
DESIGNING SCALABLE AND HIGH PERFORMANCE

ONE SIDED COMMUNICATION MIDDLEWARE FOR

MODERN INTERCONNECTS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Gopalakrishnan Santhanaraman, M. S

* * * * *

The Ohio State University

2009

Dissertation Committee:

Prof. D. K. Panda, Adviser

Prof. P. Sadayappan

Prof. F. Qin

Dr. P. Balaji

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

c© Copyright by

Gopalakrishnan Santhanaraman

2009

ABSTRACT

High-end computing (HEC) systems are enabling scientists and engineers to tackle

grand challenge problems in their respective domains and make significant contribu-

tions to their fields. Examples of such problems include astro-physics, earthquake

analysis, weather prediction, nanoscience modeling, multiscale and multiphysics mod-

eling, biological computations, computational fluid dynamics, etc. There has been

great emphasis on designing, building and deploying ultra scale HEC systems to pro-

vide true petascale performance for these grand challenge problems. At the same

time, Clusters built from commodity PCs are being predominantly used as main

stream tools for high-end computing owing to their cost-effectiveness and easy avail-

ability.

Communication subsystem plays a pivotal role in achieving scalable performance

in clusters. Of late there has been a lot of interest in one-sided communication model

and they are seen as a viable option for petascale applications. The one-sided com-

munication provides good potential for computation communication overlap. In order

to provide high performance and scalability, the one-sided communication subsystem

needs to be designed to leverage the advanced capabilities of the modern intercon-

nects.

ii

In this dissertation we study and explore various aspects of one-sided communi-

cation like zero-copy, overlap, reduced remote CPU utilization, latency hiding tech-

niques,and non-contiguous data transfers in middleware libraries. We improved the

passive synchronization design to use RDMA atomic operations that provides high

overlap capability. We also proposed a hybrid design that extends the above approach

to optimize intra-node communications as well. We have also explored the use of

remote completion semantics for RDMA operations in InfiniBand to improve the per-

formance of fence synchronization. To optimize non-contiguous data communication,

we proposed novel zero-copy designs using InfiniBand scatter/gather operations with

reduced remote CPU utilization. Designs using RDMA atomic primitives have been

proposed to improve the performance of read-modify-write operations. Further we

have also proposed latency hiding techniques that uses non-blocking semantics and

aggregation mechanisms.

iii

Dedicated to my parents

iv

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. D. K. Panda for guiding me throughout the

duration of my PhD study. I’m thankful for all the efforts he took for my dissertation.

I would like to thank my committee members Prof. P. Sadayappan and Dr. F.

Qin for their valuable guidance and suggestions.

I’m grateful for financial support by National Science Foundation (NSF) and De-

partment of Energy (DOE). I’m thankful to Dr. Jarek Nieplocha, Dr. Rajeev Thakur

and Dr. Pavan Balaji for their support and guidance during my summer internships.

I would like to thank all my nowlab collegues past and present. I am fortunate for

having worked with Sundeep, Amith, Vishnu, Sayantan, Karthik, Ranjit, Jin, Pavan,

Darius, Juixing, Jiesheng, Adam, Matt, Wei, Lei, Weikuan, Qi, Rahul, KGK, Hari,

Jaidev, Tejus, Greg, Ping, Ouyang, Krishan, Sreeram and Jonathan.

I am especially grateful to my friends Sundeep, Amith, Mallu, Chala and Niranjan

for all their support during my stay at OSU

Finally I would like to thank my parents, my brother Raj and my wife Harini for

their constant support and encouragement. I would not have made it this far without

them.

v

VITA

August 1999 - Dec 2001 . M.S Computer Engineering, University
of South Carolina.

August 1994 - July 1998 . B.Tech Ceramic Engineering, Institute
of Technology, Banaras Hindu Univer-
sity, varanasi, India.

June 2008 - September 2008 Summer Intern,
Argonne National Laboratory,
Chicago, IL.

June 2005 - September 2005 Summer Fellow,
Pacific NorthWest National Labora-
tory, Richland, WA.

PUBLICATIONS

G. Santhanaraman, J. Wu, W. Huang, and D. K. Panda, “Designing Zero-copy
MPI Derived Datatype Communication over InfiniBand: Alternative Approaches and

Performance Evaluation” ,The special Issue of the International Journal of High
Performance Computing Applications (IJHPCA).

V. Tipparaju, M. Krishnan, J. Nieplocha, G. Santhanaraman, and D. K. Panda,

“Optimization and Performance Evaluation of Mechanisms for Latency Tolerance in
Remote Memory Access Communication on Clusters”, The International Journal of

High Performance Computing and Networking (IJHPCN).

