenceshavn
in Figure 4.5(b).

34

SenderSide Overlap with Varying #operations in Epoch: This bendimark is an
extension of the previous bendhmark where we vary the number of get/put calls
betweenthe lock and unlock operations. The messageizeusedis 32K. This test tries
to mimic application scenarioswhere multiple get and put calls are issuedbetween
the syndironization operationsin order to amortize the overheadof syndironization.
As in the previoustest increasingamourts of computation is introduced. Figure 4.6
shows the results of this bendimark. Once again the direct passiveapproad is able
to provide much higher overlap as opposedto no-overlapfor the two-sidedapproad.

Receiver Side Overlap: This bendmark tries to measurethe impact of target
involvemen in passive mode commnmunication on the ongoingcomputation. In this test
there is one origin processand onetarget process.The test performsa xed amourt
of computation on the target node. The executiontime of this bendimark is the time
taken by the target node to perform the xed amourt of computation. At the same
time the origin processtries to accesgshe memorywindow using MPI _Get operations
within a lock/unlo ck passiwe epoch. This test in e ect tries to measurereceiwer
(target) overlap, i.e, it tries to measurehow much of the computation on the target
node can be overlapped with the ongoing communication operations.Figure 4.7(a)
shows the normalized executiontime of this bendimark. As comparedto execution
time with the direct passivescheme (which is normalizedto 1), we obsene that the
two-sidedapproad leadsto considerablyhigher executiontimes. This indicatesthe
overheadof the target involvemen for the two-sidedapproad or in other words this
shows the reducedoverlap (or lack thereof) on the target node.

Receiver Side Overlap with Multiple Origin Processes: We further extend the

receier overlap bendimark to multiple processesmulating one-sidedapplication

35

patterns. In this bendimark the overlap capability is obsened in the presenceof
increasedaccesseto the target window. The messageizeusedis 32K. Figure 4.7(b)
showsthe resultsin terms of normalizedexecutiontime. We seethat for 64 processes,
the deterioration in the executiontime is about 4.5times worsefor the two-sidedcase
ascomparedto direct passive This is largely becauseof the increasedcomrmunication
overheadson the target nodefor the two-sidedapproad which delays the computation

adverselya ecting the overall executiontime.

4.4.2 Application evaluation with SPLASH LU benchmark

In this sectionwe usea modi ed versionof the SPLASH LU bendimark to demon-
strate the bene ts of overlap for an one-sidedapplication. The SPLASH LU bend-
mark doesdenselLU factorization. The densen x n matrix is divided into an N x
N array of B x B blocks, sud that n=NB. The blocks of the matrix are assignedto
processorsising a 2D scatter decompsition. The comnunication in LU occurswhen
a diagonalblock is usedby all the processorghat requireit to update the perimeter
blocks they own and whenthe perimeter blocks are usedby all processorghat require
them to update their interior blocks. We modi ed a shmemversionof SPLASH LU
bendimark to use MPI-2 one-sidedoperations. We use MPI _Get calls to fetch the
block of data and we use MPI_Win _Lock/MPI _Win _unlock passive syndironization
calls. The MPI_Win_lock calls are usedin exclusive mode. The problem size gives
the size of the overall matrix and we can vary the block size. We shawv the results
for this bendimark for varying problem sizesand a block sizeof 128. This block size

gave the best results.

36

1.8 A 4.5 1
1.6 4 1
1.4 E 3.5 1
1.2 4 8 3

2.5 4

15

1 -
0.5

o H 1

16 32 64 128256512 1k 2k 4k 8k 16k 32k 64k 4 8 16 32 64
Message size (bytes) Number of processes

0.8 4
0.6
0.4 4
0.2 4

Normalized execution time
Normalized execution time
N

[—direct passive _ -#two sided based | DOtwo sided based Bdirect passive

Figure 4.7: Receiwer overlap capability with (a) two processand (b) multiple processes

Figure 4.8 shaws the performanceof the MPI-2 SPLASH LU bendmark for the
two approates. We obsene that the direct passiveapproad always outperformsthe
two-sidedapproad. This is becausehe direct passiveapproad providesbetter over-
lap with reducedremote CPU involvemen. In Figure 4.8(a) we show the performance
of SPLASH LU with a problemsize2048. We obsene that the direct passiveapproat
performsabout 25%- 81% better than the two-sidedapproad. Figure 4.8(b) showns
the performancefor a larger problem sizeof 3000. In this casewe obsene higher gain
ranging from 58%- 87%for the direct passivecaseascomparedto the two-sidedcase.

In order to further understand these results, we pro le the application run. In
this we measurethe averagetime spernt by the application in ead of the MPI library
calls. In particular, the only relevant MPI calls usedin the SPLASH LU code are
MPI _Win_lock, MPI_Win _unlock, MPI_Get and MPI _Barrier. The remaining time
is classi ed as computation time. In Figure 4.9(a) we shav the timing break up of
these operations for problem size 2048 for 8-64 processes.The results for problem
size 3000 are shown in Figure 4.9(b). The legendswith T stand for the two-sided

based approad, and with O stand for the one-sideddirect passive approad. As

37

Figure 4.8: MPI-2 SPLASH LU bendymark: (a) Problem Size2048and (b) Problem
Size3000

Figure 4.9: Timing Breakup of MPI-2 SPLASH LU: (a) Problem Size2048and (b)
Problem Size 3000

38

discussedn Section4.3for the two-sidedapproad, we obsene that the lock and get
operationsfor the two-sidedapproad take negligibletime, sincetheseoperationsare
gueuedlocally. The actual progressof these operations occursin the unlock phase,
i.e, the operations are initiated during the unlock operation. We seethat the unlock

operationsin this casetake a large amourt of time asexpected. On the target node,

the progressfor theseoperationsis delayed and triggered only during the MPI barrier

calls. This is dueto the fact that passive syndironization do not have explicit progress
calls for the target node.

On the other hand, the direct passive siheme acquiresthe lock and initiates the
one-sidedRDMA data transfers immediately and the progressof these operations
are transparert to the target node. Sincethis doesnot needthe remote processto
intervene,the remoteprocessamakesfasterprogressonits own tasks. In addition, since
the MPI Get operations do not needto wait for the target node to trigger progress,
theseoperationsmove aheadfaster reducingthe overall application time. This aspect
is clear from the numbersin Figure 4.9 wherethe two-sidedapproad spendsa much
larger time in the MPI Barrier time in performing the remote get requestswhich
delays the computation. Consequetly we also obsene that the unlock time taken
for the two-sided casesis signi cantly higher (832msfor problem size 3000 and 64
processeskhs comparedto the direct passive (421msfor problem size 3000 and 64
processes).

To improve the performanceof MPI-2 one-sidedcommunication, in this work,
we focussedon the following important aspects: (i) direct passive syndironization
support using In niBand atomic operations and (ii) enhancemen of one-sidedcom-

munication progressto provide scope for better overlap that one-sidedapplications

39

can leverage. In addition we performedan in-depth study to characterizethe sender
side and receiwer sidewerlap capabilities of our direct passivedesign.

Our ewaluation shows signi cant improvemer in the overlap potertial for the
direct passivedesignthat can be leveragedby a one-sidedapplication. Our micro-
bendimarks shav that the overlap on both the senderand receiver sideis signi cantly
enhancedusing our approadies. In addition to the micro-bendmarks we alsodemon-
strate a signi cant improvemern ranging between58%- 87%in the performanceof an
MPI-2 one-sidedversionof the SPLASH LU bendimark as comparedto the existing
design. Our detailed analysisshavsthat the potential bene ts in this casecomefrom

the reducedremote side involvemen that is achievable by our design.

45 Related Work

There are seeral studies regarding implemerting one-sidedcomrmunication in
MPI-2. Someof the MPI-2 implementations that support one-sidedcommnunication
are: MPICH2 [9], WMPI [44], NEC [63] and SUN-MPI [16]. BesidesMPI, there
are other programming models that use one-sidedcomnunication. ARMCI [47],
GASNET [15] and BSP [28] are someexamplesof this model.

Researbers in [21] have proposeddistributed queuebasedDLM using RDMA
operations. Though this work exploits the bene ts of RDMA operations for locking
servicestheir designcanonly support exclusive mode locking. Further, prior researt
in [45] extensiwely utilizes In niBand's remote atomic operations for sharedand ex-
clusive mode locking, howewer, the main focus in their work is not in the cortext

of MPI-2 one-sidedsyndironization but rather as a system-widedistributed locking

40

servicetypically usedin data-certers. In the cortext of MPI, previouswork in MVA-
PICH2 have studied the bene ts of RDMA atomic operationsto e cien tly implemen
locks in exclusive mode [37]. Howewer their designdoes not take sharedlocks into
accourt. OpenMPI [12] is another open sourceMPI implemertation that supports
MPI-2 standards. In OpenMPI, the library is singlethreadedby default and usesthe
two-sidedapproad for passiwe syndironization currertly and dependson the target
processmaking MPI calls to make progress. Our new designgoesa step further to
addressthe limitations of these approades. It provides exclusive lock mode using
atomic operations and sharedmode locking support by extending the existing two-
sidedbasedsharedlocking in the MPI library and alsotries to maximize the overlap

potential.

41

CHAPTER 5

MIGRA TING LOCKS FOR MUL TI-CORES AND
HIGH-SPEED NETW ORKS

Most processorarchitectures provide fast atomic locks basedon few CPU instruc-
tions. Thesecan be usedto implemert locks e cien tly acrossprocessesithin the
samenode. As descriled in previous chapter, networks sud as IB provide network
atomic operations that can be usedto implemen locks acrossnodesin an e cien't
and truly one-sidedfashion. Howewer, thesetwo forms of locks are not interoperable.
Speci cally, network-basedatomic operations achieve their atomicity through serial-
ization at the network adapter. That is, the network adapter ordersaccesseso the
atomic variable in the order in which it receivesrequests,thus guararteeingthat the
variable is always in a consistem state. CPU-basedatomic operations, on the other
hand, do not passthrough the network adapter at all, and are handled fully in the
processorcade.

If both the CPU and the network try to work on the samelock, it is possiblethat
the CPU fetchesthe variable to cade to perform an operation on it. At the same
time, the network can trigger a cade ush through the chipset, forcing the variable

to bein an inconsisten state.

42

In short, the CPU and the network needto work on di erent locks leading to
seeral challengesin acdiieving lock coherencein a one-sidedmanner, that we will
addressin this work.

While using IB network atomic operations for one-sidedcomrmunication allows
for truly one-sidedpassiwe syndronization, this approad might not be the bestin
light of the increasingnumber of multi-core systemsand the number of coreson eat
system. Speci cally, using network operationsto syndironize even betweenprocesses
on the samenode can have performanceimplications (sinceall the data hasto traverse
down to the network adapter and badk) as well as network cortention issues(since
the network adapter is shared between all the cores). Thus, in this chapter, we
proposea new hybrid migrating locks designshavn in highlighted part of Figure 5.1
of our proposedresearth framework that utilizes CPU-basedatomic operations in

conjunction with network atomic operationsto take advantage of both.

5.1 Prop osed Hybrid Design

Simultaneously utilizing both CPU-basedatomic operations as well as network
atomic operationsis not trivial becauseof interoperability issuesbetweenthesetwo
operations as discussedabove. Thus, there has to be a coordination medanism
betweenthe network basedlocks and the CPU basedlocks. Our proposedsolution
to the problemis to migrate betweenthe two locking medanisms(network locks and
CPU locks) whenrequired. Sincethe locking is per-window based,di erent windows
on the sameprocesscould be in a di erent locking mode depending upon the nature

of the lock requestsfor that window.

43

Petascale
Applications —

One-sided __
Middleware

Modern
Interconnects

variable and CPU

SCIENTIFIC APPLICATIONS AND BENCHMARKS

One-sided API
Data transfer Synchronization
(put,get,accumulate),datatype (active,collective,passive)
|
Y

Designs and Optimizations

capability

Non-blocking

data transfer

Optimizations

Write

Enabling Overlap E Read-Modify } ENon-contiguous } Intra-Node

Optimized Re-ordering &

Advanced InfiniBand Primitives

Figure 5.1: Overview

Every node maintains the following state variables: (i) locking mode (network or
CPU based), (i) CPU lock and (iii) 64 bit global network lock. The locking mode
lock variable are placedin sharedmemory sothat other processes
onthat node canaccesst. The network lock canhave the following values: (i) avalue
of 0to (MPI_Comm.size- 1) indicatesthat the lock is in network mode and the actual
value denotesthe processthat holdsthe network lock, (ii) a value of MPI _Comm.size
indicatesthat it is unlocked, and (iii) a value of MPI _Comm.size + 1 indicatesthat
the lock is in CPU mode.

In the network lock mode descriked in Figure 5.2, all the locks use IB atomic
operationsto obtain the network lock. In the CPU lock mode descriked in Figure 5.3,

the intra-nodelocks usefast CPU basedlocks and the inter-node locks usea two-sided

44

approad of sendingthe lock requestto the lock manager(step 1) which then obtains
the CPU lock on its behalf (step 2) and respondswith lock granted (step 3).

By default, the lock is presetto one of the above two-modes, for example CPU
basedmode. When the mode needsto be migrated, a two-sidedmessagds sern to
the lock managerwhich acquiresboth the network aswell as CPU lock, modi es the
locking modeto 'network’, and then grants the lock. Any further locking now happens
through IB atomic operationsin a completely one-sidedmanner. The lock migration
from a CPU mode to network mode is illustrated in Figure 5.4. When a remote
processwants to acquire a lock, it performsa compareand swap with the network
lock state (step 1). If the remote processdiscoversthat the lock isin CPU mode, and
it wants to migrate the lock to network mode, it sendsa two-sidedmessagéo the lock
managerrequestingmigration to network mode (step 2). The lock manageracquires
both the network lock and the CPU lock (step 3), modi es the lock medanism to
CPU mode (step 4), and sendsthe lock granted padket to the remote process(step
5). A similar approad is doneto resetthe lock to CPU based. In this way, the locks
can be migrated from one medanismto other.

Thus, in summary intra-node locks are completely one-sidedaslong asthe lock is
in CPU-mode and inter-node locks are completely one-sidedas long asthe lock is in
network mode. If the lock is not in the appropriate mode, a two-sidedsyndironization
is neededto migrate the lock to the appropriate mode. Henceforth we will refer to

this approad as "Hybrid'.

45

Figure 5.2: Locking Medhanisms: Network Lock

Figure 5.3: Locking Medhanisms: CPU Lock

46

Figure 5.4: Locking Mecdhanisms: Lock Migration

5.2 Migration Policies

Migration of locks could be basedon various criteria. It could be basedon: (i)
communication pattern, (ii) history, (iii) priority, (iv) native hardware capabilities
and soon. The criteria usedto migrate the locks is not the focusin this thesis,and
could be part of follow up work. In all the evaluationsin this paper, the lock is preset
to CPU mode for simplicity. Any remote node processlock requestmigratesthe lock
to network mode and any future intra-node lock requestmigrates the lock to CPU

mode.

47

5.3 Experimental Results and Analysis

In this sectionwe evaluate the performanceof our migrating locks based hybrid'
designwith the purely "two-sided'basedand the network based one-sidedapproahes
descriked in Section4.1. We ewaluate the performancefor a wide range of scenarios.
First, we ewaluate and analyze the performancewhen the lock/unlo ck operations
occur within the samenode (intra-node) amongthe di erent cores. Then we shav
the performancewhen the operations are purely inter-node. Then, we evaluate the
performancefor a combination of inter-node and intra-node operations. We also
measurethe overheadinvolved when the locks are migrated. Finally we ewvaluate the

performancefor SPLASH LU bendimark.

Exp erimen tal Testbed

Ead node of our testbed has16 AMD Opteron 1.95GHz processoraith 512KB
L2 cade. Each node also has 16 Gigabyte memory and PCI-Expressbus. They are
equipped with MT25418 HCAs with PCI-Ex interfaces. A 24-port Mellanax switch
is usedto connectall the nodes. The operating systemusedis RedHat Enterprise

Linux Sener 5.
5.3.1 Intra-no de Performance

In this section, we rst ewaluate the performanceof our new designfor intra-
node operations on a single node. Figure 5.5 shavs the performanceof lock/unlo ck
operation comparingthe three approades. As expected our new hybrid designper-
forms the best, sincethe lock/unlo ck operationswithin a node are basically few CPU

instructions. In the two-sided approad), a lock request padet is sent to the lock

48

manager of the target process. The lock managerresponds with the lock granted
padket. Theselock requestsand lock granted padets go over sharedmemory since
the target is on the samenode. In the one-sidedbasedapproad, the lock operation
is achieved through an IB loop-badk atomic fetch and add operation. Sincethe loop-
bad operation is expensiwe, it hasthe lowest performancefor a single lock/unlo ck

operation.

Figure 5.5: Lock/Unlo ck Performance

Intra-no de Performance with Remote Computation

Next we ewaluate the performanceof the three approadies in the presenceof
computation on remote/target process.Minimal remote/target processinvolvemer
is important for one-sidedpassie syndironization callssothat the target canproceed
with its computation. In this bendimark, the origin processacquiresthe lock and

unlock operation on target processwhile computation is performed on the target

49

process. The computation is a dummy loop that is executedon the remote/target
process. In this experimert the performanceof the three sthemesis measuredfor
varied amourts of dummy loop computation. The results are shovn in Figure 5.6.
Here the one-sidedapproades (network based,one-sidedand hybrid approad) are
not a ected with increasingamourts of computation on the target processsincethey
are not dependen on the target processo progress.Whereas,the performanceof the
two-sidedsdhemedegradeswith increasingamourt of computation. This is expected
becausethe two-sidedapproad requirestarget processinvolvemen. In the presence

of computation, it takeslongerto respond to the lock/unlo ck requests.

Figure 5.6: Lock/Unlo ck Performancewith Remote Computation

5.3.2 Concurrency and Contention

Next we evaluate the performanceof the di erent approaceswhense\eral lock/unlo ck

operations occur concurrerlly. Theseexperimerts are conductedon a single node.

50

Net work Contention

In the rst micro-bendimark, ead procesdocks its neighboring process(rank+1)
on the samenode. Thusin this bendimark, there are asmany lock/unlo ck operations
happening concurrenly asthe number of coresfor which the bendimark is run. We
measurethe averagelatency of lock/unlo ck operation in this scenario. The results
are shavn in Figure 5.7. We obsene that the two-sidedperformanceis not degraded
sincethe lock/unlo ck requestsmessagesare sert over sharedmemory and there is no
network cortention. Howewer the one-sidedsthemeusing loop-badk su ers degrada-
tion dueto network cortention sinceall the lock/unlo ck operationsresult in network
transactions. In this scenarioalso, the hybrid scheme performs the best since the

CPU basedlocks do not result in network cortention.

Figure 5.7: Lock/Unlo ck Performancewith Network Corntention

51

Lock Contention

The next bendmark shaows the performanceof the three approateswhen seeral
processesare contending for a lock on the samewindow. The results are shown in
Fig. 5.8. The hybrid stheme performs the best for up to three lock cortentions.
Beyond four cortentions, the two-sided approad performs better than the hybrid
stheme. The one-sidedapproad performs the least. This is expected since there

would be lots of network transactionsin the presenceof corntention.

Figure 5.8: Lock/Unlo ck Performancewith Lock Contention

5.3.3 Inter-no de Performance

In this section, we comparethe performanceof the three approadies when the
operations are purely inter-node. We use a micro-bendimark to demonstrate the
bene ts of one-sidedapproadesin the presenceof computation and skew. We used

Testbed B for this experimert, sincewe had more number of nodesto understand

52

the inter-node performance. The experimertal testbed (Testbed B) used for this
bendimark is a 64 node Intel cluster. Each node of the testbed is a dual processor
(2.33 GHz quad-core)systemwith 4GB main memory.

The bendhmark simulatesa ring type of comnunication whereinead procesdocks
the window of its successorputs somedata in the target window and updatesa tag
indicating completion of the data transfer to that window. The target processthen
makessurethat the data is available in its window, then performsthe sameoperation
on its successorThe comnunication terminates whenthe messagéraversesthrough
the completering. Simultaneously all the nodesare also performing computation in
the form of a dummy loop. For the sake of simplicity, a xed amourt of computa-
tion is being performedby all the nodes. This bendhmark evaluatesthe capability to
overlap computation and comnunication. The results are shavn in Figure 5.9. The
one-sidedand the hybrid approad outperformsthe two-sidedapproad. This is due
to the ability of the one-sidedand hybrid approad to perform the lock/unlo ck oper-
ations in a truly one-sidedfashion, whereasthe two-sidedapproad requiresremote
host involvemen to make progress. This results in delay for the target processin
responding to lock requests. Sincethis bendimark is a ring type of commnunication,
this could manifestitself as skew for the other processegurther in the ring resulting
in a cascadinge ect. In this scenario,the hybrid sthemeremainsin the network
locking mode exclusively and henceits performanceis similar to that of the one-sided

approad.

53

Figure 5.9: Inter-node Performance

5.3.4 Lock Migration

In this section,wetry to evaluate the overheadincurred dueto lock migration. The
bendimark measureghe averagetime taken for an intra-node lock/unlo ck operation
and an inter-node lock/unlo ck operation in the presenceof migration of the lock
medanism from network mode to CPU mode and vice-versa. The experimert is a
two node experimert in which a processP1 acquiresa lock/unlo ck on a processP0
on the samenode 1000times. During this duration, a processP2 on the secondnode
tries to obtain the lock on PO for x times triggering a migration ead time.

The intra-node line in Figure 5.10shows the latency of the lock/unlo ck operation
happening on the samenode with increasingperceniage of migrations. We obsene
that for small percenage of migrations, the overheadis not very high as compared
to casewhen no migrations occur. The inter-node line similarly shows the latency

of the lock/unlo ck operation happening acrossnodes with increasingpercernage of

54

migrations. For smaller number of migrations, the overheadincurred is quite less.
Large number of migrations lead to someoverhead. Howeer it is to be noted that,
the biggest bene t achieved by this approad is to be able to maintain the truly
one-sidednature of the locks oncethe migration hasbeenacdieved and thus provide
greaterpotential for asyndronouscomnunication aswell ashigher computation com-
munication overlap. Also the migration policy descrited in Section5.2 can be used

appropriately to minimize the number of migrations.

Figure 5.10: Lock Migration Overhead

5.3.5 Hierarc hical Task Sharing Comm unication Pattern Micro-
benchmark

In this section, we evaluate the performancefor a combination of inter-node and
intra-node operationswith lock migrations by simulating a bendhmark that performs

task sharing and redistribution. The details of the bendimark is descriked below.

55

The experimert is run on 4 nodeswith 16 coreson ead node for a maximum total of
64 cores. A hierarchy of leadersis createdwith oneleaderprocessdesignatedon ead
node. First, the leaderon ewvery node performs 1000Lock-Put-Unlock on every other
local processon the samenode. Then, the leader performs 1000 Lock-Put-Unlock
on the leader of ewvery other node. Finally, the leader on ewery node performs 1000
Lock-Put-Unlock on ewery local processagain. The bendimark tries to simulate a
scenarioin which a leaderprocesstries to get data/work from closeneigtbors, then
gets data from remote neighbors in a cycle. The resulting comnunication pattern
is a clique-basedcommnunication descriked in earlier sections. The results are shavn
in Figure 5.11. The comnunication pattern descriked above haslot more intra-node
operationsthan inter-node operations. The hybrid shemeperformsthe bestbecause
it usesthe fast CPU locks for the intra-node operations, and when the operations
are inter node, it migratesto network mode. Thus it providesthe best performance
for sudh a comnunication scenarioand we also obsene that the performancegap is

sustainedfor increasingnumber of processes.

5.3.6 Evaluation with SPLASH LU benchmark

In this sectionwe evaluate the performanceof the the three sthemesusing a mod-
ied versionof SPLASH LU bendmark. The SPLASH LU bendimark was modi ed
to useMPI-2 one-sidedcommunication. It usesMPI_Win _Jlock/MPI _Win _unlock pas-
sive syndironization operations and usesMPI _Get operations to fetch the block of
data. The MPI_Win _lock calls are usedin exclusive mode.

The results are shavn in Figure 5.12. The x axis givesthe number of processes

(a*b indicates a - number of nodes, b - number of coresper node) and y axis showns

56

Figure 5.11: Hierarchical Task Sharing Communication Pattern

the time taken in milli secondsfor problem size 2048. Here we obsene that the
hybrid sdhemeperformsthe bestwhenall the processesun on one node. For all the
other casesthe two-sided approad performsthe best and the hybrid sdheme fares
badly. To understandthis better, we pro led the number of inter-node and intra-node
operations as well as the number of migrations occurring for the hybrid approat
during the bendimark run. Theseresults are shavn in Table 5.1 and Table 5.2.

For the onenode case all the operationsareintra-node operations. In this casethe
hybrid schemeusesthe fast CPU locks and there is no migration at all during the run.
Hencein this casethe hybrid approad givesthe best performance. The one-sided
caseperformsthe worst as expected. For the other caseq2*8, 4*8 and 8*8), we have
both inter-node and intra-node operations. Also with more nodes, the percenage of
inter-node operationsin the SPLASH LU bendmark becomemoresigni cant, around

90% in caseof 8*8 con guration. At the sametime we also obsene that the total

57

number of lock migrations for the hybrid schemeincreasewith increasingnumber of
nodes.

The poor performanceof the one-sideddesigncould be attributed to the overhead
of the loop-badk operations for intra-node operations as well as network cortention.
For the hybrid approad, the number of migrations seemsto signi cantly a ect the
performanceof the hybrid design. During migration, both the network lock and the
CPU lock needsto be acquiredbeforethe mode can be switched. If seeral local lock
requestsoccur concurrertly, it is possiblethat it takesa longertime to acquire both
the network and CPU locks in order to modify the lock mode. This could result in
poor performance.In sud situations it would be better for the lock managerto keep
track of the incoming lock requestpattern and yield the lock. The current design
doesnot keeptrack of sud information. Also the existing migration policy leadsto
frequert migrations.

One possibleenhancemen s for the migration policiesto take into accoun the

arrival pattern of the lock requestsand grant the requestsmore intelligently.

Numprocs | Intra-Node Locks | Inter-Node Locks
1*8 57744 0

2*8 36144 59840

4*8 14560 114704

8*8 14560 192080

Table 5.1: Inter-node vs Intra-node locks

58

Figure 5.12: SPLASH LU Bendmark

5.3.7 Discussion

As seenfrom the above results, the performanceof the hybrid approad is depen-
dert on the pattern of the communication operations. Basedon the results from the
SPLASH bendimark result, a naive migration policy of migrating for every request
is not a good choice. Further the lock managerneedsto be enhancedo keeptrack of
the state of the di erent incoming requestsaswell asthe history of incoming requests
sothat it can make decisionsmoreintelligently. Also di erent migration policiesneed
to be implemerted and evaluated.

Another aspect that is important is how can the application writers/users take
advantage of the migration policies. If the usersare aware that there are goingto be

very few inter-node operations, or in the casewhere the hardware doesnot support

59

Numprocs | Migrations
1*8 0

2*8 9346
4*8 10180
8*8 16400

Table 5.2: Num of Migrations

network locks, then the lock medianism can always be setto the CPU mode and the
inter-node locks can usetwo-sidedbasedapproad. The user can also specify to the
library that the lock should be switched only after a certain number of network lock
/ CPU lock requestsoccur badk to badk so that the lock migrations do not occur
frequertly. Another approad is to passcommnunication pattern information as well
asother guidelineinformation to the MPI library in the form of hints. MPI standard
supports the interface for providing hints to the library. This can be usedto give

priority to a particular lock operation for instance.

5.4 Related Work

There are se\eral studies regarding implemerting one-sidedcomrmunication in
MPI-2. Most of the related work has beendescribted in Section 4.5 of the previous
chapter.

Further researbersin [17] have studied e cient implemertation of locks using

NIC basedatomic operationson Myrinet.

60

CHAPTER 6

FENCE SYNCHR ONIZA TION

In scierti ¢ applications, often the communication occursamonga subsetof pro-
cessedike near-neighbourcomnunication, ghost cell updatesetc. For sud scenarios
a collective syndironization is semairtically more easierto use as well more e cien t
to implemert in the library. In this work, shavn in the highlighted part of Figure 6.1
of the proposedreseart framework, we look at the various methods and algorithms
to implemert fencesyndronization and provide an improved designand study the
trade-o s.

Fenceis an active syndironization method which is collective over the comnunica-
tor assaiated with the window object. Fig. 6.2 shows a typical fenceusagescenario.
The rst fencecall makessurethat the window on the remote processis ready to be
accessedA processmay issueone-sidedoperationsafter the rst call to fencereturns.
The next call to fenceor the secondfencecompletesthe one-sidedoperationsissued
by this processaswell asthe operationstargeted at this processby other processes.
An implemertation of fencesyndironization must support the following semarnics:
A one-sidedoperation cannot accessa process'swindow until that processhascalled

fence,and the secondfenceon a processcannot return until all processeseedingto

61

Petascale SCIENTIFIC APPLICATIONS AND BENCHMARKS
Applications —
One-sided API
Data transfer Synchronization
(put,get,accumulate),datatype (active,collective,passive)
|
Y
Designs and Optimizations
3nded|5ided — Enit;Ig;%i(l?t\)llerlap Read-Modify Non-contiguous Intra-Node
iddleware Write data transfer Optimizations
Non-blocking
|

________________________ j

Advanced InfiniBand Primitives

Modern
Interconnects

Figure 6.1: Overview

accesghat process'swindow have completeddoing so. In addition the secondfence

alsoneedsto start the next accesepoch as seenin Fig. 6.2.

6.1 Design Alternativ es

In this sectionwe discussthe designchoicesfor implemerting fencemedanisms,
identify the limitations and proposeour optimizations.

In the MPI implemertations derived from MPICH2 [9, 46, 6], there are two
options for implemening fence: i) Deferredand ii) Immediate. In the Deferred ap-
proacd, all the operationsand syndironizations are deferredtill the subsequenfence.
In the Immediate method, the syndironization and communication operationshappen

asthey are issued. We explorethe designissuesinvolved in both theseapproades.

62

Process: 0 Process: 1 Process: 2

START: Epoch_0 -- Fence --------------- Fence--------------- Fence --
Put (2) Put (0)
END: Epoch_0
& - Fence --------------- Fence--------------- Fence --

START: Epoch_1

END: Epoch_1 -- Fence --------------- Fence--------------- Fence --

Figure 6.2: FenceUsage

As describted in the previous section, a fencecall needsto provide two function-
alities: (i) it completesthe previousepoch i.e it ensuresthat all the precedingRMA
operations have completedand (ii) it beginsthe next exposureepoch.

Next we descrike the designfor implemerting fenceusing the Deferred Approach.

6.2 Deferred Metho d using two-sided comm unication (Fence-
Def)

In this design,the rst fencecall doesnothing and returns immediately. All the
ensuingonesidedoperationsare queuedup locally. All the work is donein the second
fence,whereead processgoesthrough its list of queuedoperationsto determineits
target processes. This information is stored in an array and in the secondfence
operation a MPI _Reducescatter operation is performedto let every other process
know if it is the target of RMA operationsfrom this process.The remote processcan
then wait for the RMA operations from thesenodes. The last RMA operation from

eadt processs conveyedto the remoteprocessy setting a ag in that RMA message.

63

Sincethe deferredapproad is basedon two-sided,the remote processis involved in
receivingthe RMA messageand by looking at the ag, it ensureghat it hasreceiwed
all the messagefrom that process.Sinceall the RMA messageare queuedandissued
during the fence,certain optimizations can be donethat canimprove the latency of
the messagess well asreducethe overheadof the fenceoperations. However, there
is no scope for providing overlap using this approad. In this designthere is a notion
of a remote agert that can handle incoming one-sidedand syndironization messages

and we refer to this two sidedbaseddesignas Fene-Def.

6.3 Immediate Metho d using RDMA Semantics

Next we discussfenceimplemenations that usesimmediate approadcy and RDMA
sematics of the interconnectsfor commnunication operations. This is the main focus
of our work sincewe are interestedin fenceimplemertation on networks that support
RDMA semairtics.

One of the main challengesin designingfencefor RDMA operationsis the detec-
tion of remote completion of the Put operations.

One approad to handle remote completion is to wait for local completionsand
then issuea Barrier operation. This seemserfectly plausible asthe Batrrier is called
after all the Puts are issuedand completed. Howeer this doesnot completely guar-
antee correctnessas shovn in Fig. 6.3. There is scope for the Barrier messageso
overtake the Put messagesssuedto process3 asthe Barrier can be implemerted in
a hierardhical fashion and can complete earlier than the Put. If there is a hardware
implemertation of Barrier and the underlying hardware guararteesthat the messages

are not overtaken, only then this is a valid solution but not otherwise.

64

Process: 0 Process: 1

Barrier: step 1

. b
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Barrier: step 2 1 PUT: from O to 3 | Barrier: step 2
P | (Arrives After step2) P
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Barrier: step 1
Process: 2 Process: 3

Figure 6.3: Barrier Message®vertaking Put

Another method of handling remote completion is by sendingcompletion or n-
ish noti cation messageshat indicate that all message®n this channel have been

received. There are somelimitations of this approad with increasingscale.
6.3.1 Basic Design for Fence (Fence-Imm-Naiv e)

The MVAPICH2 library takesadvantage of RDMA Read and Write operations
to improve the performanceof cortiguous Get and Put operations. Theseone-sided
operations are issuedimmediately. The one-sidedbasedimplemenation provides
higher bandwidth for large put and get messageshan the two sided baseddesign
(Deferred method) and also provides greater potertial for overlap of computation
and comnunication. The current fenceimplemertation is basedon this designand is
shown in Fig. 6.4. In orderto completelyimplemen the fenceusagesemarics shavn

earlier in Fig. 6.2, we needto support the following two functionalities: i) ensure

65

local and remote completion of operationsin the current epoch and ii) indicate the

beginning of the next accesspoch.

PO P1 P2 P3

PUT
\ PUT
epoch 0

Fence begin

Finish message -~

/ 5]
P c
;o 3
y r

completing
epoch 0

local
completion

[REDUCE SCATTER]

completion
)

v v | finish mesg

starting R
epoch 1

Fence end

Figure 6.4: Fence-Imm-Naie

In this approad, polling for local completions are done to make sure that the
issued one-sidedoperations are completed locally. For Get operations which are
implemerted on top of RDMA Read,local completionis su cient to indicate that the
Get operations are complete. The Put operations which are basedon RDMA Write
need remote completions. To handle this, a nish messages sert on ead channel
on which a put operation is issuedto indicate that it has sert all the message®n
that channel. Sincethe RDMA write operations on the samechannel are ordered,
whenthe nish messagas receied, all the RMA operationsissuedpreviouslyto that

node are assuredto be completed. Polling for local completionsis doneto make sure

66

that all the messagesen have completedlocally. A Reducescatter operation is used
to let a processknow if it is the target of RMA operations. The target node then
waits for nish message$rom all thesenodes. At this point, the fencehas nished
completion of messagesgor that epoch. The next part is to indicate to all the other
processedhat the next epoch can begin and it is safeto accessthe window. The
current designpostsa ag to ewvery other processto indicate that the window can
now be safelyaccessedor the next epoch.This resultsin all pair-wise syndironization
of the processes. This is a naive approad and leadsto o od of messagesn the
network. We will refer to this approat as Fene-Imm-Naive

This designhasse\eral drawbads that needto be addressed From the description
of the designin the previous section, we can seethat there could be two potertial
o ods of messagesluring the fence. The rst isa o od of nish messages$o handle
remote completion if the processis commnunicating with se\eral peers. The second
ood is the ood of messagedo post a ag to indicate that the window can be

accessedor the next epoch.
6.3.2 Fence Immediate with Optimization (Fence-Imm-Opt)

As an optimization to this approad, we use a barrier instead of the pair-wise
syndironization to indicate the beginning of the next epoch. This alleviates the
second o od of messageslescrilked above. Figure 6.5 descrikesthis approad and is
a more scalablesolution sinceit usesO(logn) communication steps. We refer to this
approad as Fene-Imm-Opt.

These approades descriked above still have the issue of completion messages

being sert on all the channels. As the number of processescaleto large number,

67

PO P1 P2 P3

PUT
epoch 0

Fence begin

PUT
Finish mess:égé‘ -~
-~
completing
epoch 0 ~

local .
completion

[REDUCE SCATTER]

v v | finish mesg |
completion

starting [BARRIER]

epoch 1
.

Fence end

Figure 6.5: Optimized Design(Fence-Imm-Opt)

this could becomea bottlenedk. We propose a new design that usesthe remote
noti cation provided by the In niBand networks to designa novel and scalablefence

implemertation.

6.3.3 New Scalable Fence Design With Remote Noti cation
(Fence-Imm-RlI)

In this sectionwe descrilke our new scheme which is also an Immediate method,
but o ers greaterscalability. The newfenceimplemertation is shavn in Fig. 6.6. The

main designand implemenations issuesare as follows:

Remote noti cation of one-sided operations

As descriked earlier, one approad to handle remote noti cations is by ushing

all the channelsusing a nish message.Howeer, this approad is not scalableas

68

PO P1 P2 P3
(RDMA write with imm) . -
PUT (RDMA write with imm) (RDMA write with imm)

PUT PUT

\

Epoch 0

Fence beg

S

A

local
completion

complete
Epach 0 { ALL REDUCE]

Remote
RDMA Immediate
completion

LA |
i

Start Epoch 1 E BARRIER j

\

Fence end

Figure 6.6: New design(Fence-Imm-RI)

it could leadto a o od of messages.In this design,we usethe RDMA Write with
Immediate operationsto issuePut operationswhich createsa completionertry onthe
remote node. After polling for local completions,the remote node is informed of the
number of sud operationsfrom all the processeshrough an MPI _AllIReducecall. The
remote node then pollis till it receivescompletion noti cations for that many number
of RDMA write with Immediate operations. The completion of the Get operations

is handled by waiting for local completionsfor the RDMA Read operations. This

eliminatesthe rst o od of messages.

Noti cation of beginning of next epoch

The next part is to indicate the beginning of the next epoch, i.e, to make sure

that it is safeto accesghe window for the next epoch. It is to be noted that MPI

69

calls provide assertionsthat can be usedto give hints if there are no precedingor
succeedingone-sidedoperations and in that casethe fencecan be optimized. Here
we do not handlethe assertionsbut look at the generalcase.In our design,we usea
MPI _Barrier call to indicate the beginning of the next epoch. As mertioned earlier,
typical Barrier implemertation useslog(n) commnunication stepsleadingto a scalable
solution. Onetrade-o of usingthis approad is that it forceseveryonein the group
to syndironize and we might loseout on some ner grain syndironization betweena

subsetof menbers of the fencegroup.

Prep osting Receiv e Descriptors

One issuewith using RDMA Write with immediate functionality is the needto
prepost receiwver descriptors. We currertly handle this issueby preposting a xed
number of receive descriptorsinitially and repost additional descriptorsin the fence
syndironization call. We post additional receiveson receivingRDMA write comple-
tions. Howeer, in casesvherethe fencesyndronization is not called often and there
are extremely large number of Put operations, there is a scenarioin which we might
run out of receiwe descriptors. One solution to this approad is to usethe In niBand
SharedReceive Queue(SRQ) medanism [57] which allows e cien t sharingof receive
bu ers acrossmany connections.When the number of available bu ers in the shared
gueuedrops below a low watermark threshold, an interrupt can be generatedand
additional bu ers are posted. Another approad is to use an asyndironous thread
that can post the receiws.

Henceforthwe will referto this approad as Fence-Imm-RI. In this work we have

focusedon In niBand Architecture. Howewer, similar designscan be proposedfor

70

other interconnectsthat can provide remote completion medanismsfor RDMA op-

erations.

6.4 Exp erimental Results

In this sectionwe presert the experimertal evaluation of the di erent fencedesigns.
We characterize the performanceof the proposeddesignswith the di erent micro-

bendimarks represeting various comnunication patterns.

Exp erimen tal testb ed

Our experimenrtal testbed is a 64 node (512-core)intel cluster. Each node of our
testbed is a dual processor(2.33 GHz quad-core)systemwith 4 GB main memory.
The CPUssupport the EM64T technologyand run in 64 bit mode. The nodessupport
8x PCI Expressinterfacesand are equipped with MT25208 HCAs with PCI Express
interfaces. A Silverstorm 144 port switch is usedto connectall the nodes. The
operating systemusedis RedHat Linux AS4. All the experimerts are run with one

processper node con guration.

Metho dology

In this sectionwe descrite the methodology for our ewvaluation. First we demon-
strate the overlap capabilities of onesidedbasedimplementations ascomparedto one
sided communication over two sided basedimplemerntations. Next, we focus on the
syndironization overheadof our new Fence-Imm-RIdesigncomparingit with imple-
mertations through a set of micro bendhmarks and nally we comparethe di erent

designsfor a Halo comnmuncation pattern bendmark.