K. Kandalla, H. Subramoni, G. Santhanaraman, M. Koop and D. K. Panda, “

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters ”, In
proceedings of Workshop on Communication Architecture for Clusters (CAC 09).

G. Santhanaraman, P. Balaji, K. Gopalakrishnan, R. Thakur, W. Gropp and D. K.

Panda, “Natively Supporting True One-sided Communication in MPI on Multi-core

vi

Systems with InfiniBand ”, In proceedings of International Symposium on Cluster
Computing and the Grid (CCGrid’09).

R. Kumar, A. Mamidala, M. Koop, G. Santhanaraman and D. K. Panda, “Lock free

asynchronous rendezvous design for point to point communication ”, In proceedings
of Europvm MPI 2008.

G. Santhanaraman, S. Narravula, and D. K. Panda, “Designing Passive Synchroniza-

tion for MPI-2 One-Sided Communication to Maximize Overlap ”,IEEE International
Parallel and Distributed Processing Symposium (IPDPS ’08).

S. Narravula, A. R. Mamidala, A. Vishnu, G. Santhanaraman and D. K. Panda,

“High Performance MPI over iWARP: Early Experiences ”,International Conference

on Parallel Processing (ICPP ’07).

G. Santhanaraman, S. Narravula, A. R. Mamidala and D. K. Panda, “MPI-2 One
Sided Usage and Implementation for Read Modify Write operations: A case study

with HPCC ”, In Proceedings of EuroPVM/MPI ’07.

A. Mamidala, S. Narravula, A. Vishnu, G. Santhanaraman and D. K. Panda, “Using
Connection-Oriented vs. Connection-Less Transport for Performance and Scalability

of Collective and One-sided operations: Trade-offs and Impact ”,ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP ’07).

W. Huang, G. Santhanaraman, H. -W. Jin, and D. K. Panda, “Design of High

Performance MVAPICH2: MPI-2 over InfiniBand ”, In Proceedings of the Sixth
IEEE International Symposium on Cluster Computing and the Grid (CCGrid’06).

W. Huang, G. Santhanaraman, H. -W. Jin, and D. K. Panda, “ Design Alternatives
and Performance Trade-offs for Implementing MPI-2 over InfiniBand ”, In Proceed-

ings of EuroPVM/MPI 2005.

A. Vishnu, G. Santhanaraman, W. Huang, H. -W. Jin and D. K. Panda, “Supporting
MPI-2 One Sided Communication on Multi-Rail InfiniBand Clusters: Design Chal-

lenges and Performance Benefits ”, In Proceedings of the International Conference on
High Performance Computing(HiPC’05).

W. Huang, G. Santhanaraman, H. -W. Jin and D. K. Panda, “Scheduling of MPI-2

One Sided Operations over InfiniBand ”, In Proceedings of Workshop on Communi-
cation Architecture on Clusters (CAC 05) .

vii

G. Santhanaraman, J. Wu and D. K. Panda, “Zero-Copy MPI Derived Datatype
Communication over InfiniBand ”, In Proceedings of EuroPVM/MPI 2004.

V.Tipparaju, G. Santhanaraman, J. Nieplocha and D. K. Panda, “Host-Assisted

Zero-Copy Remote Memory Access Communication on InfiniBand ”, In Proceedings
of International Parallel and Distributed Processing Symposium (IPDPS 04).

V. Tipparaju, M. Krishnan, J. Nieplocha, G. Santhanaraman and D. K. Panda, “

Optimizing Mechanisms for Latency Tolerance in Remote Memory Access Commu-
nication on Clusters ”, In Proceedings of IEEE Cluster Computing 2003.

J. Nieplocha, V. Tipparaju, M. Krishnan, G. Santhanaraman, and D. K. Panda, “

Exploiting Nonblocking Remote Access communication in Scientific benchmarks on

Clusters ”, In Proceedings of International Conference on High Performance Com-
puting (HiPC 2003).

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Computer Architecture Prof. D. K. Panda
Computer Networks Prof. D. Xuan
Software Systems Prof. S. Parthasarathy

viii

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vi

List of Tables . xiii

List of Figures . xiv

Chapters:

1. Introduction . 1

2. Background . 6

2.1 InfiniBand Architecture Overview 6

2.1.1 Send/Recv and RDMA . 7
2.1.2 InfiniBand Scatter/Gather Capabilities 9

2.1.3 Hardware Remote Atomics in InfiniBand 10
2.2 Multicore architecture . 10

2.3 MPI Overview . 11
2.3.1 MPI Point-to-point Communication 11

2.3.2 MPI One-sided Communication 12
2.3.3 MPI Non-contiguous Data Communication 13

2.4 MVAPICH2 Overview . 14
2.4.1 Point-to-point MPI Operations in MVAPICH2: 14

2.4.2 Point-to-point Based One-sided operations: 15

ix

2.4.3 Direct One-sided Operations: 15
2.5 ARMCI Overview . 15

3. Problem Statement and Methodology . 17

4. Passive Synchronization Mechanism . 23

4.1 Passive synchronization Design using InfiniBand Remote Atomics . 24
4.2 Improve Overlap Scope for MPI-2 One-Sided Operations 29