71

6.4.1 Overlap

In this sectionwe demonstratethe overlap potertial for our one-sidedimmediate
approadies comparedwith the two sided implemertation. Eacdh processissuesPut
calls to its neighbor betweentwo fencesyndironization calls. Increasingamourt of
computation isinsertedafter the Put call and beforethe secondencecall. The overlap
is measuredasthe amourt of computation that can be insertedwithout a ecting the
overall latency. The experimert was run for varying messagesizes. The results are
showvn in Fig. 6.7. We obsene that the two sided Deferred implemenation shows
virtually no overlap. This is expected becauseall the Put operations are deferred
and issuedinside the secondfenceand hencethere is no scope for overlap. Whereas
for all the Immediate approadiesusing one sided implemertation good overlap can
be adchieved for messagesizesbeyond 16K and closeto 90% overlap for message
sizeslarger than 64k. In the following sectionswe concenrate on comparing the
syndironization overheadof our new fencedesign(Fence-Imm-RI)as comparedto all

the other approades.
6.4.2 Basic Collectiv es Performance

Sincethe fencedesignsuse someof the collectivesin its implemertation in order
to exdhangethe number of remote operations as well asto syndironize for the next
epoch, we shav the baselineperformanceof the collective operations: Barrier,All-
Reduceand Reducescatter rst in this section. This would help usin understanding
the performanceof various fencedesigns. Table 6.1 shavs the results for up to 64

processesfor these collectives. The All-Reduce and Reducescatter numbers are

72

100 : . Y
Fence-Def ——
Fence-Imm-Naive ----3¢---
Fence-Imm-Opt =¥
L Fence-Imm-RI = o
80
Q.
&
¢ 60F
o
()
(o))
Il
c
@ 40
" o
o e
B
20 "..r"/
/'/
I
0 L L 1 N)) !
16 64 256 1k 4k 16k 64k 256k

Message size

Figure 6.7: Overlap performance

shown for 256 bytes messagesize. Thesecollectives shov good scalability with 40-50

usecslatencieson 64 processes.

Numprocs | Barrier | Allreduce | ReduceScatter
2 3.66 7.75 6.84
4 10.79 13.78 11.27
8 18.65 20.9 16.26
16 27.21 30.34 21.99
32 37.89 43.15 29.19
64 44.13 51.9 33.18

Table 6.1: Basic Collectives Performance(usecs)

6.4.3 Fence Synchronization Performance

In this sectionwe evaluate the performanceof the fencealone without any one-
sided commnunication operations. This measuresthe overhead involved in a fence

73

T T T T 3

T

1,200

[J Fence-Def

[J Fence-Imm-Naive
[J Fence-Imm-Opt
[J Fence-Imm-RI

800 b

T
|

1,000

600~ B

Latency (us)

400 B

<
©

200 1
T e []]

Num of procs

Figure 6.8: FencePerformancefor Zero Put

syndironization. The results are shovn in Fig. 6.8. Sincethere are no data transfer
operations, there is no overhead of the data messagesn terms of local and remote
completionsfor one-sidedoperations. We still needto usethe collectivesto inform
the other processeghat the fencecan completeand also that the next fenceepoch
can begin. The Fence-Imm-Naie performs the worst, becauseof the all pair-wise
syndironization happening to indicate the end of the epoch. The Fence-Imm-Opt
and Fence-Imm-RI perform closeto ead other since both of them use Barrier to
indicate the start of next epoch. The Fence-Imm-Optperformsslightly better than
the Fence-Imm-RlI, the reasonfor this is becausethe Fence-Imm-Opt usesReduce
Scatter collective as opposedto the AllReduce collective usedby the Fence-Imm-RI
stheme. From Table 6.1, we can seethat the ReduceScatter collective has a lower
latency than that of AllReduce. We seethat the Fence-Defwhich usesthe two sided
approad performs the best, sinceit does not needto use additional collective to

indicate the start of an epoch.

74

1,600 T T T

[J Fence-Def

[J Fence-Imm-Naive
[J Fence-Imm-Opt
[J Fence-Imm-RI T

T

1,400

T

1,200

T

1,000

800 B

Latency (us)

600 [~ B

400~ b
0 — r'—‘ 1 [’7‘
[ee) © o <
— @ ©

Num of procs

Figure 6.9: FencePerformancefor Single Put

6.4.4 Fence Synchronization with Comm unication Performance

In the previous section, we evaluated the dierent sdiemesfor just the fence
syndironization overhead. In this sectionwe ewaluate the scalability of our fenceim-
plemertations with communication operations which is more re ectiv e of usagein a
one-sidedapplication. First we evaluate the performanceof fencewith a singlePut of
16 bytes messagesizeissuedby all the processes.The results are shown in Fig. 6.9.
For this pattern, we obsene that Fence-Imm-Naie performsvery badly. Howewer it
is interesting to comparethe performanceof Fence-Imm-Optand Fence-Imm-RI.We
now seethat the Fence-Imm-Rloutperformsthe Fence-Imm-Optsdieme. The reason
for this is the Fence-Imm-RlIrelies on the hardware RDMA-W rite with immediate
for remote completions, whereasthe Fence-Imm-Opt has to issue completion mes-
sageswhich increaseshe overhead. This di erence is magni ed further in the next
experimert where ead processissuesPuts to 8 neighbors and hencethe number of

completion messagesncreasesfurther for the Fence-Imm-Opt. The results for this

75

1,400 T T T T

[J Fence-Def

[J Fence-Imm-Naive
[J Fence-Imm-Opt
[J Fence-Imm-RI

T

1,200

T
|

1,000

800 B

600 - b

Latency (us)

400 4

20;” hwﬂj ﬁwﬂT FNHT [] T 4

<
©

Num of procs

Figure 6.10: FencePerformancefor Multiple Puts

experimert is shavn in Fig. 6.10. The two-sidedapproad still performsthe bestbe-
causeit haslower overheadfor small messageand can combine the data transfer and

syndironization messageBut it needsto be notedthat it haspoor overlap capability.
6.4.5 Halo Exchange Comm unication Pattern

Scieni ¢ applications often communicate in a regular pattern. Halo exdange of
messagess a very popular model in which ead node commnunicateswith a xed num-
ber (4, 8, 26, etc) of neighbors. Theseusually correspnd to the parallel processing
of multi-dimensional data in which ead compute processhandlesa certain sectionof
this data set. The neighbors exchange messageso handle border conditions. This
communication pattern is more represetativ e of real world applications. We simu-
late this halo exdhangepattern for 4 and 8 neighbors and ewvaluate the two schemes.
Every processinitiates the one-sidedoperation with its neighbor and simultaneously

performsa xed amourt of computation.

76

T T T T
1,800 N
[J Fence-Def

[J Fence-Imm-Naive —
[J Fence-Imm-Opt

[J Fence-Imm-RI —

T

T

1,600

T

1,400

T

1,200 b

T

1,000 B
800 B

Latency (us)

600~ B
400~

3 ol

<
©

Num of procs
2,000 T T T

[J Fence-Def

[Fence-Imm-Naive
[J Fence-Imm-Opt
[J Fence-Imm-RI

T

1,500

T

1,000 b

Latency (us)

L mlln |

Num of procs

64

o
™

Figure 6.11: Fence performancewith Halo Exchange: (a) 4 neighbors and (b) 8
neighbors

The results for 4 and 8 neighbors are shovn in Fig. 6.11(a) and Fig. 6.11(b),
respectively. Here we obsene that our new Fence-Imm-RI scheme outperforms all
the other sthemes. All the immediate approateshave good computation/ commu-
nication overlap, whereasthe two-sided deferred approad has very poor computa-
tion/communication overlap. The Fence-Imm-Rlhasreasonablylow syndironization
overhead and very good computation/communication overlap and henceshows the

best performance.

s

6.5 Related Work

Someof the MPI-2 implemertations that support one-sidedcommnunication are
MPICH2 [9, 33, OpenMPI [12],WMPI [44], NEC [63, SUN-MPI [16. The NEC
implemertation [63] usesAllreduce and Barrier to implemert fencesyndironization.
Howewer they do not use RDMA Write with Immediate medanism for remote no-
ti cations. The RDMA Write with Immediate feature has been exploredin [42]
for designingMPI _Alltoall over In niBand. In our work we are using it to designa

scalablefencesyndronization.

78

CHAPTER 7

READ MODIFY WRITE MECHANISMS

One of the important operationsin a one-sidedmodel is read-malify-write. Applica-
tions like Hydra[51] which is basedon MPI-2 one-sided predominarily usethis oper-
ation. One-sidedapplications can either usetheseinterfaceif they are provided, else
they needto build on top of existing primitiv es. MPI-2 semairtics provide MPI _Put,
MPI_Get and MPI _Accumulate operations that can be usedto implemert the read-
madify-write operations. In this work, shovn in the highlighted part of Figure 7.1
of the proposedreseart framework, we study the di erent medansimsfor providing
this capability and further explore how the remote atomic operations provided by

In niBand canbe leveragedto provide better support for theseoperations.

7.1 HPCC Benchmark

HPCC Bendimark suite is a set of tests that examinethe performanceof HPC
architectures that stressdi erent aspects of HPC systemsinvolving memory and
network in addition to computation [56]. HPCC Random Accessbendimark is one of
the bendimarks in this suite which measureghe rate of random updatesto remote
memory locations. Currently this bendymark is implemerted basedon MPI two-

sided semattics. In this work we designdi erent MPI-2 versionsof the Random

79

Petascale SCIENTIFIC APPLICATIONS AND BENCHMARKS
Applications —

One-sided API
Data transfer Synchronization
(put,get,accumulate),datatype (active,collective,passive)
|
Y

Designs and Optimizations
One-sided __ Enablln%_(l?verlap Non-contiguous Intra-Node
Middleware SaR2blity B
data transfer Optimizations
Non-blocking
Optimized Re-ordering & Migrating Locks

________________________ j

Advanced InfiniBand Primitives

Modern
Interconnects

Figure 7.1: Overview

Accessbendimark using the MPI-2 one-sidedalternatives. We use the one-sided
versions of the Random Accessbendimark as a casestudy for studying di erent
implemertations of the read-malify-write operations and provide optimizations to
improve the performance.

The HPC Challenge(HPCC) bendymark suite has beenfunded by the DARPA
High Productivity Computing Systems(HPCS) program to help de ne the perfor-
mance boundariesof future Petascalecomputing systems[22]. HPCC is a suite of
teststhat examinethe performanceof high-endarchitecturesusingkernelswith mem-
ory accesgatterns more challengingthan those of the High PerformanceLINPACK

(HPL) bendimark usedin the Top500list. The RandomAccesshendimark measures

80

the rate of integer updatesto random memory locations (GUPS). It usesxor opera-
tion to performthe updateson the remotenode. The veri cation procedureallows 1%
incorrect or skipped updateswhich allows looseconcurrert memory update semartics
on sharedmemory architecture. It allows optimization in terms of aggregatingup to
1024 updatesto improve the performance. There has beenearlier work to improve

the performanceof this bendmark for blue-geneclusters[26).

7.2 One sided HPCC Random Access Benchmark: Design
Alternativ es

In this sectionwe descrike the di erent approatestaken to implemern the one
sided version of the HPCC Random Accessbendimark. As descriked earlier, the
random accessbendimark measuresthe GUPs rating. The term randomly means
that there is little relationship betweenone addressto be updated and the next. An
update is a read-mdify-write operation on a table of 64-bit words. An addressis
generated the value at that addressread from memory modi ed by an xor operation
with a literal value and that newvalueis written badk to memory Currently the MPI
version of the bendimark is basedon two sided version. In this versionthe random
addressand value is generatedand is sert to the remote node. The remote node

receiesthis data and appropriately updatesthe memory location.

Design Issues

In this sectionwe rst descrike the semarics and medanismso ered by MPI-2
for designingone-sidedapplications. In a one-sidedmodel, the sendercan accesghe
remote addressspacedirectly without an explicit receiwe postedby the remote node.

The memory area on the target processthat can be accessedy the origin process

81

is called a Window. In this model we have the comnunication operations MPI _Put,
MPI1_Get and MPI _Accumulate and the syndronization calls to make surethat the
issuedone sided operations are complete. There are two types of syndironization:
a) active in which the remote node is involved and b) passie in which the remote
node is not involved in the syndironization. The active syndironization calls are
collective on the ertire group in caseof MPI_Fenceor a smaller group in caseof
Start_Complete and Post Wait model. This could lead to somelimitations when the
number of syndironizations neededper processare di erent for di erent nodes. In
passive syndironization the origin processissuesMPI _Lock and MPI _Unlock call to
indicate the beginning and end of the accesspoch. Next we describe our approah
taken in designingthe one-sidedversionsof the HPCC Random Accessbendmark.
We map the table memory to the Window so that the one-sidedversionscan read

and write directly to this memory
7.21 HPCC Get-Mo dify-Put (HPCC _GMP)

In the rst approad we call MPI_Get to get the data, perform the modi cation,
then use MPI _Put to put the updated data to the remote location. As compared
to the two sided versionsthere are no recei\e calls made on the remote node. Also
the active syndronization model cannot be usedsincewe cannot match the number
of syndironization calls acrossall nodes. This is becausethe number of remote
updatesaswell asthe location of the remote updatesfor ead node canvary randomly.
Hencewe usepassie syndironization MPI _Lock and MPI _Unlock callsin this scheme.
Further we need one set of Lock and Unlock calls to fetch the data, perform the

modi cation, then another set of Lock and Unlock operationsto put the data. The

82

reasonfor this is the exibilit y of MPI-2 semanics which allows MPI _Get to fetch
the data in Unlock. Also the MPI_Get and MPI _Put can be reorderedwithin an
accessepoch. We descrike this approad in Fig. 7.2a and will henceforth refer to
it as HPCC_GMP. This approad leadsto a lot of network operations resulting in
lower performance. Further the possibility of incorrect updates increases. This is
due to the coherencyissuesthat might arise becauseof parallel updates occurring
simultaneously To make surethat there are no incorrect updates, mutual exclusion
(atomicity) hasto be implemerted on top of the existing approad which could lead

to further degradationin performance.

7.2.2 HPCC Accum ulate (HPCC _ACC)

Our next approad usesthe MPI _Accumulate operation provided by MPI-2. MPI-
2 semaittics provide MPI _Accumulate which are basically atomic reductions. This
non collective one-sidedoperation combines communication and computation in a
single interface. It allows the programmerto update atomically remote locations
by conbining the content of the local bu er with the remote memory bu er. This
implemertation calls MPI_Accunulate betweenMPI _Lock and MPI _Unlock syndro-
nization calls. Using this approad shown in Fig. 7.2b, we do not have the issueof
incorrect updates. Also ascomparedto our HPCC_GMP, the number of network op-
erationsis signi cantly reduced. Another approad is to useAccumulate with Active
syndironization model using Win _Fence. This could be done by calling Win_Fence
at the very beginning, performing all the updates using MPI _Accumulate and then

call one Win _Fenceat the very end. All the processesieedto call two Win_Fence

83

MPI_Create_Win() MPI_Create_Win() MPI_Create_Win()
MPI_Lock() MPI_Lock() MPI_Type_Create_Struct (datatype
MPI_Get () MPI_Accumulate() MPI_Type_Commit (datatype)
MPI_Unlock () MPI_Unlock() MPI_Lock()

LooP ; : LooP -
Modify Operation Loop MPI_Accumulate(datatype)
MPI_Lock() MPI_Unlock()
MPI_Put ()
MPI_Unlock () MPI_Type_Free(datatype)
MPI_Free_Win() MPI_Free_Win() MPI_Free_Win()

a) HPCC_GMP b)HPCC_ACC Cc)HPCC_ACC_AGG

Figure 7.2: Code snippets of one-sidedversionsof HPCC Random Accessbendimark

calls, one at the beginning and one at the end. Howewer since MPI-2 semattics al-
lows the actual data transfer to occur inside the syndronization call that closesthe
exposureepoch, all the accunulates could happen during the secondwin _Fencecall.
Many MPI implemenations actually make use of this exibilit y. This violates the
random bendimark rule that you could store only 1024 updates at the maximum

beforesendingthem. Hencewe did not considerthis approad.

7.3 Optimizations

In this sectionwe descrilbe two optimizations we proposein this paper to improve

the performanceof the one-sidedversionof HPCC Random Accessbendimark.

7.3.1 Software Aggregation

In this technique we want to aggregateor padk a number of update operations

together so that the overheadof sendingas well as syndronization operations can

84

be reduced. Using this approad, we aggregatea bunch of update operations before
sendingthem asa singlecommunication operation. The HPCC random accesdend-
mark allows ead processotto storeup to 1024updatesbeforesendingthem out. The
MPI-2 semarics provides datatypes feature that can be leveragedto achieve aggre-
gation. For one-sidedoperations both the senderand destination datatypesneedto
be created. We create MPI _Type_struct senderand receiwer datatypesto represeh a
bunch of updatesin the following manner. The court holdsthe number of updatesto
be aggregatedthe block_lengthsare all one,the displacemen array holdsthe remote
addressor local addressrespectively of ead update and the MPI datatype of eath
ertry is 64 bit unsignedinteger. We then usethe createddatatypesto issuea single
comnunication call asshown in Fig. 7.2c. Using this approat we expect to improve

the performancesincethe number of network operations are minimized.
7.3.2 Hardw are based Direct Accum ulate

In niBand provides hardware atomic fetch and add operation that can be lever-
agedto optimize MPI_Accumulate operation for MPI _SUM. The Accumulate opera-
tions usethe hardware fetch and add operation that can provide good latency and
scalability. One of the limitations of this approad is that we canonly do single64 bit
accunulates with ead fetch and add operation, i.e. aggregationis not possible. A
bene t of usingthis approad is that sinceit is truly one-sidedin nature, it provides
more scope for overlap that can lead to improved performance. It is to be noted
that this optimization is implemerted in the underlying MVAPICH2 MPI library as

a prototype and is transparert to the application writer.

85

7.4 Performance Evaluation

In this section,we evaluate the performanceof the one-sidedversionof the HPCC
bendmark for the di erent sthemes. We presert somemicro-bendimark results to
give the basicperformanceof di erent one-sidedoperationsand show the potertial of
our proposedoptimizations. The experimertal testbed is x86 64 node cluster with 32
Opteron nodesand 32 Intel nodes. Each node has 4GB memory and equipped with
PCI-Expressinterface and In niBand DDR network adapters (Mellanox In niHost

11 Ex HCA).

Basic performance of one-sided operations

In this sectionwe shav the performanceof the basicone-sidedperationsMPI _Put,
MPI1_Get and MPI_Accunulate. Fig. 7.3ashows the small messagdatency for these
operations. The latency for 8hbytes for put and get are 5.68and 11.03usecs,respec-
tively, whereasthe accunulate latency is 7.06 usecs.Sinceget. modify _put implemen-
tation needsboth get and put in addition to modify and syndronization operation,

we expect this performanceto be lower comparedto the accunulate basedapproad.

HPCC one-sided benchmark performance with dieren t schemes

In this sectionwe ewaluate the performanceof the two di erent versionsof the
bendimark HPCC_GMP and HPCC_ACC. The results are shavn in Fig. 7.3b. As
expectedthe HPCC_ACC performsbetter than the HPCC_GMP becauseof the num-
ber of syndronization and commnunication operationsin HPCC_GMP. The overhead

of these additional network operations leadsto lower performanceof HPCC_GMP.

86

16 0.0035

o /././. 0008
12

ob—O———O0——a—00 0.0025 -
| /.’-// 0.002 4
| e——— * 0.0015
0.001 4
] 0.0005 - J
. 0 ’_. ; ; ; ;
4 8 16 32 64

1 2 4 8 16 32 64 128 256 512
Message Size (bytes) Number of Processors

=
o

GUPs

Latency (usecs)

o N A O ©

=-MPI_Put -B-MPI_Get =& MPI_Acc @EHPCC_GMP mHPCC_ACC

Figure 7.3: Basic Performance(a) Micro-bendimarks and (b) Basic HPCC GUPs

This performancegap increaseswith increasingnumber of processorssincethe syn-
chronization cost increasesfurther for larger number of nodes. Hence we choose

HPCC_ACC asour basecasefor further optimizations and ewvaluations.

Aggregation Benets

To improve the performanceof the Accumulate operation, we proposedaggrega-
tion using Accumulate with datatype. In this sectionwe evaluate the performance
bene ts of using datatype at micro-bendimark level. In the basicversionwe do mul-
tiple accunulates correspnding to the number of updates. In the aggregatedversion
we create a datatype correspnding to the number of updates and perform a single
accunulate operation with that datatype. Fig. 7.4a shows the results of our study.
With increasingamourts of aggregation,the Accumulate with datatype outperforms
the multiple accunulate sthhemes.With aggregationthe cost of sendingoverheadand
the syndironization overheadsare limited to the number of aggregatedoperations.
Next we comparethe performanceof HPCC_ ACC_AGG with HPCC_ACC for 512

and 1024 aggregations. The results are shovn in Fig. 7.4b. We obsene a similar

87

1000 0.014
900 -
800 -
700 4 0.01

600 -
4 0.008 |
500 5
200 | © 0.006
300 1 0.004 1
200 |
100 4 0.002 |
0 ‘ ‘ ‘ — = N | | .|
4 8 16 32 64

8 16 32 64 128
Number of updates Number of processors

0.012 +

Latency (usecs)

o

—&-Acc_without_agg -#- Acc_with_agg \D No Aggregation B 512 aggregation (01024 aggregation\

Figure 7.4: Aggregation Performance Benets (a) Basic Aggregation Micro-
bendimarks and (b) HPCC with Aggregation

trend with the optimized HPCC_ACC_AGG performing better than the HPCC_ACC

stheme. This result demonstratesthe bene ts that aggregationcan provide.

Hardw are based Direct Accum ulate

In this sectionwe rst study the bene ts that could be adieved using the hard-
ware basedfetch and add operation to implemert a read modify write operation at
microbendimark level (DIRECT ACC). We compareits performancewith the the
sthemesthat usesGet Modify Put (GMP) approad and MPI_Accunulate (ACC)
approad. The MPI implemertation allows optimizations that delays the actual lock
and data transfer operation to happen during unlock. In this casemeasuringjust the
lock and unlock cost doesnot provide any additional insight. Hencewe measurethe
latency that includesboth data transfer and lock/unlo ck syndironization operation.
Fig. 7.5 comparesthe basicperformanceof GMP, ACC and DIRECT _ACC. We note

that for single updates of 64bit integer, the (DIRECT _ACC) stheme provides the

88

Latency Usecs
o]

Direct_Accum Accum Get_modify_put

Figure 7.5: Direct Accumulate PerformanceBene ts: Micro-bendimarks

lowest latency. This is becausethe existing MPI_Accumulate implemertation is in-
herertly two sidedwhereasthe Direct Accumulate implemenrtation makesuseof the
truly one-sidedhardware feature.

Next we try to understandthe bene ts that a hardware based Accumulate op-
eration can provide to an application. To ewaluate this we modify the HPCC_ACC
bendimark to usethe MPI_SUM operation instead of the MPI _BXOR operation and
call this as HPCC_ACC_MOD. The veri cation phaseis correspndingly modi ed.
We then comparethe HPCC_ACC which usesthe existing MPI _Accumulate imple-
mertation in the MVAPICH2 library with the modi ed HPCC_ACC_MOD which uses
our Direct Accumulate prototype implemenation. The resultsare shown in Fig. 7.6.
We obsene that the Direct accunulate performs signi cantly better than the basic
accunulate. Also the Direct Accumulate seemsto scalevery well with increasing
number of processors.The reasonfor this is two-fold: 1) low software overheadand

2) true one-sidednature of the hardware basedDirect Accumulate.

89

0.009

0.008 -
0.007 4
0.006 -
0.005 4
0.004 +
0.003 1
0.002 +
0.001 4
NN B ’—. ‘ ‘ ‘
4 8 16 32 64

number of processors

@ Accum M Direct accum

GUPs

Figure 7.6: HPCC with Direct Accumulate

Finally we compareour two proposedtechniquesDirect Accumulate and software
aggregation (Accumulate with datatype). The results are shovn in Fig. 7.7. The
software aggregationsdheme beats the hardware baseddirect accunulate approat
sincecurrertly the hardware fetch and add operation doesnot support aggregation.
Also the gap betweenthe two sthemesseemto be narrowing with increasingnodes.
This demonstratesthe scalability of the hardware basedoperations and suggestghe

bene ts of having aggregationin hardware as well.

In this work, we designedVPI-2 one-sidedversionsof HPCC randomaccesdend-
mark using get. modify _put and MPI _Accunmulate operations. The modi ed one-sided
HPCC Random Accessbhendimarks are available on line for reference13. We evalu-
ated thesetwo di erent approateson a 64 node cluster. To improve the performance
we exploredtwo di erent techniques: a) software basedaggregationand b) utilizing

hardware atomic operations. We analyzedthe bene ts and trade-o s of thesetwo

90

0.014

0.012 -

0.01 -

» 0.008 -
[a%
o}
© 0.006 4

0.004 -

0.002 A

0 ACJ_‘ } } } } L
4 8 16 32 64

Number of processors

@ accumulate Edirect accumulate 0 accumulate with agg

Figure 7.7: Software Aggregationvs Hardware Direct Accumulate bene ts

approades. Our studiesshow that the software basedaggregationperformsthe best.

We also demonstratedthe potential and scalability of the hardware basedapproad.
7.4.1 Discussion

Current implemertations for HPCC RandomAccesshendmark are basedon two-
sided comnunication primitives. While the main objective of this work is not to
comparethe designsbasedon one-sidedand two-sided semartics, it is also impor-
tant in this cortext to note that the current one-sidedimplemertations are largely
basedon two-sidedprimitiv esin the MPI libraries and hence,sud an evaluation is
not as informative. InniBand's hardware fetch and add operation provides a de-
sign opportunity for a Direct Accumulate for MPI_Sum operation for a single 64 bit
eld. While we have demonstratedthat both aggregationand direct hardware based
accunulation has bene ts, an aggregateddirect accunulate is likely to yield much
higher performancebene t. Howewer it is clearly not possibleto implemen sud a

designwith current In niBand's hardware. Also, it is to be noted that the hardware

91

fetch and add operation currently only allows the implemertation of accunulation of

MPI_Sumfor 64 bit elds and other operations needadditional hardware support.
7.5 Related Work

In [40, 37], the authors have usedIn niBand hardware featuresto optimize the
performanceof MPI-2 onesidedoperations. Other researbers [39]study the di erent
approades for implemening the one sided atomic reduction. The authorsin [17]
have looked at utilizing the hardware atomic operationsin Myrinet/GM to implemen
e cien t syndronization operations. Receltly seeral researbershave beenlooking at
providing optimizations to the HPCC bendmark. In [26]the authors have suggested
techniquesfor optimizing the Random accessbendimark for Blue Geneclusters. In
[59] the authors have evaluated UPC programming model on Cray machines using

the HPCC bendmark suite.

92

CHAPTER 8

NON-CONTIGUOUS DATA-TRANSFERS

Non-cortiguous communication patterns are quite commonin scierii ¢ applications.
seweral MPI applications sud as (de)composition of multi-dimensional data vol-
umes[10,24] and nite-element codes[18]often needto exdangedata with algorithm-
related layouts betweentwo processesin the NAS bendymarks suc asMG, LU, BT,
and SP, non-cortiguous data comrmnunication hasbeenfound to be dominant [41]. As
oneof its important features,MPI provides datatype as a powerful and generalway
of describingarbitrary collectionsof data in memoryin a compactfashion. The MPI
standard also provides run time support to create and managesud MPI derived
datatypes. MPI derived datatypes are expectedto becomea key aid in application
dewelopmen. In practice, howewer, the poor performanceof many MPI implemerta-
tions with derived datatypes[18, 32] becomesa barrier to using derived datatypes.
This is primarily due to copy overheadasseiated with multiple copiesfrom and to
cortiguous bu ers internally.

A programmer often prefers padking and unpading non cortiguous data manu-
ally ewven with considerablee ort. Recenly, a signi cant amourt of researth work
have concetirated on improving datatype comnunication in MPI implemertations,
including 1) Improved datatype processingsystem [32, 52|, 2) Optimized pading

93

and unpading procedures[18, 32], and 3) Taking advantage of network featuresto
improve non cortiguous data comnunication [67]. Our previouswork usedmultiple
RDMA writes, henceforthreferredto as Multi-W, asan e ective solution to achieve

zero-coyy datatype communication [67].

Petascale SCIENTIFIC APPLICATIONS AND BENCHMARKS
Applications ~

One-sided API
Data transfer Synchronization
(put,get,accumulate),datatype (active,collective,passive)
|
Y

Designs and Optimizations
i Enabling Overla
Write Optimizations
Non-blocking
E Optimized }ERe-ordering& }
Fence sync scheduling

________________________ j

Advanced InfiniBand Primitives

Modern
Interconnects

Figure 8.1: Overview

In this work, shavn in the highlighted part of Figure 8.1 of the proposedreseart
framework, we focus on improving non-cortiguous data comrmunication by taking
advantage of advancedfeaturesof modern interconnects. The drawbad of the tradi-
tional padk/unpack basedapproadesfor implemerting datatypesis that it involves
memory copieson both senderand receiwer sides. Thus, zero copy communication

protocols are of increasedimportance becausethey improve memory performance

94

and also have reducedhost CPU involvemer in moving data. Hencewe focus on
leveraging the bene ts of zero copy messagdransfersto implemert e cient proto-
cols for datatype comnunication. In this work we explore zero-coly designsusing

In niBand's hardware scatter/gather operations.

8.1 Non-con tiguous Point-to-p oint Data-transfer

The motivation for proposing our new zero-coly sdiemeis two-fold. First, we
would like to address/alleviatethe limitations of our previousapproades. Secondly
with the emergenceof PCI-Expressbus, the network bandwidth that can be utilized
is greatly enhanced. This further reinforcesthe needto comeup with schemesthat
can directly exploit this enhancedbandwidth to the maximum. Zero copy schemes,
becausethey are not limited by memory bandwidth are more appealing. Howewver
basedon our previouswork, though the Multi-W zerocopy sdhhemedoesbetter than
the copy basedapproadies,it still may result in under utilization of the network in
many scenarios.In niBand providesthe Gather Sendand Scatter Receiwe capability
through send/receie channelsemartics. We would liketo explorethis option to come
up with an e cient zerocopy sdheme. The following experimert below tries to assess
the potential bene ts of using Send Gather and Receiwe Scatter at the VAPI layer

(low level In niBand API provided by Mellanox).

Motiv ating Case Study for the Prop osed SGRS Scheme

Considera casestudy involving the transfer of multiple columnsin a two dimen-
sionalM N integer array from one processto another. There are two possible
zero-coly schemes. The rst approad is to use multiple RDMA writes, one per

row. The secondapproad usesSendGather/Receive Scatter. We comparethesetwo

95

sthemesover the VAPI layer, which is an In niBand API provided by Mellanox [7].
The rst sdeme posts a list of RDMA write descriptors. Eadh descriptor writes
one cortiguous block in eat row. The secondsdeme posts multiple Send Gather
descriptorsand Recei\er Scatter descriptors. Each descriptor has 50 blocks from 50
di erent rows (50 is the maximum number of segmets supported in onedescriptorin
the current versionof Mellnox SDK). We will henceforthreferto thesetwo shemesas
\Multi-W" and\SGRS" in the plots. In the rst test, we considera 64 4096integer
array. The number of columnsbeing sert variesfrom 8 to 2048. The total message
sizevariesfrom 2 KBytes to 512 KBytes accordingly The bandwidth test is usedfor
ewvaluation and the bandwidth number is reported in order of Million bytes (MB/s).
As shawvn in Figure 8.2, the SGRS sdheme consistetly outperforms the Multi-W

scheme. In the secondtest, the number of blocks variesfrom 4 to 64. Three di erent

900 — 900
SGRS-BW —— .
800 r Multi-W-Bw -~ P 850 T
g "0 T @ 80|
s 0 S 750!
£ 0 £ 700
T I 5 : \
= o 2 650l Multi-W-128 —— |
g 3007 c Multi-W-256 -
3 & 600 Multi-W-512 -+ |
200 ¢ 1 SGRS-128
100 ¢ f 550 | SGRS-256 -+ f
SGRS-512 -
0 b 500 ‘ ‘ ‘
2K 4K 8K 16K 32K 64K 128K256K512K 4 8 16 kY] 64
Message size (bytes) Num of Blocks

Figure 8.2: Bandwidth Comparisonover Figure 8.3: Bandwidth Comparisonover
VAPI with 64 Blocks VAPI with Varying Number of Blocks

messagesizeswere studied: 128 KBytes, 256 KBytes, and 512 KBytes. Figure 8.3

96

shows the bandwidth results with di erent number of blocks and di erent message
sizes.When the number of blocks is small, both Multi-W and SGRSsthemesperform
comparably This is becausethe block sizeis relatively large. The network utiliza-
tion in the Multi-W is still high. As the number of segmets increasewe obsene a
signi cant fall in bandwidth for the Multi-W sdiemewhereasthe fall in bandwidth is
negligiblefor the SGRSsdeme. There are two reasons.First, the network utilization
becomedower when the block sizedecreasegi.e. the number of blocks increases)n
the Multi-W sdeme. Howeer, in the SGRSsdeme,the multiple blocks in onesend
or receiwe descriptor are consideredas one message.Second,the total startup costs
in the Multi-W sdemeincreaseswith the increaseof the number of blocks because
eah block is treated as an individual messagen the Multi-W sdieme and hence
the startup cost is assaiated with ead block. From thesetwo examples,it can be
obsened that the SGRS sdheme can overcomethe two drawbads in the Multi-W
by increasingnetwork utilization and reducing startup costs. These potertial ben-
e ts motivate us to design MPI datatype comnunication using the SGRS scheme

descriked in detail in Section10.
8.1.1 Prop osed SGRS (Send Gather/Recv Scatter) Approac h

In this sectionwe rst descrite the SGRS scheme. Then we discussthe design
and implemertation issuesand nally look at someoptimizations to this schheme. The
basic idea behind the SGRSsdiemeis to usethe scatter/gather feature asseiated
with the sendreceive medanism to acdhieve zero-coy commnunication. With this
feature we can send/receive multiple data blocks as a single messageby posting

a send gather descriptor at sourceand a receiwe scatter descriptor at destination.

97

SENDER RECEIVER

Sender Receiver

REQUEST CTRL MESG + LAYOUT (PRIMARY CONNECTION)

I~ POST_SCATTER

7 N)
REPLY C RLMESG* HECISIO Fo (PR MARY CONNEC 0!
ME: ECISION NFO (
Ive Scal V

POST_GATHER|

send gather

DATA (SECOND CONNECTION)

user buffer user buffer

Figure 8.4: a)Basicldea of the SGRSShemeand b) SGRSProtocol.

Figure 8.4aillustrates this approad. InniBand also provides RDMA Write with

Gather and RDMA Readwith Scatter capability. The SGRSsdemecan handle non-
cortiguity on both sides. The RDMA Write Gather or RDMA Read Scatter handles
non-cortiguity only on oneside. Hence,to achieve zero-coy datatype comrmunication
basedon RDMA operations, the Multi-W sdemeis needed[67]. Comparedto the
Multi-W sdeme,the SGRSsdemereducesthe number of descriptorsdramatically.

It alsoincreasegshe network utilization. There are two requiremens. First, all the
cortiguous blocks needto be registered. Second,the sendershould sendits layout
information to the receiver. The cost of sendingthe layout could be high in some
cases.We describe optimization medanismslike layout cading later in this section

to alleviate this problem.

98

Design and Implemen tation Issues

We now discusghe intrinsic issuegelatedto the MPI implemertation of the SGRS
sheme. The commnunication protocol and designissuessud as secondaryconnec-
tion, progress,layout exchange, posting descriptors,and userbu er registration are

addressedhere.

Comm unication Proto col

The SGRSsdemeis deployed in Rendezwus protocol to transfer large datatype
messages.For small datatype messagesthe Generic shemeis used. As shown in
Figure 8.4b, the sender rst sendsthe Rendezwusstart messagavith the data layout
information out. Second,the receier receives the above messageand gures out
how to match the sender'slayout with its own layout. Then, the receiver sendsthe
layout matching decisionto the sender. After receivingthe reply messagethe sender
posts send gather descriptors. It is possiblethat the sendermay break one block
into multiple blocks to meet the layout matching decision. There are se\eral design
issues: Secondaryconnection, Progress, Layout exchange, Posting descriptors and

Registration.

Secondary connection

The SGRSsthemeneedsa secondconnectionto transmit the non-cortiguous data.
This needarisesbecauseit is possiblein the existing MVAPICH designto prepost
somereceiwe descriptorson the main connectionas a part of its ow cortrol meda-
nism. Thesedescriptorscould unwittingly match with the gather-scatterdescriptors
asseiated with the non-cortiguous transfer. One possibleissuewith the extra con-

nection is scalability. In our design, there are no bu ers/resources for the second

99

connection. The HCA usually can support a large number of connections. Hence
the extra connectiondoes not hurt the scalability. The secondissueis out of order
messagesHaving two connectionscan create out of order arrival of messagesvhich
have to be handled carefully. Howewer, in our design,sincethe cortrol messagess
shown in Figure 8.4b still usethe primary connection,the out of order situation is

averted and the receiver still receivesthe messagen the sameorder.

Progress and Completion

Another issueis handling of completion of a messageln our designwe assaiate
a single completion queuewith both connections. This ts in well with the existing
framework for ensuringprogressof the commnunication call. The completionis handled
by polling for completion of scatter/gather descriptorson the secondconnection,and

we do not needan extra messagéo indicate completion.

Layout exchange

The MPI datatype hasonly local semanics. To enablezero-coly comnunication,
both sidesshould have an agreemeh on how to sendand receiwe data. In our design,
the sender rst sendsits layout information to the receiwer in the Rendezwus start
messageas shown in Figure 8.4b. Then the receiver nds a solution to match these
layouts. This decisioninformation is also sert bak to the senderfor posting send
gather descriptors. To reducethe overheadfor transferring datatype layout infor-
mation, a layout cathing medanism s desirable[36]. Implemertation details of this
cahe medanismin MVAPICH canbe foundin [67]. In Section 8.2, we evaluate the

e ectivenessof this cadhe medanism.

100

Posting Descriptors

There are three issuesin posting descriptors. First, if the number of blocks in
the datatype messages larger than the maximum allowable gather/scatter limit,
the messagéasto be chopped into multiple gather/scatter descriptors. Second,the
number of postedsenddescriptorsand the number of postedreceiwe descriptorsmust
be equal. Third, for eat pair of matched send and receiwe descriptors, the data
length must be the same. This basically needsa negotiation phase.Both theseissues
can be handled by taking advantage of the Rendezwus start and reply messagen
the Rendezwus protocol. In our design,the receiver makes the matching decision
taking into accour the layouts aswell as scatter-gatherlimit. Both the senderand

the receiwer post their descriptorswith the guidanceof the matching decision.

User Buer Registration

To senddata from and receiwe data into userbu er directly, the userbu ers need
to be registered. Given a non-cortiguous datatype we can register eat cortiguous
block oneby one. We could alsoregisterthe whole regionwhich coversall blocks and
gapsbetweenblocks. Both attempts have their drawbads [66]. In [66], Optimistic
Group Registration(OGR) hasbeenproposedto make atrade o betweenthe number
of registration and deregistration operations and the total sizeof registeredspaceto

achieve e cient memory registration on datatype messagéu ers.
8.2 Performance Evaluation
In this sectionwe evaluate and comparethe performanceof our SGRSsthemewith

the Multi-W zero-coy schemeand the Generic schhemein MVAPICH. We perform

101

latency, bandwidth, bi-directional bandwidth and CPU overheadtests using a vector
datatype to demonstratethe e ectivenessof our sdheme. Then we show the potential
bene ts that can be obsened for collective communication sud asMPI _Alltoall that
are built ontop of point-to-p oint commnunication. Further, we investigatethe impact
of layout cading for our design. Another aspect of our evaluation is the impact
of our zero-coy schemeon dierent platforms. The evaluation has been done on
two di erent platforms. one platform basedon PCI-X and the other basedon PCI-

EXxpress.

Exp erimen tal Testbed

For our experimerts we usedtwo clusterswhosedescriptionsare given below.

PCI-X basedcluster: A cluster of 8 nodes,ead with dual Intel Xeon 3.0 GHz
processorsb12KB L2 cade, 2GB main memory, PCI-X 64-bit 133 MHz bus,
and connectedto Mellanox In niHost MT23108 DualPort 4x HCAs. The nodes
are connectedusing the Mellanox In niScale 24 port switch MTS 2400. The
kernelversionusedis Linux 2.4.22smp.The In niHost SDK versionis 3.0.1and

HCA rm ware versionis 3.0.1. The Front SideBus (FSB) runs at 533MHz.

PCI-Expressbasedcluster: A cluster of 4 nodes,ead with dual Intel Xeon 3.4
GHz processorsand 512MB DDR main memory The nodessupport 8x PCI-
Expressand connectedto Mellanax In niHost MT23108 DualPort 4x HCAs.
The nodesare connectedusing an In niScale switch. The kernel version used

is Linux 2.4.21-15.EL.