4.3 Overlap Analysis . 29
4.4 Performance Evaluation . 31

4.4.1 Microbenchmarks . 33

4.4.2 Application evaluation with SPLASH LU benchmark 36
4.5 Related Work . 40

5. Migrating Locks for Multi-cores and High-speed Networks 42

5.1 Proposed Hybrid Design . 43
5.2 Migration Policies . 47

5.3 Experimental Results and Analysis 48
5.3.1 Intra-node Performance . 48

5.3.2 Concurrency and Contention 50
5.3.3 Inter-node Performance . 52

5.3.4 Lock Migration . 54
5.3.5 Hierarchical Task Sharing Communication Pattern Micro-

benchmark . 55
5.3.6 Evaluation with SPLASH LU benchmark 56

5.3.7 Discussion . 59

5.4 Related Work . 60

6. Fence Synchronization . 61

6.1 Design Alternatives . 62

6.2 Deferred Method using two-sided communication (Fence-Def) . . . 63
6.3 Immediate Method using RDMA Semantics 64

6.3.1 Basic Design for Fence (Fence-Imm-Naive) 65
6.3.2 Fence Immediate with Optimization (Fence-Imm-Opt) . . . 67

6.3.3 New Scalable Fence Design With Remote Notification (Fence-
Imm-RI) . 68

6.4 Experimental Results . 71
6.4.1 Overlap . 72

6.4.2 Basic Collectives Performance 72

x

6.4.3 Fence Synchronization Performance 73
6.4.4 Fence Synchronization with Communication Performance . . 75

6.4.5 Halo Exchange Communication Pattern 76
6.5 Related Work . 78

7. Read Modify Write Mechanisms . 79

7.1 HPCC Benchmark . 79
7.2 One sided HPCC Random Access Benchmark: Design Alternatives 81

7.2.1 HPCC Get-Modify-Put (HPCC GMP) 82
7.2.2 HPCC Accumulate (HPCC ACC) 83

7.3 Optimizations . 84

7.3.1 Software Aggregation . 84
7.3.2 Hardware based Direct Accumulate 85

7.4 Performance Evaluation . 86
7.4.1 Discussion . 91

7.5 Related Work . 92

8. Non-Contiguous Data-transfers . 93

8.1 Non-contiguous Point-to-point Data-transfer 95

8.1.1 Proposed SGRS (Send Gather/Recv Scatter) Approach . . . 97
8.2 Performance Evaluation . 101

8.3 Non-contiguous One-sided Data-transfer 113
8.3.1 Host-Based Buffered Approach 113

8.3.2 Host-Assisted Zero-Copy RMA 114
8.4 Performance Evaluation . 117

8.5 Related Work . 123

9. Non-blocking One-sided Primitives . 124

9.1 Efficient Non-blocking Design . 125
9.2 Implicit and Explicit Aggregation 128

9.3 Performance Evaluation . 134
9.3.1 Overhead Test . 134

9.3.2 Overlap Test . 134
9.3.3 NAS benchmarks . 136

10. Scheduling One-sided Operations . 140

10.1 Reordering approach . 142
10.1.1 Interleaving . 142

10.1.2 Prioritizing . 144

xi

10.2 Aggregation . 145
10.3 Performance Evaluation . 148

10.4 Related Work . 152

11. Significance and Impact . 153

12. Conclusions and Future Work . 155

12.1 Summary of Research Contributions 156

12.2 Future work . 158

Bibliography . 160

xii

LIST OF TABLES

Table Page

5.1 Inter-node vs Intra-node locks . 58

5.2 Num of Migrations . 60

6.1 Basic Collectives Performance (usecs) 73

xiii

LIST OF FIGURES

Figure Page

2.1 InfiniBand Architecture (Courtesy IBTA) 7

2.2 InfiniBand Protocol Stack (Courtesy IBTA) 8

2.3 InfiniBand Transport Models: (a) Send/Recv Model and (b) RDMA

Model . 9

2.4 MVAPICH2 Design Overview . 14

3.1 Broad Overview . 21

4.1 Overview . 24

4.2 Locking Mechanisms:(a)Handling Exclusive Lock and (b)Handling Shared
and Exclusive Lock . 27

4.3 Computation and Communication Overlap: (a) Sender Side Overlap
and (b) Receiver Side Overlap . 30

4.4 Basic Passive Performance of (a) Put and (b) Get operations 32

4.5 Overlap Benefits of Basic One-sided operations: (a) Put and (b) Get 32

4.6 Overlap Benefits with Increasing Number of Operations: (a) Put and

(b) Get . 32

4.7 Receiver overlap capability with (a) two process and (b) multiple pro-
cesses . 37

4.8 MPI-2 SPLASH LU benchmark: (a) Problem Size 2048 and (b) Prob-

lem Size 3000 . 38

xiv

4.9 Timing Breakup of MPI-2 SPLASH LU: (a) Problem Size 2048 and

(b) Problem Size 3000 . 38

5.1 Overview . 44

5.2 Locking Mechanisms: Network Lock 46

5.3 Locking Mechanisms: CPU Lock . 46

5.4 Locking Mechanisms: Lock Migration 47

5.5 Lock/Unlock Performance . 49

5.6 Lock/Unlock Performance with Remote Computation 50

5.7 Lock/Unlock Performance with Network Contention 51

5.8 Lock/Unlock Performance with Lock Contention 52

5.9 Inter-node Performance . 54

5.10 Lock Migration Overhead . 55

5.11 Hierarchical Task Sharing Communication Pattern 57

5.12 SPLASH LU Benchmark . 59

6.1 Overview . 62

6.2 Fence Usage . 63

6.3 Barrier Messages overtaking Put . 65

6.4 Fence-Imm-Naive . 66

6.5 Optimized Design (Fence-Imm-Opt) 68

6.6 New design (Fence-Imm-RI) . 69

6.7 Overlap performance . 73

xv

6.8 Fence Performance for Zero Put . 74

6.9 Fence Performance for Single Put . 75

6.10 Fence Performance for Multiple Puts 76

6.11 Fence performance with Halo Exchange: (a) 4 neighbors and (b) 8

neighbors . 77

7.1 Overview . 80

7.2 Code snippets of one-sided versions of HPCC Random Access benchmark 84

7.3 Basic Performance (a) Micro-benchmarks and (b) Basic HPCC GUPs 87

7.4 Aggregation Performance Benefits (a) Basic Aggregation Micro-benchmarks

and (b) HPCC with Aggregation . 88

7.5 Direct Accumulate Performance Benefits: Micro-benchmarks 89

7.6 HPCC with Direct Accumulate . 90

7.7 Software Aggregation vs Hardware Direct Accumulate benefits 91

8.1 Overview . 94

8.2 Bandwidth Comparison over VAPI with 64 Blocks 96

8.3 Bandwidth Comparison over VAPI with Varying Number of Blocks . 96

8.4 a)Basic Idea of the SGRS Scheme and b) SGRS Protocol. 98

8.5 MPI Level Vector Latency 64 blocks a)PCI-X and b)PCI-Express . . 106

8.6 MPI Level Vector Latency 128 blocks a)PCI-X and b)PCI-Express . . 107

8.7 MPI Level Vector Bandwidth 64 blocks a)PCI-X and b)PCI-Express . 107

8.8 MPI Level Vector Bandwidth 128 blocks a)PCI-X and PCI-Express . 108

xvi

8.9 MPI Level Vector Bi-directional Bandwidth 64 blocks a)PCI-X and
b)PCI-Express . 108

8.10 MPI Level Vector Bi-directional Bandwidth 128 blocks a)PCI-X and

b)PCI-Express . 109

8.11 MPI Alltoall Vector Latency a)PCI-X and b)PCI-Express 109

8.12 Sender side CPU overhead . 111

8.13 Receiver side CPU overhead . 111

8.14 Overhead of Transferring Layout Information 112

8.15 Host Based Buffered Approach . 114

8.16 Host Assisted Zero-copy Approach 118

8.17 Bandwidth Comparison with Remote Side Idle 119

8.18 Bandwidth Comaprison with Remote Side Busy 120

8.19 Overlap Percentage . 121

8.20 Performance of Matrix Multiplication for Square Matrices 121

8.21 Performance of Matrix Multiplication for Rectangular Matrices 122

9.1 Overview . 125

9.2 Non-blocking transfer with implicit handle 127

9.3 Implicit Aggregate Data Transfer . 129

9.4 Latency of ARMCI Get vs GM Get 136

9.5 Percentage of Computation Overlap 137

9.6 Performance Improvement in NAS MG for Class B 137

9.7 Performance Improvement in NAS CG for Class B 138

xvii

10.1 Overview . 141

10.2 Sequential Issue of MPI Get and MPI Put 143

10.3 Interleaved Issue of MPI Get and MPI Put 143

10.4 Potential Benefit by Giving Priority to MPI Get 145

10.5 Aggregation of RMA Operation and Synchronization 146

10.6 Aggregation of Multiple Small Size RMA Operations 146

10.7 Impact of scheduling on throughput on EM64T and IA32 148

10.8 Impact of scheduling on latency on EM64T and IA32 150

10.9 One sided MPI Put latency on EM64T and IA32 151

10.10One sided MPI Get latency on EM64T and IA32 151

xviii

CHAPTER 1

INTRODUCTION

High-end computing (HEC) systems are enabling scientists and engineers to tackle

grand challenge problems in their respective domains and make significant contribu-