102

Microb enchmarks

In thesebendmarks, increasingnumber of columnsin a two dimensionalM*4096
integer array are transferred between two processes.These columns can be repre-
sented by a vector datatype. We set up two casesfor the number of rows (M) in
this array: casel with 64 rows and case2 with 128 rows. Basically casel has a
“degreeof non-cortiguity' 64 and case2 has a "degreeof non-cortiguity' 128. The
number of columnsis varied from 4 to 2048,the correspnding messagesize varies
from 2 KBytes to 512 KBytes. The latency, bandwidth and bidirectional bandwidth

experimerts usethis setup.

Latency

The latency test is a ping-pong latency test with the vector datatype descrited
above. The PCI-X latency results for casesl and 2 are shown in Figure 9.4 and
Figure 9.6. For eath casewe comparethe two zero-copy shemes(SGRS and Multi-
W) and the Generic copy basedapproad. We also compareit with the latency of
the cortiguous transfer which senes as the lower bound. When the messagesizeis
small, the Genericsthemedoesbetter than the zero-coly sthemes. This is because,
for this range,the copy costis not substartial whereasthe overheadassaiated with
posting the descriptorsfor the non-cortiguous segmets dominate. Beyond a cut-o0
point, 32K in caseof SGRSsteme,the zero-coly sthemesstart outperforming the
Genericsdhemeby a signi cant margin. Beyond the cut-o point the SGRSsdheme
doesbetter than the Multi-W. This di erence alsoincreasesvhenthe degreeof non-
cortiguity increasesbecauseMulti-W steme needsto post a descriptor for eat

segmen individually. We obsene that the SGRS sthemereducesthe latency by up

103

to 61% comparedto that of the Multi-W steme. On PCI-Expressplatforms almost
similar trend can be obsened for latency for the two casesas seenin Figure 9.5 and
Figure 9.7 exceptthat the gap betweenthe SGRSsthemeand the Multi-W sheme
widens. SGRS scheme reducesthe latency by up to 69% comparedto that of the
Multi-W sdeme. Also on the PCI-Expressplatform the cut o point beyond which

the zero-coy sthemeperformsbetter is lowered.

Bandwidth

The bandwidth experiment usesthe standard bandwidth test except that the
datatype is a vector datatype described above. The PCI-X bandwidth results for
casesl and 2 are shavn in Figure 8.17 and Figure 8.19. The improvemen factor
over the Multi-W sdemevariesfrom 1.12to 4.0. It can alsobe obsened that when
the degreeof non-cortiguity is large, the improvemern of the SGRS sdheme over
the Multi-W sdemeis higher. This is becausethe improved network utilization in
the SGRSstemeis more signi cant when there are more non-cortiguous blocks of
small size. When the block size(the sizeof non-cortiguous segmet) is large enough,
RDMA operations on eat block can adchieve good network utilization as well and
both sthemesperform comparably For large messagesur sthemeis ableto achieve a
bandwidth closeto that of the peakcortiguous bandwidth. This is dueto the fact that
the large size of messagesgssistedby the zero-coly medanismis able to completely
saturate the network which is desirable. On PCI-Expressplatforms, Figure 8.18 and
Figure 8.20shav the bandwidth comparison. The trends seenon PCI-X platform are
further magni ed in the cortext of PCI-Express. SGRSsthemeperformsconsiderably
better than the Multi-W sdemeand this performancegapis more prominert in PCI-

Expressas comparedto PCI-X. The improvemen factor over Multi-W is upto 7.20on

104

PCI-Expressplatforms. Further both the zero-coly approadesshon improvemert in
bandwidth on PCI-Expressplatform ascomparedto PCI-X. The Genericcopy based
sthemedoesnot shav any signi cant improvemert acrossthe two platforms. This can
be attributed to the fact that the memory bandwidth on the PCI-Express platform
is similar to that of the PCI-X platform, and sincethe Generic schemeis basedon
copy, and the memory bandwidth is the bottlened on our PCI-Expressplatform, the

Genericsthemeis not able to leveragethe improvemert in the network bandwidth.

Bidirectional Bandwidth

The memorybandwidth limitation of copy basedschemescan have seriousimpact
whenwe take alook at the bidirectional bandwidth. In abidirectional bandwidth test,
the non-cortiguous data o w takesplace simultaneouslyin both the directions. On a
PCI-X platform the bidirectional bandwidth attains a peakof 941MB/s for cortiguous
data. The SGRSsdemeand the Multi-W sdemeare able to take advantage of this
improvemen in the bandwidth whereasthe copy based Generic sheme saturates
around 548MB/s becausethe bottlened is the memory copy. The results are shavn
in Figure 8.21and Figure 8.2. Comparedto the Multi-W sheme,the SGRSsdeme
does consistely better and is able to achieve a peak bandwidth of 910MB/s for
512K messageThis behaviour standsout further on PCI-Expressplatform which can
achieve a peakbidirectional bandwidth of upto 1920MB/s almost double that of uni-
directional bandwidth. The PCI-Expressbidirectional bandwidth results are shavn
in Figure 8.2 and Figure 8.2. The zero-coly basedsthemescan directly leveragethis
improvemert in the network bandwidth and can achieve a bidirectional bandwidth of
1876MB/s closeto that of peak cortiguous bidirectional bandwidth whereasthere is
very little improvemern for the copy basedsteme. Further comparedto the Multi-W

105

sheme,the SGRSperformssigni cantly better and shavs an improvemen of up to
3 times.

The new and emergingtrends in memory technology like DDR2, QDR, etc. could
signi cantly relocate the bottlenedks in the system, presening new interesting sce-

narios for further investigations.

900

900

SGRS-64 —— SGRS-64 ——
800 [Multi-w-64] 800 | Mult-W-64
700 | Contiguous - [700 | Contiguous -~
5 o0 Generic-64 = ; 5 o0 Generic-64 =
o 600 @ 600
(%] (7]
2 500t 2 500
) %)
2 400 g 400 f
Q Q
© 300+ =300 ¢
| |
200 ¢ 200 |
100 + 100 t —
o | o s Froox . . .
2K 4K 8K 16K 32K 64K 128K256K512K 2K 4K 8K 16K 32K 64K 128K256K512K
Message size (bytes) Message size (bytes)

Figure 8.5: MPI Level Vector Latency 64 blocks a)PCI-X and b)PCI-Express

Performance of MPI _Alltoall

Collective datatype commnunication can benet from high performancepoint-to-
point datatype comnunication provided in our implemertation. We designeda test to
evaluate MPI _Alltoall performancewith derived datatypes. We usethe samevector
datatype we had usedfor our earlier evaluation.

Figure 8.11ashows the MPI _Alltoall latency performanceof the various shhemes
on 8 nodesfor the PCI-X platform. We study the Alltoall latency over the message

range4K-512K. Weran theseexperimerts for two di erent numbersof blocks: 64 and

106

900 o 900 ——————
SGRS-128 —— SGRS-128 ——

800 Multi-W-128 = 800 | Mul-W-128

700 | Contiguous - 700 | Contiguous - ?
5 o0 Generic-128 o 5 o0 Generic-128 o
o 600 r g 600 |
i 500 i 500 |
% 400 % 400 |
§ 300 | § 300 |

200 ¢ 200 t

100 | 100 |

0 s

2K 4K 8K 16K 32K 64K 128K256K512K
Message size (bytes)

2K 4K 8K 16K 32K 64K 128K256K512K
Message size (bytes)

Figure 8.6: MPI Level Vector Latency 128 blocks a)PCI-X and b)PCI-Express

1000

1000

SGRS-64 —— SGRS-64 —+——__y ot
Multi-W-64 - e Multi-W-64.,--55-=
~ 800 Contiguous = . 800 iquous
2 Generic-64 ¢ 4 ° ;
d o~ i /
2 600 ‘ 2 600
c X c
3 3 /
2400 | 2 400¢
c i c X
S B @ 8 ' G B
200 | " 1 200 | g
0 ——————— Y ,»ﬁ"’ 0 >>>>>> Jq/,«*’j(it
2K 4K 8K 16K 32K 64K 128K256K512K 2K 4K 8K 16K 32K 64K 128K256K512K
Message size (bytes) Message size (bytes)

Figure 8.7: MPI Level Vector Bandwidth 64 blocks a)PCI-X and b)PCI-Express

107

1000

1000

SGRS-128 —— SGRS-128 —— 4
Multi-W-128 —— R — Multi-W-128 5=
800 Contiguous =" ~ 800 Contiguous -~
% Generic-128 g Generic-128 /=
2 600 .) 2 600 -~
c X c
g / g ;
3 400 | 3 400y
C c X
@ ; @ :
200 | ’ 1 200 | e
\x\ \ \ \ \ e ?? \ \ \ \ \
2K 4K 8K 16K 32K 64K 128K256K512K 2K 4K 8K 16K 32K 64K 128K256K512K
Message size (bytes) Message size (bytes)

Figure 8.8: MPI Level Vector Bandwidth 128 blocks a)PCI-X and PCI-Express

2000 ‘ : ‘ ‘ 2000 ‘ ‘ ‘ ‘ ‘ ‘
SGRS64 _ SGRS-64 —— — ‘—'/:/:*,1—'—«5»
Multi-W-64 Multi-W-64 ="

- Contiguous -~ - Contiguous -
Q 1500 1 Generic-64] Q 1500 | Generic-64" = ’,
c c
5 1000 | 3 1000 |
2 3 /
T . T ;
m 500 . m 500} e

e Qb

2K 4K 8K 16K 32K 64K 128K256K512K 2K 4K 8K 16K 32K 64K 128K256K512K

Message size (bytes) Message size (bytes)

Figure 8.9: MPI Level Vector Bi-directional Bandwidth 64 blocks a)PCI-X and
b)PCI-Express

108

2000

2000

SGRS-128 —— SGRSA28 —— | .o+
Multi-W-128 Multi-W-128 -3~
~ Contiguous -~ . Contiguous.»
: 1500 1 Generic-128 =] Q 1500 1 Generic-128
c c
5 1000 ¢ 5 1000 |
2 3
° - ke)
8 g X 8
g 500 [~ c‘g 500 t ot
e rvw— o
2K 4K 8K 16K 32K 64K 128K256K512K 2K 4K 8K 16K 32K 64K 128K256K512K
Message size (bytes) Message size (bytes)

Figure 8.10: MPI Level Vector Bi-directional Bandwidth 128 blocks a)PCI-X and
b)PCI-Express

‘ : ‘ ‘ ‘ ‘ 5000 ‘ : ‘ ‘ ‘ ‘
10000 ¢ SGRS-64 segments —— SGRS-64 segments ——
SGRS-128 segments —— 4500 SGRS-128 segments ——
8000 | Multi-W-64segments -~ | 4000 | Multi-W-64segments -~
g Multi-W-128 segments = g 3500 | Multi-W-128 segments
3 6000 | : S 3000
a) 8 /’:,,,,,,,,,Z N o a 2500 ¢
5 4000 | e x g 5 2000
g . 8 1500 |
2000 hopo e I 1 1000 »
500 ¥
0 L L L L L L 0 L L L L L L
4K 8K 16K 32K 64K 128K 256K 512K 4K 8K 16K 32K 64K 128K 256K 512K
Message size (bytes) Message size (bytes)

Figure 8.11: MPI _Alltoall Vector Latency a)PCI-X and b)PCI-Express

109

128. We obsenethat the SGRSsdhemeoutperformsthe Multi-W sdemeconsisterly .
The gapwidensasthe number of blocks increases.This is becausdhe startup costsin
the Multi-W sdiemeincreasewith the increaseof the number of blocks. In addition,
givenamessageize,the network utilization decreasesvith the increaseof the number
of blocks in the Multi-W sdeme.

The MPI Alltoall latency performancefor PCI-Express platform was ewvaluated
on 4 nodes. The results are shavn in Figure 8.11b. The SGRS sheme performs
better than the Multi-W sdeme and this performancedi erence is higher on the

PCI-Expressplatform ascomaparedto PCI-X platform.

CPU overhead evaluation

In addition to the latency and bandwidth, the host CPU usagefor the message
transfer is also a relevant metric, becauseit indirectly gives an estimate of CPU
availability for the application progress.In this sectionwe measurethe CPU overhead
involved for the two sthemes. Thesetests were conducted on the PCI-X platform.
Figures8.12and 8.13comparethe CPU overheadsasseiated at the sendersideand
receiwer side, respectively. The SGRS sdeme has lower CPU involvemen on the
senderside ascomparedto Multi-W sdieme. Howewer on the receiwer sidethe SGRS
sthemehas an additional overheadas comparedto practically closeto zerooverhead

in caseof Multi-W sdeme.

Impact of Layout Caching

In both the Multi-W and SGRSsdemes,the layout hasto be exdhangedbetween
the senderand receiver before data commnunication. In this test, we studied the

overheadof transferring the layout information. We considera syrnthetic bendimark

110

60 e 20 T
Multiw-64 segments —— Multiw-64 segments ——
~ 50l MultiW-128 segments -~ | - MultiW-128 segments -~
3 SGRS-64segments - 3 SGRS-64segments -
A SGRS-128 segments o 157 SGRS-128 segments
g I g
© @ Xemmemmmee NS IR TV - 3
2 3¢ 2 10
3 3
> >
°© 20 r . s ° 8
)] o) 5 i o & 8 a 8)
S 10! 5 IS x
0 L L L L L L L 0 * * * * * ki ki
2k 4K 8K 16K 32K 64K 128K256K512K 2k 4K 8K 16K 32K 64K 128K256K512K
Message size (bytes) Message size (bytes)

Figure 8.12: Senderside CPU overhead Figure 8.13: Receier side CPU over-
head

wherethis e ect might be prominert. In our bendimark, we needto transfer the two
leading diagonalsof a squarematrix betweentwo processesThesediagonal elemens
are actually small blocks rather than single elemerts. Hence,the layout information
is complex and we need considerablelayout sizeto descrike it. As the size of the
matrix increasesthe number of non-cortiguous blocks correspndingly increasesas
well asthe layout description.

Figure 8.14 shaws the percenage of overheadthat is incurred in transferring this
layout information whenthere is no layout cade ascomparedwith the casethat has
a layout cae. For smaller messagesizes,we can seea benet of 10 percert and
this keepsdiminishing as the messagesize increases. Another aspect here is that
even though for small messagethe layout sizeis comparablewith messagesize,since
the layout is transferredin a cortiguous manner, it takesa lesserfraction of time to

transfer this as comparedto the non-coriiguous messageof comparablesize. Since

111

"blocksize: 4byies —
35 blocksize:8 bytes -x-—
blocksize:16 bytes ~x-

Percentage of Overhead
N
o

500 750 1000 1250 1500 1750 2000
Num of blocks

Figure 8.14: Overheadof Transferring Layout Information

the cost asseiated in maintaining this cade is virtually zero, for messagesizesin

this rangewe can bene t from layout cading.

112

8.3 Non-con tiguous One-sided Data-transfer

In this sectionwe addresshow to handlenon-coniguous data transfere cien tly in the
cortext of one-sidedcommunication. In one-sidedcommnunication, both the local and
remote locations are speci ed on the senderor origin side. The approadesdescriked
in the previoussectioncan alsobe usedfor one-sidedcommnunication. This work was
donein the corntext of ARMCI which is a one-sidedcommunication library descriked
in section2.5. We use a helper thread baseddesignwhich involves limited remote
host involvement to provide this support. We intend to extend this designfor MPI-2
one-sidedcommunication.

In the following sectionswe describe a basicapproad and our proposedzero-coly

approad to handle non-cortiguous data transfer in ARMCI library.
8.3.1 Host-Based Buered Approac h

A simple way of performing non-cortiguous transfersis to maintain a cortiguous
bu er on both the local and the remote side and move data using this cortiguous
bu er. This approadt requiresheavy involvemen on both the local and remote sides
in moving the data betweenthe bu er and the noncortiguous sourceor destination.
An enhancemento this approad is to divide the data into chunks and pipeline the
memory copy and nonblocking comrunication so that they overlap. Basedon the
messageaize,the messagaransmission/receptioncanbe brokeninto smallerrequests.
A copy of onepart of the requestcan be overlapped with the transmissionof another

piece. Fig. 8.15shaws the stepsinvolved in a host-basedbu ered protocol.

113

Another approad that can be usedhereis to do multiple cortiguous transfers
for eat cortiguous chunk. We refer to this approad as Multiple _Zero_Copy ap-
proach. This approad is zero-coly but may require the initiator of the requestto
spend sometime in processingthe multiple cortiguous requestsit has to initiate
for every noncortiguous request. In addition, handling ow cortrol issueslike the
number of outstanding requestsallowed might adverselya ect performance. We in-
troduceda host-assistedzero-coy method to addressthe problemsinherert in both

the approadesdescrited above.

Figure 8.15: Host BasedBu ered Approach

8.3.2 Host-Assisted Zero-Copy RMA

To leveragethe advantages of the host-assistedzero-coly approad in Mellanox
VAPI, memory on both sidesmust be registered. The useris not expectedto either
explicitly registermemory or keeptrack of this information. Instead we maintain and

parsea high-grarularity global memoryinformation table to determineif the memory

114

on both sidesis registered. The host-assistedapproad requirespartial involvemen
of a remote host to complete operations. We refer to the represetative on the re-
mote side that assistsin the completion of the operation as a "helper" thread. The
helper thread initiates an operation and hencerequires minimal remote-side CPU
involvemen. This is very similar to the ARMCI data sener thread [47, 49 and
the dispatcher thread in the IBM LAPI [53. The signi cant dierence is that the
helper thread doesnot copy any data and doesnot wait on an operation it issuedto
complete. With this helper thread as an assistamh to completethe operation on the
remote side, we descrike the implemertation details of cortiguous and noncortiguous
one-sidedGet and Put operations. We demonstratethe bene ts of this approad by
cortrasting its performancewith the traditional host-based/bu ered approad and
by shaving the performanceof these protocols on a few application bendymarks in

Section8.4.

Implemen tation of Get Operation for Noncon tiguous Data

Becausea noncortiguous data transfer would involve transfer of multiple segmets
of data, our strategy is to usethe scatter/gather messageassingfeature provided by
IBA to achieve the zero-copy transfer. Using that feature, we can send/receive mul-
tiple data segmets asa singlemessagdy posting a single scatter/gather descriptor.
The two typesof scatter/gather message-passingperationsde ned in IBA VAPI are
1) Gather-Send(which requiresthe noncoriiguous data being sert to be represeted
asa Gather-Senddescriptor) and 2) Scatter-Receie (which requiresthe noncortigu-
ousdestination for the receiwe to be speci ed in a Scatter-Receie descriptorformat).
In a host-assistedzero-coly Put, the sourcesendsa requestto the remote side. The
helper thread processeghe request, corverts the vector/stride information in the

115

requestinto a VAPI Receie-Scatter descriptor, posts the descriptor, and sendsan
adknowledgmen to the requesting process,indicating that it has postedthe neces-
sary receiwe descriptor. On receivingthis adknowledgmer, the sourceprocessposts
a Gather-Sendfrom the VAPI Gather-Senddescriptor it created while waiting for
an aknowledgmen from the helper thread. This directly delivers the data to the
destination memory without the overheadof any intermediate copies. Although the
explicit adknowledgmen might seemlike an overheadfor large messageswhen the
copying cost starts to dominate, this approad performsbetter. It shouldbe enabled
only for multidimensional Put operations when the rst stride or the size of eat
cortiguous segmen is large. For a host-assistedzero-coy Get shovn in Fig. 8.16,
the sourcenode postsa Scatter-Receie descriptor to receiwe the vector/strided data
and then sendsa requestto the remote host with the remote stride/v ector informa-
tion. The helper thread on the remote host receies the requestand then posts a
correspnding VAPI Gather-Sendby converting the stride/v ector information in the
requestmessaganto a VAPI Gather-Senddescriptor. The implemertation of this

protocol prompted us to addressa number of designissues.

Limit on Scatter/Gather Entries per Descriptor

The strided put/get operations can be usedto transfer sectionsof multidimen-
sionalarrays. Each dimensionof the array cansupport any number of data segmets.
Howeer, the IBA implemertation puts an upper limit of 60 on the number of scat-
ter/gather ertries that can be allowed per Scatter-Receie or Gather-Senddescriptor.
Hence, for large messagesthe maximum scatter/gather ertry limit requiresus to
extend the above approad. Becausewe can have only 60 scatter/gather entries in a

descriptor, our solution is to break our messagénto chunks of up to 60 data segmets

116

and post a gather send/scatter receiwe for ead one of them. Posting a send/receie
is a nonblocking operation in IBA and takesonly a very short time (a microsecondon
Itanium 1GHz), sothe overheadin posting multiple gather descriptorsis not signif-
icant. In the caseof Strided Get, the client posts multiple scatter receivesand then
sendsthe request. At the remote side, the helper thread processeshe requestand
posts multiple gather sends.A similar approad has beenfollowed for implemening

the noncortiguous puts.