tions to their fields. Examples of such problems include astro-physics, earthquake

analysis, weather prediction, nanoscience modeling, multiscale and multiphysics mod-

eling, biological computations, computational fluid dynamics, etc. There has been

great emphasis on designing, building and deploying ultra scale HEC systems to pro-

vide true petascale performance for these grand challenge problems. At the same

time, Clusters built from commodity PCs are being predominantly used as main

stream tools for high-end computing owing to their cost-effectiveness and easy avail-

ability. In fact, the top 500 list of supercomputers [61] feature large scale clusters

delivering TFlops of computational power. The easy availability of low cost com-

modity PC’s together with scalable and high performance interconnection networks

is making Compute Clusters more affordable and cost effective. With the advent

of multi-core architecture, each of the nodes are being equipped with multiple cores

allowing for ultra-scale cluster sizes up to hundreds of thousands and even millions

of cores by the next decade.

1

However, the performance that applications can achieve on such large-scale sys-

tems depends heavily on their ability to avoid synchronization with other processes,

thus minimizing idleness caused by process skew. Towards this goal, scientific ap-

plications can use two models for minimizing such synchronization requirements—

clique-based communication and implicit data movement using one-sided operations.

Clique-based communication refers to the ability of applications to form small

sub-groups of processes with a majority of the communication happening within the

groups. Nearest neighbor (e.g., PDE solvers, molecular dynamics simulations) and

cartesian grids (e.g., FFT solvers) are popular examples of such communication [5, 23,

8]. While clique-based communication reduces the number of processes each process

needs to synchronize with, it does not completely avoid synchronization. Similarly,

while the size of the clique grows slowly as compared to the overall system size, on

ultra-scale systems, this can still be a concern. For example, in a 2-D cartesian grid

communication along a row of processes, on a million process system, each clique can

contain as many as a thousand processes.

Implicit data movement using one-sided operations supplements the benefits of

clique-based communication by allowing data to be moved from one process’ memory

to another without requiring any synchronization.

A majority of the scientific and engineering application codes use MPI as the

programming model. MPI provides an easy and portable abstraction for exchang-

ing data between processes. It provides for a plethora of communication operations

with varying semantics and usage. The MPI-1 [30] standard provides communica-

tion semantics for two-sided operations (send and receive). It has support for both

point-to-point and collective communications. The MPI-2 standard [43] added new

2

one-sided communication semantics with various operations (Put,Get) and synchro-

nization semantics.

Most modern as well as legacy parallel programming models (e.g., MPI [31],

UPC [2], Global Arrays [4]) are increasingly providing constructs for such one-sided

communication also known as RMA (remote memory access), where a process can

read/write data from another process without necessarily requiring participation from

the remote process.

The one-sided communication model can ideally minimize the need for synchro-

nization. Since the remote process need not be involved in the data movement, it can

perform its computation while the data transfer is happening. Thus this can lead to

good potential for computation/communication overlap for the application.

However, in spite of these potential benefits, the adoption of these one-sided se-

mantics in scientific applications has been slow. This has been primarily due to two

reasons: (i) most legacy applications have been written using two-sided MPI seman-

tics and many times, writing these applications in one-sided semantics may need

changes to the algorithm and (ii) the one-sided designs are often implemented on top

of two-sided semantics leading to poor performance.

Of late there has been a lot of interest in one-sided communication models and

with modern interconnects providing better hardware support for RMA capabilities,

they are seen as a viable option for petascale applications.

Recently InfiniBand Architecture (IBA)[35], a new industry proposed standard is

making headway in the high performance networking domain. In addition to deliv-

ering low latencies and high bandwidth, it provides a rich set of network primitives

like Remote Direct Memory Operations (RDMA), Remote Atomics, Scatter/Gather,

3

hardware-level Multicast and Send/Shared-Receive Queue capabilities. Also, the IBA

standard allows for four conduits of of message transport, Reliable Connection (RC),

Unreliable Connection, Reliable Datagram (RD) and Unreliable Datagram (UD) over

which these network primitives can be layered. The RDMA capabilities of InfiniBand

provides a good match to the one-sided RMA semantics.

The main objective of this dissertation is to design a High Performance and Scal-

able One sided Communication subsystem in MPI for the next-generation HEC sys-

tems. Such a system would exhibit good performance scaling while effectively har-

nessing the primitives exposed by the underlying high performance interconnect. In

particular, we aim to address the following questions in the dissertation:

• How can we leverage the mechanisms of modern interconnects to build scal-

able and high performance one-sided communication and synchronization prim-

itives?

• How can communication and synchronization mechanisms be redesigned to en-

able high overlap of computation and communication?

• What are the challenges associated in optimizing non-contiguous data commu-

nication and can the designs benefit from InfiniBand hardware support?

• Can we improve the performance of one-sided communication by designing non-

blocking semantics and using techniques like re-ordering and aggregation?

• As the number of cores within a node increases, what kind of intra-node opti-

mizations can one-sided communication benefit from?

4

The objectives described above all involve multiple challenges in terms of performance,

scalability and ease of use. In this dissertation we study and investigate all these

challenges to design an efficient and scalable one-sided communication subsystem

that can provide benefits to applications.

The rest of this dissertation is organized as follows: In Chapter 2 we discuss

existing technologies which provide background for our work including InfiniBand,

multicore architecture, MPI, and details of one-sided communication middleware.

Chapter 3 describes in detail the problems that are addressed in this dissertation.

Chapters 4-10 discuss the detailed approaches and results for these problems. The

significance and impact of the work in terms of open-source software developed as part

of this dissertation is described in Chapter 11. Chapter 12 provides the conclusion

and possible future research directions

5

CHAPTER 2

BACKGROUND

In this section we provide an overview of the InfiniBand Architecture and its

features. Specifically, we explain the different communication semantics provided by

IBA and the associated transports on which these are based on. Then we give a

brief overview of multi-core architecture. Further, we also explain briefly the design

overview of MVAPICH2 which is a popular MPI over InfiniBand and a brief overview

of ARMCI which is another one-sided communication library.

2.1 InfiniBand Architecture Overview

InfiniBand Architecture (IBA) [35] is an industry standard that defines a System

Area Network (SAN) to design clusters offering low latency and high bandwidth. As

shown in Figure 2.1, a typical IBA cluster consists of switched serial links for inter-

connecting processing nodes and the I/O nodes. The processing nodes are connected

to the fabric by Host Channel Adapters(HCA). HCA’s semantic interface to to the

consumers is specified in the form of IB Verbs. The interface presented by Channel

Adapters to consumers belongs to the transport layer. A queue-pair based model is

used in this interface. Each Queue Pair is a communication endpoint. This can be

seen in Figure 2.2. A Queue Pair consists of a send queue and a receive queue. Two

6

Figure 2.1: InfiniBand Architecture (Courtesy IBTA)

QPs on different nodes can be connected to each other to form a logical bi-directional

communication channel. An application can have multiple QPs. Communication

requests are initiated by posting descriptors (WQRs) to these queues. InfiniBand

supports different classes of transport services. These are explained in the following

section.

2.1.1 Send/Recv and RDMA

IBA supports two types of communication primitives: Send/Recv with Channel

Semantics and RDMA with Memory Semantics. In Channel semantics, each send

request has a corresponding receive request at the remote end. Thus there is a one-

to-one correspondence between every send and receive operation. Receive operations

require buffers posted on each of the communicating QP, which amount to a large

number. In order to allow sharing of communication buffers, IBA allows the use of

7

Figure 2.2: InfiniBand Protocol Stack (Courtesy IBTA)

Shared Receive Queues (SRQ). SRQs allow multiple QPs to have a common Receive

Queue. In memory semantics, Remote Direct Memory Access (RDMA) operations

are used. These operations do not require a receive descriptor at the remote end

and are transparent to it. For RDMA, the send request itself contains the virtual

addresses for both the local transmit buffer and the receive buffer on the remote

end. The RDMA operations are available with the RC Transport. These RDMA

operations are a good match for one-sided operations since the receiver side can be

transparent to the operation.

Figure 2.3 shows the basic working of both the RDMA and the Send/Recv mod-

els. The main steps involved are labeled with sequence numbers. The main difference

between the two is the requirement of posting a receive descriptor for the send/recv

8

model. In addition to these, InfiniBand also provides RDMA Write with Immedi-

ate operations which offers the flexibility of providing notification that the data has

reached the memory in addition to directly placing the data in the remote memory.

QP
WQEs

QP

PORT

QP
WQEs

QP

PORT

1

IB − FABRIC

DATA

HCA

DATA

HCA

CPU CPU

MEMORYMEMORY

2

3

QP
WQEs

QP

PORT

QP
WQEs

QP

PORT

IB − FABRIC

DATA

HCA

DATA

HCA

CPU CPU

MEMORYMEMORY

1

2

Figure 2.3: InfiniBand Transport Models: (a) Send/Recv Model and (b) RDMA
Model

2.1.2 InfiniBand Scatter/Gather Capabilities

InfiniBand also provides Scatter/Gather capabilities to certain extent. In chan-

nel semantics, the sender can gather data from multiple locations in one operation.