Resource Allo cation

At the client level, memory needsto be allocated and maintained to create a
scatter/gather descriptorfrom a strided/v ector request. Unlike VIA, VAPI copiesthe
posteddescriptor on to the NIC and hencedoesnot require us to keepthe descriptor
until the requesthasbeencompleted. At the NIC level, the number of scatter/gather
ertries must be decidedat the initialization phase.The larger the scatter gather list,
the larger the amourt of memory allocated per descriptor on the NIC. To investigate
the e ect of this on the performanceof the operation, we conducted experimerts
to measurethe changein latency with increasingnumber of scatter/gather ertries.
We determinedthat the overheadfor having 60 scatter gather ertries in a descriptor
instead of 1 is not signi cant (lessthan 1 micro sec)and hencewe could a ord to set

the scatter/gather limit to the maximum allowed value of 60.

8.4 Performance Evaluation

We comparedthe performanceof the di erent methods descriked above not just

to cortrast the host-assistedzero copy with the other implemenations but also to

117

Figure 8.16: Host AssistedZero-copy Approach

show the importance of using multiple protocolsin adieving a sustainedgood per-
formance. Fig. 8.17 shows the performanceof noncortiguous ARMCI operations. It
comparesthe performanceof host-based/bu ered get and host-assistedzero-coly get
operations.Zero-Cop 2D getin Fig. 8.17 and Fig. 8.18represets the approad dis-
cussedearlierin this sectionwherea nonconiguous Get operation is implemeried on
top of multiple corntiguous RDMA Get operations, one for eat cortiguous segmen
For this test, ARMCI 2D data is represeted usingthe strided data format. It is clear
that the host-assistedzerocopy implemertation performsmuch better and more sig-
ni cantly sowhenthe rst dimensionis large. An advantage of using host-assisted
zerocopy can be determined by measuringthe e ect on protocol performancewhen
the remote side is doing a CPU-intensive operation. Unlike the zero-coly approad,
host-assistedzero-coly requires some host involvemern in initiating data transfer.

This is morerepresetativ e of the impact theseprotocolsmay have on an application

118

Figure 8.17: Bandwidth Comparisonwith Remote Side Idle

than mere measuremen of comnunication bandwidth/latency. Fig 8.18 shows the
performancedi erence betweenthe bu ered and host-assistedzero-coy protocols
whenthe remotesideis doing a CPU-intensive operation. In comparisonto Fig. 8.17,
it is very clear that the performanceof the host-assistedzero-copy protocol has not
beena ected at all by the CPU-intensive operation on the other side while the per-
formanceof the bu ered Get protocol dropped very signi cantly. This clearly shavs

the very low overheadthis protocol imposeson the remote-sideCPU.

Overlap Measuremen ts
Another signi cant advantage of this protocol is the amourt of overlap it can
provide in nonblocking operations. Becausethe implemertation doesnot involve any

data movemer in call initiation or call completion, the amourt of overlap possibleis

much higher than that for the other protocols. This can be clearly seenin Fig 8.19,

119

Figure 8.18: Bandwidth Comaprisonwith Remote Side Busy

which comparesthe amourt of overlap attainable with host-based/bu ered and host-
assistedprotocolsfor a nonconiguous data transfer for various squarenoncortiguous

chunks of data.

Matrix Multiplication

The bare microbendymark performancenumbersfor RMA operationsoften do not
givethe actual impact of the protocol usedto implemert the one-sidedoperation onan
application. A signi cant issuethat comesto light in actual application performance
in the caseof one-sidedoperationsis the ability of the operation to make progresswith
minimal to no remote host involvemen. SUMMA is a highly e cien t, scalableimple-
mertation of commonmatrix multiplication algorithm proposedby van de Geijn and
Watts [27]. For the RMA version,we usedthe algorithm implemerted using ARMCI

RMA in Global Arrays. The matrix in the Global Arrays implementation of ARMCI

120

Figure 8.19: Overlap Percenage

Figure 8.20: Performanceof Matrix Multiplication for SquareMatrices

121

Figure 8.21: Performanceof Matrix Multiplication for RectangularMatrices

is decompmsedinto blocks and distributed among processorsvith a two-dimensional
block distribution. Eadh submatrix is divided into chunks. Overlapping is achieved
by issuinga call to get a chunk of data while computing the previouslyreceived chunk.
The minimum chunk sizewas 128for all runs, which wasdeterminedempirically. The
maximum chunk size was determined dynamically, depending on memory availabil-
ity and the number of processors.Experimerts with matrix multiplication were run
by varying the matrix size and the number of processors. The three lines labeled
in both the graphsin Fig. 8.20 represen three di erent approadesto implemen
multi-dimensional RMA in ARMCI. The host-assistedzero-coly approad wasintro-
ducedin Section8.3.2. The host-based/bu ered approad and zero-coly approades
were discussedat the beginning of Section8.3.1. The host-based/bu ered approad
involvestwo copies,one on ead side;the zero-coly approad involves multiple con-
tiguous sendsfor eat noncoriiguous message.The computations were done on four

nodeswith two processeead. Fig. 8.20 shows the result for square matrices with

122

sizesvarying from 128to 2000. Fig. 8.21is for a rectangular matrix wherethe second
dimensionis setto 512and the rst dimensionvariesfrom 128to 2000. Our proposed
host assistedapproad outperformedthe other schemesfor microbendimarks as well
as application kernelslike SUMMA matrix multiplication.

This work described how non-coriiguous one-sidedcomrmunication can be imple-
merted e cien tly through the novel host-assistedapproad to support the zero-coy
commnunication. In addition, a high degreeof overlapping computations and commu-
nication wasdemonstrated. The bendimarksusedin the study shoved e ectivenesof
the RMA implemertation onIn niBand andthe importance of zero-coy nonblocking

protocolsfor hiding latency in the interprocessorcomrmnunication.

8.5 Related Work

Many researbershave beenworking on improving MPI datatype commnunication.
Researh in datatype processingsystemincludes [32, 52]. Researb in optimizing
padking and unpadking proceduresincludes[18, 32]. The closestwork to oursis the
work [67]to take advantage of network featuresto improve noncortiguous data com-
munication. In [67], Wu et al. have systematicallystudiedtwo main typesof approach
for MPI datatype comnunication (Pack/Unpack-tasel approachesand Copy-Reduced
approaches over In niBand. The Multi-W sdeme has been proposedto adcieve

zero-cojy datatype communication.

123

CHAPTER 9

NON-BLOCKING ONE-SIDED PRIMITIVES

As descriked in earlier sections,a one-sidedcomnunication library should pro-
vide low latency one-sidedoperations and good scope for overlap potertial. Non-
blocking operations are very important to achieve latency hiding and good computa-
tion/communication overlap. Nonblocking operations initiate a communication call
and then return cortrol to the application. The application writer/user can try to
hide the latency of the comnunication operation by overlapping communication with
computation.

There are two important aspects to this issue. The rst is the availability of
the non-blocking API that can be exposedto the application writers. Secondly the
underlying implemertation needsto be non-blocking to adhieve this. In this work,
shown in the highlighted part of Figure 9.1 of the proposedreseart framework, we
explore techniques and designsto implemert these non-blocking primitiv esin the

cortext of ARMCI which is a one-sidedcomnunication library.

124

Petascale SCIENTIFIC APPLICATIONS AND BENCHMARKS
Applications —
One-sided API
Data transfer Synchronization
(put,get,accumulate),datatype (active,collective,passive)
|
Y
Designs and Optimizations
3nded|5ided — Enit;Ig;%i(l?t\)llerlap Read-Modify Non-contiguous Intra-Node
iddleware Write data transfer Optimizations
Optimized Re-ordering &
Fence sync scheduling
|

Advanced InfiniBand Primitives

Modern
Interconnects

Figure 9.1: Overview

9.1 Ecien t Non-blo cking Design

Nonblocking operationsinitiate a comnunication call and then return cortrol to
the application. The userwho wishesto exploit nonblocking communication asa tech-
nique for latency hiding by overlapping comnunication with computation implicitly
assumeshat progressn commnunication canbe madein a purely computational phase
of the program executionwhenno comnunication callsare made. Unfortunately, that
assumptionis often not satis ed in practice, the availability of nonblocking APl does
not guarartee that overlapping communication with computation is always possible

[65].

125

Since the RMA or one-sidedmodel is simpler than two-sided messagepassing
model (e.g., does not involve messagdag matching or dealing with early arrival of
messages)in principle more opportunities for overlapping communication with com-
putation are available. Howewer, theseopportunities are not automatically exploited
by deriving implemenations of nonblocking APIs from their blocking courterparts.
For example,the commnunication protocolsusedto optimize blocking transfersof data
from non-registeredmemory by pipelined copy and network comnunication through
a set of registeredmemory bu ers [49] can achieve very good performanceby tuning
the messagdragmenation in the pipeline [64]. Howewer, the memory copy requires
the active host CPU involvemernt and therefore reducesthe potertial for e ective
overlapping commnunication with computation. To increasethe overlap, we expanded
the useof direct(zero-cofy) protocolson networks that require memory registration,
sud as Myrinet.

In ARMCI, areturn from a nonblocking operation call indicates a mereinitiation
of the data transfer process,and the operation can be completedlocally by making
a call to the wait routine. Waiting on a nonblocking put or an accunulate operation
ensuresthat data was injected into the network and the user bu er can be now
be reused. Completing a get operation ensuresthat data has arrived into the user
memory and is ready for use. A wait operation ensuresonly local completion. The
library imposesa limit on the number of outstanding requestsallowed (if necessary
it can transparertly complete an old requestand free up the resourcesfor a new
request). For performancereasons[12], ARMCI supports only a weak consistency
for operations targeting remote memory Unlike their blocking counterparts, the

nonblocking operations are not orderedwith respect to the destination. Performance

126

is onereason;the other is that by ensuringordering, we incur additional and possibly
unnecessaryverheadon applications that do not require orderedoperations. When
necessaryordering can be done by calling a fenceoperation. The fenceoperation is

provided to the userto con rm remote completionif needed.

Figure 9.2: Non-blocking transfer with implicit handle

Request Handle

The requesthandle structure is certral to the APIs assaiated with the latency
hiding medanismsin ARMCI. This opaqueobject is storedin the application memory
andis usedto 1) assigna uniqueidertit y to anonblocking RMA operation, 2) facilitate
aggregationof multiple operations,and 3) optionally storecertain cortrol information.
Before the handle is used, it must be initialized with the ARMCI _INIT _HANDLE

macro and can be reusedafter the assa@iated nonblocking operation completes.The

127

userpassesa referenceto a requesthandle structure. As a corvenienceto the user,a
NULL value for the handle addresscan be speci ed. The library keepstrack of these
so-calledimplicit handlerequests"and assignsa handleto them from aninternal pool
of handles. This type of requestscan be completed using either the wait operation
assaiated with a particular remote processor(seeFig. 9.2) or another wait operation

to completeall pendingimplicit handle requests.

9.2 Implicit and Explicit Aggregation

Aggregation of requestsis another medanism for improving latency tolerance.
Multiple nonblocking data transfer (put/get) requestscanbe aggregatednto a single
data transfer operation in order to improve the data transfer rate. Especially if there
are multiple data transfer requestsof small messagesizes,aggregatingthoserequests
into a single large request reducesthe latency, thus improving performance. This
technique is unique in its ability to sustain high bandwidth utilization and enables
high throughput. Ead of theserequestscan be of a di erent sizeand independen
of data type. The aggregatedata transfer operation is independer also of the type
of put/get operation; that is, it can be a combination of regular, strided, or vector
put/get operations. There are two types of aggregationavailable: 1) explicit ag-
gregation, where the multiple requestsare conbined by the user through the use of
the strided or generalizedl/O vector data descriptor, and 2) implicit aggregation,
where the combining of individual requestsis performed by ARMCI. The implicit
aggregationinvolves the nonblocking request handle that is marked as \aggregate
handle" usingthe ARMCI _SET_AGGREGATE _HANDLE macro. Userscanrely on

a single aggregatehandle to represeih multiple requests. Any number of operations

128

to/from the sameprocessorcan usethe sameaggregatehandle. A wait on sud a
handle completesall the aggregatedrequests. For multiple small sends,aggregating
is usually much faster and givesbetter performance.Fig. 9.3illustrates the aggregate
data transfer. It shows that the descriptorsof multiple put requestsare storedin an

aggregatebu er and, oncethe wait call is issued,the data transfer is completed.

Figure 9.3: Implicit AggregateData Transfer

Design and Implemen tation Approac h

Designinga portable RMA comnunication layer involves addressingmultiple is-
sues:1) the functionality must beimplemenable acrossa wide variety of platforms; 2)
performanceadvantagesof the native comnunication protocolsmust be exploited; 3)

opportunities for overlapping comnunication and computations should be provided;

129

and 4) as much of the code as possible must be sharedto minimize the mainte-
nancee orts acrossdi erent platforms. On networks like the IBM SP interconnect
and Quadrics, the underlying RMA layer provides most of the required capabilities.
Hence,on these systems,most of the nonblocking calls can be implemerted as thin

wrappers to the native protocols. We are referring to these protocols as direct. In
the caseof somenetworks, direct protocolsare zero-coly (GM, VIA, QuadricsElan),
but otherswherethe native commnunication interfaceinvolvescopying the data (IBM

LAPI) internally are not. Somenetworks like GM, VIA, and In niband require data
to be transmitted from/to special memory This can be accomplishedeither by 1)
copying the data into a set of special registered/pinned bu ers for transmission; 2)
allocating registered memory for the user; or 3) by on-demandregistration of the
user'smemory ARMCI usesall three shemes,depending on the platform, operation
type, or sizeof the data transfer. Protocolsthat usememorycopy shemearereferred
to asbu ered. Although the goalis to generalizemost of the design,doing soshould
not adverselya ect the performancein caseswhere an underling network provides
direct support.

Multiple requiremerts can be satis ed by a bu er managemen layer. First, on
networks that allow data transfersbetweenregisteredbu ers, the data canbe copied
in, sen, received, and copiedout from the internal setof bu ers allocatedin registered
memory In this manner, data can be transferred between nonregisteredmemory
locations. Note that on-demandmemoryregistration of userbu ers might not always
be available or can be very costly (e.g. GM) [49, 14]. Second,bu ers are useful
for padking/unpacking noncortiguous data transfers when the underlying network

has support only for cortiguous data transfers (for example, GM) [49. One of the

130

designgoalsis to make most of the handle managemenh code and bu er managemenh
code platform-independen, thus making the architecture portable while avoid the
unnecessaryoverhead. This is accomplishedby switching to a direct protocol when
possibleat the very beginning of the request processing. Interaction between the
platform-independert layer and platform/net work-speci ¢ layer is only to either inject

the data into the network or ched for the completion of an operation.

Handle Managemen t

Every nonblocking call is assaiated with a nonblocking requesthandle. For ex-
plicit handle nonblocking calls and aggregatehandle nonblocking calls, this handleis
passedby the userasa parameter. An implicit handle call is assaiated with a han-
dle from a static list of handles, maintained internally. The handle provided by the
useris internally mapped to a data structure that in turn carriesall the information
requiredto identify and complete,or test completion of a nonblocking operation. Be-
causea commonhandleis usedto represen a requeston all platforms, for portabilit y
reasongt storesonly the most genericinformation, including unique iderti er of the
request,the type of operation, and the remote processomumber. Other elds include

completion information required by the underlying network for requestcompletion.

Comm unication Buers

The communication bu er is represeted by a data structure that storesinforma-
tion about the assaiated request. In nonblocking operations, it alsocarriesa unique
requestiderti er for the request.For the bu ered implemertation of the get opera-
tion, it storesthe destination addressfor the data. For strided and vector operations,

the destination information is represeted by a more complex descriptor of variable

131

size. The bu er data structure hasa xed spaceallocated to store destination data
descriptors. For a larger descriptor, extra memoryis allocated, and the correspnding
addressis storedin the bu er. That memoryis freed when the operation assaiated
with this bu er is completed. The \proto col* eld in the buer structure carries
more detailed information. For example,the \proto col* eld in the bu er manage-
mert phasecarriesthe value \sdescrin_p", which indicatesthat this bu er is being
usedfor a strided data transfer and the destination data descriptor is in place (sde-
scrin_p) inside the bu er data structure. This information is neededto completea
request. ARMCI doesnot imposea limit on the number of outstanding operations.
Hence,when the bu er managemen layer runs out of bu ers, it completesan old
requestassaiated with a bu er currently in useto freea bu er. Becausea request
can be usingmorethan onebu er, freeinga bu er might completeonly a part of the
request. A comnunication bu er is alsofreedasa part of the wait operation on the

requestusing that bu er.

Waiting on a Request

The wait on a requesthandle completesthe request. Whether the requestused
bu ers or not can be determined by looking at the value stored in the bud eld of
the requesthandle. For the direct protocol, the platform-speci c layer veri es request
completion basedon the information it storedin the \Req completioninfo" eld. If
bu ers were usedfor the request(bu ered protocol or for storing a data descriptor),
then the bu er managemen layer chedks to seeif the bu ers usedfor this request
were completed already as a part of freeing resources. If they have not yet been
completed, then the data from the bu er is copiedinto the appropriate destination
basedon the destination descriptor information storedin the bu er. To be ableto

132

verify if the data hasalready arrivedin the bu er, the bu er managemen layer may

ched for data arrival via the platform-speci c layer.
Aggregation

The implicit aggregationof data transfersis implemerted using the generalized
I/O vector operations available in ARMCI [47]. This interface enablesthe represen-
tation of a data transfer asa combination of multiple setsof equally sizedcortiguous
data segmets. When the rst call involving aggregatenonblocking handle is exe-
cuted, the library starts building a vector descriptor storedin one of the preallocated
internal bu ers. The actual data transfer takes placewhen the user calls wait opera-

tion or the bu er storing the vector descriptor lls up.

Optimizing Overhead and Overlap

The overheadintroduced due to the additional processingand resourcemanage-
mert incurred by a nonblocking call should be minimized. In our implemenation,
this goal is achieved in multiple ways: Before returning, all nonblocking operations
always initiate data transfer so that the network interface card (NIC) can process
a requestwhile the host CPU is available to carry out the computations. When a
nonblocking GET operation returns, either the bu ered or direct protocols ensure
that all the requesteddata will be received without explicit involvemen of the host
CPU. In the bu ered protocol, the requestis broken into piecesthat t the available
bu er space.For very large bu ered requests,someinitial portion of the data might
be received beforethe nonblocking operation returns. The direct protocol is switched
to when possible,as descriked earlier. The platform-speci ¢ protocols that involve

extensiwe blocking time are avoided.

133

9.3 Performance Evaluation

The experimerts wererun on a Linux cluster with dual 2.4GHz Pertium-4 nodes
and Myrinet-2000 (M3F-PCI64C-2 Myrinet interface). Experimerts discussedn the
current section have been conducted for the nonblocking get operation since they

explicitly demonstratethe overheadand overlap factors.
9.3.1 Overhead Test

The rst experimert demonstratesthe e ciency of the implemertation as com-
pared with a basecaseGM implemertation. For this purpose, a nonblocking op-
eration is simulated at the GM lewvel in the following fashion. The client issuesa
gm_sendwith _callbad (with the details of the required data) and then pollsona ag
setwhenthe data readesthis node. On the other end, the sener doesa GM _recei\e,
processeshe request,and issuesthe RDMA put operation with the data using the
gm_directed sendwith _callbad function. The ARMCI layer is actually built on this
basic shemeto implemert the nonblocking get. This experimert tries to evaluate
the e ciency of the implemenation. Fig. 9.4 shaws the latency at the baseGM and
ARMCI levels. The timings have beenaveragedover 1000iterations. They shaw that
the ARMCI layer addsvery little overheadto the baselevel and thus providesa very

e cient interfaceto the applications.
9.3.2 Overlap Test

The secondexperimert dealswith overlapping comnunication with computation,

and it was performedin the context of ARMCI and MPICH-GM. In the ARMCI

134

version, the computation is incorporated in the program in the form of a delay. In-

creasingcomputation is gradually insertedbetweenthe initiating nonblocking get call

and the wait completion call. As we keepincreasingthe computation, at somepoint

the sum of the nonblocking call issueoverheadand computation would exceedthe

idle CPU time, sothe total bendymark running time would increase.This point gives
us the maximum possibleoverlap. We performedthis experimert on two nodes,with

one node issuingthe nonblocking get for data located on the other and then waiting

for the transferto be completedin the ARMCI _Wait call. The timings were averaged
over 1000iterations. We have deweloped versionsof this microbendmark for direct

and bu ered protocols. We also implemerted an MPI version of the above bend-

mark becauseour motivation wasto comparethe overlap in ARMCI and in the MPI

nonblocking send/receiwe operations. In MPI, if the node needsa portion of data
from another node, it sendsa requestand waits on a nonblocking receiwe for the re-
sponse. We can overlap the time duration betweenthesetwo calls with computation.

We measuredthe computation overlap for both the ARMCI and MPI versionsof the

bendimark, and results are plotted in Fig. 9.5. The percenage overlap is measured
as the amourt of time of a nonblocking (data transfer) call that can be overlapped
with useful computation without increasingthe overall bendimark time.

We obsene that ARMCI o ers a higher level of overlap than MPICH-GM. The
bu ered protocol is able to adchieve about 90% overlap. For large messagesthis
percenage drops becauseof time involved in copying to the destination bu er. In the
direct protocol, we are ableto overlap almostthe ertire time (greaterthan 99%). The
exception (1%) was the time involved in issuingthe nonblocking get. The MPICH-

GM versiondoesreasonablywell up to messagesize 16kb. At 16kb and beyond, the

135

Figure 9.4: Latency of ARMCI Get vs GM Get

MPICH-GM implemertation switchesto the rendezwus protocol. This hasa serious
impact on the computation overlap becausethe handshale involved in the protocol
occursin MPI_Wait. Consequetly, the only part that can be overlapped is till the

receipt of ‘requestto send'and not until the actual data transfer is completed.

9.3.3 NAS benchmarks

The Numerical Aerodynamic Simulation (NAS) parallel bendhmarks (NPB) are a
set of programsdesignedat NASA. Our starting point was NPB 2.3 [11] implemen-
tation written in MPI and distributed by NASA. We modi ed two of the v e NAS
kernels, MultiGrid (MG) and Conjugate Gradient (CG), to replace point-to-p oint
blocking and nonblocking message-passingommnunication calls with rst blocking
and then nonblocking RMA comnunication. This is just a mere replacemen of the

point-to-p oint messagegassingcomrmunications part of the current message-passing

136

Figure 9.5: Percertage of Computation Overlap

Figure 9.6: Performancelmprovemert in NAS MG for ClassB

137

Figure 9.7: Performancelmprovemer in NAS CG for ClassB

versionof CG and MG NAS kernelsusing ARMCI RMA blocking and nonblocking
operations [62].

We show the results for NAS MG for classA and B. For Class A, a smaller
problem sizewith the fewest iterations, the ARMCI blocking code outperformsthe
referenceMPIl implemertation by 7% to 30%. ARMCI nonblocking versionadieves
an additional improvemer of 10%to 23%over the ARMCI blocking implemertation
and a 28%to 46% improvemern over the MPICH-GM implemerntation. Most of the
improvemen adhieved over the blocking implemertation is just by mereissueof the
update in the next dimensionwhile working on the currert one. For ClassB, with the
sameproblem sizeas classA but more iterations, ARMCI blocking implemertation
outperformsMPI by 10%to 37%(seeFig. 9.6). The ARMCI nonblocking implemen-
tation acdhieves an additional improvemen of 5% to 20% over the blocking version
and shows a 30%to 45% improvemen over the MPICH-GM implemertation. Due

to the syndironous nature of data transfersin the CG algorithm, the performance

138

improvemen over MPICH-GM, although consisten is rather limited (seeFig. 9.7).
Howeer, the nonblocking RMA o ers an additional performanceimprovemen. For

example,for 128 processorsijt exceedsl0% over MPICH-GM.

139

CHAPTER 10

SCHEDULING ONE-SIDED OPERA TIONS

The MPI-2 semattics does not impose any restrictions on when and in what
order the RMA operations should occur within an accessepoch. Howewer both the
current implemenations (Point to Point Based and Direct One Sided) for active
syndironization always maintain the order of the RMA operations. This might not
always lead to the best or optimum usageof the underlying network capability. In
this work, shown in the highlighted part of Figure 10.1 of the proposedreseart
framework, we want to exploit this exibilit y to explore di erent ways to reorder
theseRMA operations basedon the comnmunication pattern to improve the latency,
bandwidth and throughput.

Messageaggregationcan reducethe latency for small RMA opearationsbecause
it can potentially reducethe number of messages.The Point to Point Basedim-
plemertation can give this ability becauseof its two sided nature. With the Point
to Point Basedimplemertation seweral RMA operations can be reorderedand com-
bined/aggregatedinto a singlemessageand the remote sidecanreceiwe this combined
messageand scatter them. Aggregation of a RMA comnunication operation and a
syndironization messages alsofeasible. Thus the Point to Point Basedimplemerta-
tion canbe leveragedto improve the performanceof small messages.

140

Petascale SCIENTIFIC APPLICATIONS AND BENCHMARKS
Applications —
One-sided API
Data transfer Synchronization
(put,get,accumulate),datatype (active,collective,passive)
|
Y
Designs and Optimizations
3nded|5ided — Enit;Ig;%i(l?t\)llerlap Read-Modify Non-contiguous Intra-Node
iddleware Write data transfer Optimizations
Non-blocking
|

________________________ j

Advanced InfiniBand Primitives

Modern
Interconnects

Figure 10.1: Overview

As descriked above, the MPI-2 semattics potertially allow the implemertation to
reorderthe actual completionof the RMA operations,sut asMPI _Put and MPI1 _Get,
issuedduring a window accesgpoch. Our main motivation is to utilize this exibilit y
to sthedule these operations so that we can achieve better communication overlap,
reducedlatency and improved throughput on our In niBand implemertation.

We proposetwo possible approades for sdheduling the RMA operations. The
reordering approad focuseson reorganizingthe MPI_Put and MPI _Get operations
issuedduring a window accessepoch to allow more e cien t usageof network band-
width. The aggregationapproad tries to conbine RMA operations to give better

throughput.

141

10.1 Reordering approach

Since MPI-2 standard allows the actual commnunication for RMA operations to
happen at syndironization time, we can hold all the RMA operationsissuedduring a
window accessepoch until syndironization time. At this stage,we will have enough
information of the commnunication pattern during this accesgeriod. Basedon this
information, we may re-order the issuing of these RMA operations to utilize the

underlying In niBand network more e cien tly.
10.1.1 Interleaving

The bidirectional bandwidth is always higher than the unidirectional bandwidth.
This is becauseof the full usageof the link bandwidth of both directions. For exam-
ple, with MVAPICH2 point to point commnunication, we are able to achieve 874MB/s
peak unidirectional bandwidth while we can achieve 934MB/s in bidirectional band-
width test. (The unit of bandwidth MB/s refersto Million bytes/sec). This trend
is more obvious on PCI-Express systemsbecausethe bus cortention is no longer
the bottlened in this scenario. The peak bandwidth number for unidirectional and
bidirectional tests are 964MB/s and 1905MB/s on the PCI-Expresssystem.

Howe\er, in a typical one-sidedcommunication scenario,only onedirection of the
link bandwidth is fully used, sincethe target side is not explicitly involved in the
comnunication. But this does not mean that we can only stick with the highest
possibleunidirectional bandwidth provided by the link. For MPI _Put operations, we
issueRDMA write operations at VAPI level to push the data out. The actual data
ow is from the origin processto the target. But for MPI_Get operation, we issue

RDMA readoperation at VAPI level to fetch data from the remoteside. Sothe actual

142

data ow, especially for large sizeoperations, is from the target processto the origin

process.

iai VAPI Level Communication Pattern .
Origin Process During Synchronization Stage Target Proces:
MPI_Win_start() MPI_Win_post
MPI_Get() \%
MPI_Get() RDMA Read
MPI_Put()
MPI_Put()

DMA Write
MPI_Win_complete()

MPI_Win_wait

Figure 10.2: Sequetial Issueof MPI_Get and MPI _Put

rigin Pr VAPI Level Communication Pattern .
Orig ocess During Synchronization Stage Target Proces:

MPI_Win_start()
MPI_Get() %
MPI_Put() ﬂ%
MPI_Get() RDMA Read

o

MPI_PUtO DMA Write
MPI_Win_complete() MPI_Win_wait

MPI_Win_post

Figure 10.3: Interleaved Issueof MPI_Get and MPI _Put

Let us considerthe following one-sidedcommunication patterns. In Fig. 10.2,the

origin procesdgssuesse\eral MP1 _Get operationsand then seeral MP1 _Put operations

143

during a RMA accesspoch. In Fig. 10.3,the origin processissuesthe samenumber
of MPI _Get and MPI _Put operations, but in an interleaved way. As we can obsene,
the secondcomnunication pattern in Fig. 10.3can usethe link bandwidth in a much
more e cient way than the rst communication pattern.

Though we know that the link bandwidth will be usedmore e cien tly if the issu-
ing of MPI _Put and MPI _Get is interleaved, we can not require the MPI programmer
to understand this and always write the optimized program. But sincethe RMA
operation can actually start during syndironization time, we can schedulethe opera-
tions sothat the correspnding VAPI level RDMA read and RDMA write operations

are issuedin a interleaved manner.
10.1.2 Prioritizing

One of the conclusionsof our previous researt is that the Direct One Sided
implemertation o ers better latency than Point to Point Basedimplemertation for
large RMA operations. But it is still possibleto further optimize the Direct One
Sidedimplemertation.

During the syndronization stage of direct one-sidedimplemertation, the origin
processwill issuea RDMA write to seta ag at the target processto indicate the
end of the accesepoch. Beforethat, if a MPI_Get operation was issuedprior to the
syndironization call, we needto wait for local completion of Get to ensurethat the
data hasactually beenfetched and ready for useby the end of syndironization phase.

During the accessepoch, if the origin processcalls seweral MP1 _Put and MPI _Get
operations,we want to give priority to MP1 _Get operationsin orderto reducethe time

involved in waiting for the local completion. Therefore we give priority to MPI _Get

144

operationsover MPI _Put operations. We rst issueRDMA readrequiredby MPI _Get
and then issueRDMA write required by MPI _Put. Fig. 10.4illustrates the potential
bene ts of our prioritizing sdieme. It is to be noted that this prioritizing sdieme
doesnot necessarilycortradict with the interleaving schemewe proposedin the last
section. We canstill interleave the operationsbut we canissueRDMA readoperations

rst.

VAPI level Communication pattern

MPI Program During Synchronization stage

Origin Process:
MPI_Win_start()

MPI_Get()

MPI_PUtO RDMA Read RDMA Write
MPI_Win_complete()

Target Process

MPI_Win_post
- _p () Synchronization .
Synchronization

MPI_Win_wait()

RDMA Write RDMA Read

fy

Without scheduling Priority to Get operations

Figure 10.4: Potential Bene t by Giving Priority to MPI_Get

10.2 Aggregation

As descrited earlier, our goalhereis to better utilize the network bandwidth. If we
have multiple small RMA messagesvithin an accessepoch, the network utilization
would be suboptimal. Because,for small messagesthe overhead assaiated with
initiation and completion of RMA operationsis relatively high. Hencea natural and

obvious choicewould be to try and seeif we can aggregatese\eral of thesemessages

145

MPI Program

Origin Process:

MPI_Win_start()

MPI_Put(Small) 1

MPI_Put(Large) 2

MPI_Win_complete()
Target Process

MPI_Win_post()

MPI_Win_wait()

Figure 10.5: Aggregationof RMA Operation and Syndironization

MPI Program

Origin Process:
MPI_Win_start()

MPI_Put(Small) 1
MPI_Put(Large) 2
MPI_Put(Small) 3
MPI_Put(Small) 4

MPI_Win_complete()
Target Process

MPI_Win_post()
MPI_Win_wait()

Figure 10.6: Aggregation of Multiple Small SizeRMA Operations

VAPI level Communication pattern
During Synchronization stage

RDMA Write 1

RDMA Write 2

Synchronization

Without Aggregation

RDMA Write 2

RDMA Write 1

With Aggregation

VAPI level Communication pattern
During Synchronization stage

DMA Write 1

/

DMA Write 2

/
/

DMA Write 3

/

DMA Write 4

)

Synchronization

/

Without Aggregation

146

RDMA Write 2

Aggregated Write
1+3+4

With Aggregation

together. The userscan use MPI user de ned datatypesto aggregateseeral one-
sidedand two sidedoperationsto improve network utilization. Howewer, our aim is to
provide optimizations inside the MPI library sothat we candeliver good performance
ewven if there is no optimization at the userlevel. Also, asdescritedin Section10, no
order needsto be guararteed amongthe MPI_Put/MPI _Get operations betweentwo
syndironization calls. Sowe are not violating any MPI-2 semartics by aggregating
someof theseoperations, as long as all the data nally readesthe target side. We

can considerthe following two aggregationschemes:
Aggregation betweenan RMA operation and a syndironization operation
Aggregation betweenmultiple RMA operations

These sthemesare illustrated in Figs. 10.5and 10.6. By utilizing Point to Point
Basedapproad), we can aggregatemultiple RMA operations or an RMA operation
and a syndironization operation. In cortrast, Direct One Sided approad cannot
provide aggregationbecausethe target is not involved in commnunication and hence
cannot scatter aggregatedmessagesto target bu ers. To maximize aggregation,we
defersmall RMA messagesintil we have su cien tly large number of them. Then we
cantrigger deferredRMA messagess an aggregatedoperation and sendit by Point
to Point Basedapproad. Mearnwhile, large size RMA operations are still issuedby
Direct One Sided approad. We can also hold badk one small RMA operation and
combine it with the syndironization operation. In this work, we mainly focuson the

aggregationbetweena RMA operation and a syndironization operation.

147

10.3 Performance Evaluation

In this section, we usese\eral micro bendimarks to evaluate the performanceof
our di erent schemes.

Due to the lack of publicly available applications using MPI-2 one-sidedcalls,
we cameup with our own bendimarks to evaluate our stheduling shemes. We use
somespeci ¢ throughput and latency tests to measurethe impact of our re-ordering
stheme. In addition to this, we useping-ponglatency testsfor MPI _Put and MPI _Get

to show the bene t of the aggregationscheme.

(a) EM64T with PCI-Express (b) IA32 with PCI-X
1800 L S s e e e e e = = T T T T T T T T T T T T T T T T
no scheduling —— * * 900 F no scheduling —— e T ey
1600 - scheduling -—---- Ve 1 scheduling - -

800 |
i 700 -
600 |
500 |
400 |
300 |
200 |

1400 r
1200
1000 r
800
600 -
400
200 - 100
0 etk T 0L
1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M 1
Message Size (Bytes) Message Size (Bytes)

Bandwidth (MB/s)
Bandwidth (MB/s)

Figure 10.7: Impact of stheduling on throughput on EM64T and 1A32

Exp erimen tal Testbed

We evaluated our schemeson two di erent testbeds. The rst testbed is equipped
with PCI-X interface and the secondis equipped with PCI-Expressinterface.

Our PCI-X testbed cluster consistsof 8 SuperMicro SUPER X5DL8-GG nodes
with SenerWorks GC LE chipsets, Intel Xeon 3.0 GHz processorsbasedon IA32

architecture, and PCI-X 64-bit 133 MHz bus. The PCI-Expressnode of our testbed

148

hasa 3.4 GHz Intel Xeon processorhasedon EM64T architecture and runs in 64 bit
mode with 8x PCI-Expressinterfaces. They are equipped with MT25208 HCAs with
PCI-Expressinterfaces. On both platforms In niScale MTS2400 switch is usedto
connectall the nodes. The versionsof In niBand SDK and rm ware are 3.2 RC17

and 4.5.2RC4-BUILD-001 respectively. The operating systemusedis RedHat Linux.

Impact of Re-ordering Scheme on dieren t Comm unication Patterns

We created two comnunication patterns at microbendimark level to study the

impact of the re-ordering shemewe proposedin the previoussection.

Comm unication Pattern 1

We created a throughput test which involves two processes. The rst process
starts a window accessepoch and then issues16 MPI_Put and 16 MPI _Get oper-
ations of the samesize. The secondprocessjust starts an exposure epoch. The
samesequenceof operations are repeated for se\eral iterations and we measurethe
maximum throughput we can achiewve (in terms of MillionBytes/sec).

We comparedthe performanceof re-ordering shemeand the original Direct One
Sidedimplemertation. On PCI-Expresssystems,aswe canseefrom Fig. 10.7(a),with
re-ordering shemewe are able to attain maximum throughput of 1788MB/s, which
is much closerto the peak bidirectional bandwidth. We obsene an improvemert in
throughput up to 76% comparedwith the original design. This trend is also there
on IA32 systemswhere the maximum improvemen of throughput is about 8%, as
shown in Fig. 10.7(b). Howewer, we do not get as much improvemen ason EM64T

testbed becauseon 1A32 system,the PCI-X bus becomeshe bottlened.

149

Comm unication Pattern 2

The test consistsof multiple iterations involving two processesin ead iteration,
the rst processcalls MPI _Win _start to start a window accessepoch, issuesone
MPI _Put and one MPI _Get, and then calls MPI _Win_complete to end the epoch.
After that it starts and endsa window exposureepoch by calling MPI _Win _post and
MPI_Win_wait. The secondprocessdoesthe samejob, but in a reversedorder, rst
it starts the exposureepoch then the accessepoch. We measurethe averagelatency
for ead iteration.

Our Sdeduling scheme switches the order of these two operations when it is
actually issuing the correspnding RDMA read or RDMA write during the access
epoch. We canseethat especially for large messagesye can shaw signi cant bene ts
by stheduling the operations internally. We can reduce the latency up to 40% on

EM64T testbed and 20% on IA32 testbed, asshowvn in Fig. 10.8.

(a) EM64T with PCI-Express (b) 1A32 with PCI-X

9000 14000

no scﬁedulihg "
scheduling -

no scHeduIiﬁg 7
8000 scheduling ------ 12000
7000 -
6000
5000 r
4000
3000 -
2000 -

1000 r

10000

8000 -

6000

Latency (us)
Latency (us)

4000

2000 -

e
L

4k 16k 64k 256k im 4aM 4k 16k 64k 256k M 4aM
Message Size (Bytes) Message Size (Bytes)

Figure 10.8: Impact of scheduling on latency on EM64T and 1A32

150

(a) EM64T with PCI-Express (b) 1A32 with PCI-X

40 T T T T T T T 50 T T T T T T T
Direct One Sided —— Direct One Sided ——
35 | Aggregation ----»---- | 45 - Aggregation ----x---
40
35
3 3 a0
k5 % 20
- -
15 ¢
L S — M
5|
0 S S S S W S o .
1 4 16 64 256 1k 4k 16k 1 4 16 64 256 1k 4k 16k
Message Size (Bytes) Message Size (Bytes)
Figure 10.9: One sided MPI _Put latency on EM64T and I1A32
(a) EM64T with PCI-Express (b) 1A32 with PCI-X
60 80
Direct One Sided —— Direct One Sided ——
Aggregation ----»---- 70 | Aggregation ----»----
50 -
60
—~ 40 —
3 3 50 -
g 30+t g 40t
k3] 2
3 0l i I 307 ;
B et mre RS - 20 s JEVE i
10 F
0 10
0 P S S S S S W S o
1 4 16 64 256 1k 4k 16k 1 4 16 64 256 1k 4k 16k
Message Size (Bytes) Message Size (Bytes)

Figure 10.10: One sided MPI _Get latency on EM64T and IA32

Impact of Aggregation Scheme on Latency

In this sectionwe measurethe impact of our aggregationsdhemeon MPI _Put and
MPI _Get latency. The test consistsof multiple iterations involving two processes.
In ead iteration, the rst processstarts a window accessjssuesa RMA operation
(MPI _Put or MPI _Get) and then endsthe epoch. Then it starts and endsa window

exposure epoch. The secondprocessdoes the samejob, but in a reversedorder.

151

We measurethe time neededfor ead iteration and de ne half of its value as the
ping-pong latency for the RMA operation.

Fig. 10.9(a)compareghe ping-ponglatency for MPI _Put operationand Fig. 10.10(a)
comparesthe ping-pong latency for MPI _Get operations on EM64T testbed. The
aggregationsdhemedid noticeably better than our original Direct One Sided imple-
mertation for small size RMA operation. We seean improvemer of up to 44% for
MPI_Put latency and 42% for MPI_Get latency. For larger sizes,the aggregation
stheme actually falls badk to Direct One Sided implemertation so that these two
sthemesdelivers the samelatency. We can obsene the similar trends on IA32 plat-
form, as shown in Fig. 10.9(b) and Fig. 10.10(b). The maximum improvemen is

around 38%and 42%for MPI _Put and MPI _Get latency respectively.

10.4 Related Work

Although we are aware of MPICH2 performing aggregationbetweenthe last one
sided operation with a syndironization, to the best of our knowledge, there is no
literature study on sdeduling RMA operations to improve the performanceof one
sidedimplemertation.

One distinguishing feature of MPI as comparedto theseis that MPI supports
both one sided and two sided comnunications, which we useto our advantage in

implemerting our sthemes.lIt is to be noted that ARMCI performsaggregation[48].