Similarly, the receiver can receive data into multiple locations. In memory semantics,

non-contiguity is allowed only in one side. InfiniBand provides RDMA Read with

Gather and RDMA Write with Scatter feature. RDMA Write can gather multiple

data segments together and write all data into a contiguous buffer on the remote node

in one single operation. RDMA Read can scatter data into multiple local buffers from

a contiguous buffer on the remote node.

9

2.1.3 Hardware Remote Atomics in InfiniBand

One of the notable features provided by the InfiniBand Architecture is hardware

atomic support. InfiniBand provides two network level remote atomic operations,

namely, fetch and add and compare and swap. The network interface card (NIC) on

the remote node guarantees the atomicity of these operations. These operations act

on 64-bit values. In the atomic fetch and add operation, the issuing process specifies

the value that needs to be added and the remote address of the 64-bit location to

which this value is to be added. On the other hand, in an atomic compare and swap

operation, the issuing process specifies a ‘compare value’ and a ‘new value’. The value

at the remote location is atomically compared with the ‘compare value’ specified by

the issuing process. If both the values are equal, the original remote value is swapped

with the new value which is also provided by the issuing process. If these values are

not the same, swapping does not take place. In both the cases, the original value is

returned to the issuing process. It is to be noted that these operations are atomic

only with respect to other InfiniBand atomic operations.

2.2 Multicore architecture

Emerging trends in processor technology has led to Multicore Processors (also

known as Chip-level Multiprocessing or CMP) which provides large number of cores on

a single node thus increasing the processing capabilities of current generation systems.

Dual-core (two cores per die) and Quad-core (four cores per die) architectures are

widely available from various industry leaders including Intel, AMD, Sun (up to 8

cores) and IBM. the negligible cost associated with placing an extra processing core

on the same die has allowed these architectures to increase the capabilities of the

10

applications significantly. Recently, Intel has announced that it will be introducing

an 80-core die [6] within the next few years. Other industries are expected to follow

this trend. Most HPC platforms are multi-core based in order to provide peta scale

level computing. This brings an interesting trend that lots of communication can now

happen within a node.

2.3 MPI Overview

Message Passing Interface (MPI) [55] was proposed as a standard communication

interface for parallel applications. It specifies an API and its mapping to different

programming languages such as Fortran, C and C++. Since its introduction, MPI

has been implemented in many different systems and has become the de facto stan-

dard for writing parallel applications. The main communication paradigm defined

in MPI is message passing. However, MPI is also implemented in systems that sup-

ports shared memory [29, 34]. Therefore, parallel applications written with MPI are

highly portable. They can be used in different systems as long as there are MPI

implementations available.

2.3.1 MPI Point-to-point Communication

In an MPI program, two processes can communicate using MPI point-to-point

communication functions. One process initiates the communication by using MPI Send

function. The other process receives this message by issuing MPI Recv function. Des-

tination processes need to be specified in both functions. In addition, both sides spec-

ify a tag. A send function and a receive function match only if they have compatible

tags.

11

MPI Send and MPI Recv are the most frequently used MPI point-to-point func-

tions. However, they have many variations. MPI point-to-point communication

supports different modes for send and receive. The mode used in MPI Send and

MPI Recv is called standard mode. There are other MPI functions that support other

modes such as synchronous, buffered and ready modes. Communication buffers spec-

ified in MPI Send and MPI Recv must be contiguous. However, there are also vari-

ations of MPI Send and MPI Recv functions that supports non-contiguous buffers.

Finally, any send or receive functions in MPI can be divided into two parts: one to

initiate the operation and the other one to finish the operation. These functions are

called non-blocking MPI functions. For example, MPI Send function can be replaced

with two functions: MPI Isend and MPI Wait. By using MPI non-blocking func-

tions, MPI programmers can potentially overlap communication with computation,

and therefore increase performance of MPI applications.

2.3.2 MPI One-sided Communication

The MPI one-sided communication model is also known as the Remote Memory

Access (RMA). In this model, a process defines a memory window in its local address

space as the target for remote memory operations by other processes within the same

MPI communicator. In one-sided communication, the origin process (the process

that issues the RMA operation) can access a target process’ remote address space

also referred to as the window directly. In this model, the origin process provides all

the parameters needed for accessing the memory area on the target process.