152

CHAPTER 11

SIGNIFICANCE AND IMP ACT

In this thesis we have designedand deweloped a high performanceand scalable
one-sidedmiddleware that would be bene cial to a wide range of sciertic commnu-
nity. Speci cally, we have demonstrated how we can use the features of modern
interconnectsto improve the performanceof one-sidedmiddleware for current and
next generationHigh End Computing systems.

The expected cortributions of the researt are asfollows:

Our researb demonstratesthe feasibility of deweloping high performanceand
scalableone-sidedcommnunication subsystemsasedon the capability of modern

interconnectsbasedon the capability of modern interconnects.

Speci cally, we have demonstratedhow we can leveragethe advancedfeatures
like di erent commnunication semarics, remote atomic operations, completion
and evert medanisms, scatter-gather support to improve performance,scala-

bility and overlap capability for one-sidedcomnunication.

153

Although we mainly concenrate on MPI one-sidedcommunication in this work,
marny of our researb cortributions are also directly applicableto communica-
tion subsystemdesignin other areassud as PGAS programming models and

languages.

Many of these proposeddesignsare being usedin MVAPICH2 software which
is usedby more than 900 organizationsworldwide and are alsoincorporated into a
number of di erent vendordistributions. The MVAPICH2 softwareis alsodistributed
in the OpenRabrics Enterprise Distribution (OFED). The re-ordering designsthat
usesprioritizing and interleaving has beenintegrated into MVAPICH2. The passie
syndironization designsand optimizations are being integrated and will be released

in the future.

154

CHAPTER 12

CONCLUSIONS AND FUTURE WORK

In this thesis, we have addressedthe problem of providing a Scalableand High
PerformanceComnunication Middleware for one-sidedcommnunication over modern
interconnects. As clustersincreasen size,the performanceand scalability of the com-
munication subsystembecomesthe key requiremen for achieving overall scalability
of the system. In this cortext, the e ciency of one-sidedoperations is especially
important as they are the widely used commnunication operations in di erent pro-
gramming models like MPI-2, UPC, etc. and have to be designedwhile harnessing
the capabilities and features exposed by the underlying networks. Modern inter-
connectslike In niBand provide RDMA capabilities for read/write, remote atomics,
etc. Thesemedanismsprovide good match for one-sidedcommunication. The main
issuesaddressedare improving computation/communication overlap, reduceremote
processnvolvemen, latency hiding medanisms,zero-coly comnunication protocols,
intra-node optimizations, e cien t non-cortiguous comnunication, e cient protocols
for read-mdify-write operations. The designsproposedin this thesis leveragethe
hardware primitiv esof modern interconnectslike In niBand to provide good perfor-
manceand scalability. The summary of the researt cortributions is explainedin the
following sectionsof the chapter.

155

12.1 Summary of Research Contributions

Improving Overlap: We investigatedthe designsfor passie syndironization. The
two-sided approadies leads to poor overlap capability. We came up with a new
designusingIn niBand RDMA atomic operationsto perform lock/unlo ck operations
neededfor passive syndironization. We also improved the capability of the one-
sided operationsto achieve faster communication progress.This work is described in
Chapter 4.

Intra-node Optimizations: In this work, we designedpassive syndironization
medanism for Intra-node operations using the native fast CPU basedlocks. We
deweloped a hybrid designthat can migrate between CPU basedlocks and network
basedlocks (basedon In niBand atomic operations). We demonstratedthe bene-
ts of the hybrid designswith various micro-bendymarks. This work is descriked in
Chapter 5.

Syndronization optimizations: In this work, we evaluated di erent designalter-
nativesfor implemerting fencesyndironization on RDMA capableinterconnects. We
proposeda novel fencemetanism that usesRDMA basedImmediate capability of
In niBand to notify remotecompletions. This approad provideslow syndironization
overheadas well as good overlap capability as descriked in Chapter 6.

Read Modify Write Mechanisms: In this work, we studied the HPCC Random
Accessbendimark which predominartly usesread modify write operations. We de-
veloped one-sidedversions of the random accessbendimark to evaluate the read
modify write capability of the MPI one-sidedoperations. Di erent optimizations like
Software Aggregationand Hardware BasedAccumulate were proposedto improve the

GUPs rating of the HPCC bendmark. This work is described in detail in Chapter 7.

156

Zero-cofy non-cortiguous data transfer: Non-cortiguous data commnunication
posesadditional challengessince it involves overhead of additional copieson the
senderand receiwer side. In this work, we designedzero-coy protocols using the
In niBand hardware scatter/gather capabilities. The zero copy designsshowved bet-
ter performancein terms of latency and bandwidth, as well as reducedhost CPU
utilization. This work is described in Chapter 8.

Non-blocking Semartics: Non-blocking operations are very important to acieve
latency hiding and good computation/communication overlap. In this work, we stud-
ied the issuesn designingnon-blocking one-sidedoperationsin the corntext of ARMCI
one-sidedcomnunication library. Further optimizations like capabilities for implicit
and explicit aggregationswere deweloped and the bene ts of theseapproateswere
demonstratedin Chapter 9.

Re-orderingone-sidedoperations: The MPI one-sidedsemairtics allow re-ordering
of the one-sidedoperations within an accesspoch. Maintaining the order of opera-
tions doesnot always lead to the best or optimum usageof the underlying network
capability. In this work we exploited this exibilit y to explore di erent techniques
like interleaving, prioritizing and aggregationto reordertheseRMA operationsbased
on the communication pattern to improve the latency, bandwidth and throughput.

This work is descriked in Chapter 10.

157

12.2 Future work

Intra-No de Optimizations for Reducing Copy Costs: With the advent
of multicore processoitechnology, a large number of processingcorescanreside
within one node, increasingthe number of MPI processesnside a node, thus
increasingthe volume of comnunication within the node. Therefore,designing
anone-sidedibrary with optimized intra-node commnunication support is crucial
to overall performance. The current shared memory approad for inter-node
commnunication needstwo copies. One optimization is to usethe kernel (using
approadieslike LIMIC [38]) to copy directly into the target window to reduce
the copy overhead. Another approad could be to uselOAT o oad enginesto

o oad the copy operations.

Application level Evaluation: As part of future work, applications needto
be written with one-sidedsemartics. Speci cally we would like to target some
of the communication patterns of petascaleapplications like AWM-Olsen [68]
(earthquake simulation) and MPCUGLES [58](Computational Fluid Dynamics
Code). Theseapplications needsupport from the middleware in terms of rich
interfaceto expressparallelism, good computation/communication overlap and
dynamic load balancing. Currently these applications are written using two-
sidedcomnunication. Theseapplicationshavethe potertial to exploit one-sided

commnunication to attain petascaleperformanceand scalability.

Prop ose Extensions to MPI One-sided Semantics: In order to handle
some of the requiremerts from these petascaleapplications, additional sup-

port and enhancemets might be neededfrom the communication subsystemor

158

middleware. We have identied somelimitations of existing MPI-2 one-sided
sematics. Extensionsto one-sidedsemarics can be proposedto addresssome
of theseissues.Someof theseextensionscould be aimed at providing improved
and more exible/(less restrictive) syndironization semarics for both active
and passiwe syndironization. In caseof Passiwe syndironization, applications
could bene t from ner grain locking semarics. In caseof Active syndironiza-
tion, fence syndironization that are targeted towards speci ¢ commnunication
patterns would be bene cial asthat can result in lower overheads. Further-
more, non-blocking syndironization primitiv escan allow applicationsto exploit
computation and comnunication overlap. Additional interfacescanalsobe pro-
vided that canaid dynamicload balancingand fault tolerancewhich are critical

for applicationsto scale.

159

BIBLIOGRAPHY

[1] A GeneralizedPortable SHMEM library.
[2] Berkeley Uni ed Parallel C (UPC) Project. http://up c.Ibl.gov/.

[3] Direct Numerical Simulation (DNS). http://www.cfd-
online.com/Wiki/Direct _numericalsimulation_(DNS).

[4] Global Arrays. http://www.emsl.pnl.go v/do cs/globall.
[5] GROMACS. http://www.gromacs.org/.

[6] Intel 80 core Teraops chip. http://ltec hresearb.intel.com/articles/T era-
Scale/1449.tm.

[7] Mellanax InifniBand Tednologies. http://www.mellano x.com.
[8] PETSc. http://www-unix.mcs.anl.go v/p etsc/.

[9] Argonne National Laboratory. MPICH2 Release 0.96p2.
http://www-unix.mcs.anl.gov /mp/mpich2/, Jan 2004.

[10] Mike Ashworth. A Report on Further Progressin the Developmen of Codes
for the CS2. In Deliverable D.4.1.b F. Carbonnell (Eds), GPMIMD2 ESPRIT
Project, EU DGIIl, Brussels 1996.

[11] D. H. Bailey, E. Barszcz,J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederikson, T. A. Lasinski, R. S. Screiber, H. D. Simon,
V. Venlatakrishnan, and S. K. Weeratunga. The NAS parallel bendimarks.
volume 5, pages63{73, Fall 1991.

[12] B. W. Barrett, G. M. Shipman,and A. Lumsdaine. Analysis of Implemertation
Options for MPI-2 One-Sided. In Proceedings, Euro PVM/MPI , Paris, France,
October 2007.

[13] MPI-2 One-Sided based HPCC Random Access bendmarks.
http://no wlab.cse.ohio-state.edu/prgects/hpcc-one-sided/.

160

[14] Christian Bell and Dan Bonadea. A new dma registration strategy for pinning-
basedhigh performancenetworks. ipdps 00:198a,2003.

[15] D. Bonadhea. GASNet Speci cation, v1.1. Tednical Report UCB/CSD-02-1207,
Computer ScienceDivision, University of California at Berkeley, October 2002.

[16] S. Booth and F. E. Mourao. Single Sided MPI Implemertations for SUN MPI.
In Supercomputing, 2000.

[17] D. Buntinas, D. K. Panda, and W. Gropp. NIC-Based Atomic Remote Memory
Operationsin Myrinet/GM. Workshopon Novel Usesof SystemArea Networks
(SAN-1), February 2002.

[18] Surendra Byna, Xian-He Sun, William Gropp, and Rajeev Thakur. Improv-
ing the Performanceof MPI Derived Datatypesby Optimizing Memory-Access
Cost. In Proceedings of the IEEE International Conference on Cluster Comput-
ing, 2003.

[19] Cristian Coarfa, Yuri Dotsenko, and John Mellor-Crummey. Experienceswith
sweep3dimplemenations in co-array fortran. J. Supgercomput., 36(2):101{121,
2006.

[20] Aaron E. Darling, LucasCarey, and Wu chun Feng. The design,implemertation,
and ewaluation of mpiblast. In Proceedings of ClusterWorld 2003 2003.

[21] A. Devulapalli and P. Wycko . Distributed queuebasedlocking using advanced
network features. In ICPP, 2005.

[22] Jadk Dongarra and Piotr Luszczek. overview of the hpc challenge bendimark
suite. SPEC Bendmark Workshop, 2006.

[23] M. Frigo and S.G. Johnson. The Designand Implemertation of FFTW3. Pro-
ceedings of the IEEE, 2005.

[24] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,D. Q. Lamb, P. Mac-
Neice, R. Rosner,and H. Tufo. FLASH: An Adaptive Mesh Hydrodynamics
Code for Modelling Astro physical Thermonuclear Flashes. Astrophysi@l Jour-
nal Suppliment 131:273,2000.

[25] G. Bryan. Fluid in the universe: Adaptive Mesh Re nemert in cosmology. In
Computing in Scien@ and Engineering, volume 1, pages46{53, March/April
1999.

[26] Rahul Garg and YogishSabharvwal. Optimizing the HPCC randomacces®end-
mark on blue Gene/L Supercomputer. ACM SIGMETRICS PerformanceEval-
uation Review, June 2006.

161

[27] R. A. Van De Geijn and J. Watts. SUMMA: scalableuniversal matrix multipli-
cation algorithm. Concurrency: Practice and Experience, 9(4):255{274,1997.

[28] M. Goudreau, K. Lang, S. B. Rao, T. Suel, and T. Tsartilas. Portable and
E cient Parallel Computing Using the BSP Model. IEEE Transactionson Com-
puters pages670{689,1999.

[29] W. Gropp and E. Lusk. A High-PerformanceMPI Implemertation on a Shared-
Memory Vector Supercomputer. Parallel Computing 22(11):1513{1526January
1997.

[30] W. Gropp, E. Lusk, N. Doss,and A. Skjellum. A High-Performance,Portable
Implemertation of the MPI MessagePassinginterface Standard. Parallel Com-
puting, 22(6):789{828,1996.

[31] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming
with the MessagePassingInterface, 2nd edition. MIT Press,Cambridge, MA,
1999.

[32] William Gropp, Ewing Lusk, and Deborah Swider. Improving the Performance
of MPI Derived Datatypes. In MPIDC, 1999.

[33] William D. Gropp and Rajeev Thakur. An evaluation of implemertation options
for mpi one-sidedcommunication. In PVM/MPI |, pages415{424,2005.

[34] P. Husbandsand J. C. Hoe. MPI-StarT: Delivering Network Performanceto
Numerical Applications. In Proceedings of the Supercomputing, 1998.

[35] In niBand TradeAsscciation. In niBand Architecture Speci cation, Releasel.0,
October 24, 2000.

[36] J. L. Tra, H. Ritzdorf and R. Hempel. The Implemertation of MPI{2 One-sided
Communication for the NEC SX. In Proceedings of Sugercomputing 2000.

[37] W. Jiang, J.Liu, H. W. Jin, D. K. Panda, D. Buntinas, R.Thakur, and W.Gropp.
E cien t Implementation of MPI-2 Passive One-SidedComnunication on In ni-
Band Clusters. EuroPVM/MPI, Septeniber 2004.

[38] Hyun-Wook Jin and Dhabalesvar K. Panda. Limic: Support for high-
performance mpi intra-node comnunication on linux cluster. In ICPP '05:
Proceedings of the 2005 International Conferene on Parallel Processing pages
184{191,Washington,DC, USA, 2005.IEEE Computer Scciety.

[39] J.Nieplocha, V.Tipparaju, and E.Apra. An ewaluation of two implemertation
strategiesfor optimizing one-sidedatomic reduction. International Parallel and
Distributed ProcessingSymposium, 2005.

162

[40] J. Liu, W. Jiang, Hyun-Wook Jin, D. K. Panda, W. Gropp, and Rajeev Thakur.
High PerformanceMPI-2 One-SidedCommunication over In niBand. Interna-
tional Symposiumon Cluster Computing and the Grid (CCGrid 04), April 2004.

[41] Qingdalu, JieshengWu, Dhabalesvar K. Panda,and P. Sadgyappan. Employing
MPI Derived Datatypesto the NAS Bendimarks: A Case Study . Tednical
Report OSU-CISRC-02/04-TR10, Dept. of Computer and Information Science,
The Ohio State University, Feb. 2004.

[42] A. Mamidala, S. Narravula, A. Vishnu, G. Sarthanaraman, and D. K. Panda.
On using Connection-Orierted and Connection-Lesdransport for Performance
and Scalability of Collective and One-sidedoperations: Trade-o0 s and Impact.
In PPOPP, 2007.

[43] MessagdPassinginterfaceForum. MPI-2: A MessagdPassinglnterfaceStandard.
High Performance Computing Applications, 12(1{2):1{299, 1998.

[44] F. E. Mourao and J. G. Silva. Implemerting MPI's One-SidedCommunications
for WMPI. In EuroPVM/MPI , Septenber 1999.

[45] S.Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan,and D. K. Panda. High
performancedistributed lock managemen servicesusing network-basedremote
atomic operations. CCGrid, 2007.

[46] Network-Based Computing Laboratory. MPI over InniBand Project.
http://m vapich.cse.ohio-state.edu/.

[47] J. Nieplocha and B. Carperter. ARMCI: A Portable Remote Memory Copy Li-
brary for Distributed Array Libraries and Compiler Run-Time Systems.Lecture
Notesin Computer Scien®, 1586,1999.

[48] Jarek Nieplocha, Vinod Tipparaju, Manoj Krishnan, Gopalakrishnan Sartha-
naraman, and Dhabalesvar K. Panda. Optimizing Medanismsfor Latency
Tolerancein Remote Memory AccessCommunication on Clusters. In Proceed-
ings of the IEEE International Conferena on Cluster Computing 2003.

[49] Jarek Nieplocha, Vinod Tipparaju, Amina Saify, and Dhabalesvar Panda. Pro-
tocols and strategiesfor optimizing performanceof remote memory operations
on clusters. ipdps 2:0164,2002.

[50] Jaroslav Nieplocha, Robert J. Harrison, and Richard J. Little eld. Global ar-
rays: a portable \shared-memory" programming model for distributed memory
computers.In Sugercomputing'94: Proceedings of the 1994 conferenee on Super-
computing, pages340{ ., LosAlamitos, CA, USA, 1994.IEEE Computer Scciety
Press.

163

[51] R.J.Thacker, G.Pringle, H.M.P Coudiman, and S.Booth. Hydra-mpi: An adap-
tive particle-particle, particle-meshcode for conducting cosmologicakimulations
on mpp architectures. High PerformanceComputing Systemsand Applications,
2003.

[52] Robert Ross,Neill Miller, and William Gropp. Implemerting Fast and Reusable
Datatype Processing.In EuroPVM/MPI , Oct. 2003.

[53] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. K. Govindaraju,
K. Gildea, P. DiNicola, and C. Bender. Performanceand Experiencewith LAPI:
A New High PerformanceCommunication Library for the IBM RS/6000 SP. In
Proceedings of International Parallel ProcessingSymposium, 1998.

[54] J. P. Singh, W. Weber, and A. Gupta. Splash: Stanford parallel applications for
shared-memory SIGARCH Comput. Archit. News 20(1):5{44, 1992.

[55] Marc Snir, Stewe Otto, Stewe Huss-LedermanpDavid Walker, and Jadk Dongarra.
MPI{The CompleteReference. Volume 1 - The MPI-1 Core, 2nd edition. The
MIT Press,1998.

[56] HPCC Bendimark Suite. http://icl.cs.utk.edu/hp cc.

[57] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Receive Queue based
ScalableMPI Designfor In niBand Clusters. In International Parallel and Dis-
tributed ProcessingSympmsium (IPDPS), 2006.

[58] Mahidhar Tatineni and Mahidhar Tatineni. SDSC HPC Resources.
https://asc.lInl.go v/alliances/2005_sdsc.f.

[59] T.EI-Ghazawi, F.Cantonnet, Y.Yao, and J.Vetter. Evaluation of UPC on the
Cray X1. Cray User Group meeting, 2006.

[60] R. Thakur, W. Gropp, and B. Toonen. Minimizing Syndronization Overhead
in the Implemertation of MPI One-SidedCommnunication. In EuroPVM/MPI ,
Septenber 2004.

[61] The Top 500 Project. The Top 500. http://www.top500.org/.

[62] Vinod Tipparaju, Manoj Krishnan, Jarek Nieplocha, Gopalakrishnan Sartha-
naraman, and Dhabalesvar K. Panda. Exploiting nonblocking remote memory
accesommunication in scieriic bendimarks . In Proceedings of the Interna-
tional Conferenee on High performance Computing (HIPC 03), 2003.

[63] J. Tra, H. Ritzdorf, and R. Hempel. The Implemertation of MPI-2 One-Sided
Communication for the NEC SX. In Proceedings of Sugercomputing 2000.

164

[64] Randolph Wang, Arvind Krishnamurthy, Richard P. Martin, Thomas E. An-
derson, and David E. Culler. Modeling comnunication pipeline latency. In
Measurementand Modeling of Computer Systems pages22{32, 1998.

[65] J. B. White and S. W. Bowa. Where'sthe overlap? overlapping commnunication
and computation in seeral popular mpi implemenations. Proceedings of the
Third MPI Develogrs and Users conference, 1999.

[66] JieshengWu, Pete Wycko, and Dhabalesvar K. Panda. Supporting E cien t
Noncortiguous Accessin PVFS over InniB and. In Proceedings of the IEEE
International Conferenee on Cluster Computing 2003.

[67] JieshengWu, Pete Wycko , and Dhabalesvar K. Panda. High Performancelm-
plemenation of MPI Datatype Comnunication over In niBand. In International
Parallel and Distributed ProcessingSympsium (IPDPS '04), April 2004.

[68] Y. Cui, R. Moore, K. Olsen, A. Chorasia, P. Maedling, B. Minister, S. Day,
Y. Hui, J. Zhu, A. Majumdar and T. Jordan. Enabling very large earthquale
simulations on Parallel Machines. In Lecture Notesin Computer Sciene, 2007.

165