Data transfer happens through the one-sided operations: put, get and/or accu-

mulate. In a put operation, the origin process writes data into the target’s memory

12

window. In a get operation, the origin process reads data from the target’s memory

window to its local buffer. In an accumulate operation, the origin process can update

atomically remote locations by combining the content of the local buffer with the

remote memory buffer. Any of the predefined reduction operations like MPI SUM,

MPI MAX, MPI MIN, MPI PROD, MPI XOR, etc. can be performed. This one-

sided operation combines communication and computation in a single interface.

To synchronize between the target (who provides the memory region) and the ori-

gin (who issues the data transfers) processes, MPI one-sided model defines both active

and passive synchronization. Active synchronization involves both the origin and tar-

get processes and has either point-to-point semantics (post/start wait/complete) or

collective semantics (fence). The post/start wait/complete mechanism allows only a

subset of processes to synchronize. The fence has collective semantics that requires the

participation of all processes in the group. Passive synchronization provides shared

or exclusive lock semantics on the entire remote memory window and needs to involve

only the origin process and the target process is uninvolved.

2.3.3 MPI Non-contiguous Data Communication

One of the important features provided by MPI is derived datatypes. MPI pro-

vides derived datatypes to enable users to describe noncontiguous memory layouts

compactly and to use this compact representation in MPI communication functions.

Derived datatypes also enable an MPI implementation to optimize the transfer of non-

contiguous data. The MPI standard supports derived datatypes for both one-sided

as well as two sided communication primitives.

13

ChannelChannel

MPI 2

ADI3

TCP Socket SHMEM RDMA
Channel

SHMEM
Sys V

Shared Memory InfiniBand

CH3 EXT

Figure 2.4: MVAPICH2 Design Overview

2.4 MVAPICH2 Overview

We now provide a high-level design overview of Point-to-Point and One-sided

Communication support in the MVAPICH2 stack. MVAPICH2 [46] is a popular MPI

over InfiniBand used worldwide. MVAPICH2 is an ADI3 level implementation on

top of the MPICH2 stack. As a successor of MPICH, MPICH2 [9] supports MPI-1 as

well as MPI-2 extensions including one-sided communication. In addition MVAPICH2

supports RDMA-based active one-sided communication by extending the CH3 layer

as shown in Figure 2.4.

2.4.1 Point-to-point MPI Operations in MVAPICH2:

The two main protocols used for MPI point-to-point primitives are the eager and

rendezvous protocols. In the eager protocol, the message is copied into communication

buffers at the sender and destination process before it is copied into the user buffer.

These copies are not present if rendezvous protocol is used. However, in this case an

extra handshake is required to exchange user buffer information for zero-copy of the

14

message. For intra-node communication, a separate shared memory channel is used

for communication.

2.4.2 Point-to-point Based One-sided operations:

In MVAPICH2, all the one-sided operations discussed above in Section 2.3.2 are

implemented over Point-to-Point operations. They are not optimal, but they are very

portable. However when hardware support is available it is desirable to have a design

that gives high performance and true one-sided communication.

2.4.3 Direct One-sided Operations:

As discussed above, one-sided operations implemented directly over the IBA can

lead to significant performance gains. In fact, the basic get and put operations and

active synchronization mechanisms are already implemented using RDMA Read and

RDMA Write operations. The focus of this dissertation is to leverage mechanisms of

RDMA , atomic operations and scatter gather support to provide optimized one-sided

communication support in MVAPICH2.

2.5 ARMCI Overview

In addition to MPI, there are a few other libraries which provide one-sided pro-

gramming model. Aggregate Remote Memory Copy Interface (ARMCI) [47] is a

portable RMA communication library compatible with message-passing libraries such

as MPI or PVM. It has been used for implementing distributed array libraries such

as Global Arrays [50], other communication libraries such as Generalized Portable

SHMEM [1] or the portable Co-Array Fortran compiler [19] at Rice University. ARMCI

offers the following set of functionality in the area of RMA communication: 1) data

15

transfer operations; 2) atomic operations; 3) memory management and synchroniza-

tion operations; and 4) locks. In scientific computing, applications often require

transfers of noncontiguous data that corresponds to fragments of multidimensional

arrays, sparse matrices, or other more complex data structures. With remote mem-

ory communication APIs that support only contiguous data transfers, it is necessary

to transfer noncontiguous data using multiple communication operations. This often

leads to inefficient network utilization and involves increased overhead. ARMCI offers

explicit noncontiguous data interfaces: strided and generalized I/O vector that allow

description of the data layout so that it could, in principle, be transferred in a single

message.

16

CHAPTER 3

PROBLEM STATEMENT AND METHODOLOGY

There has been a lot of interest and research being done in the field of one-sided

communication models recently. The main advantage of using this kind of model is

that it supports asynchronous communication. There is no need to synchronize in

terms of matching send/recv for every communication. In a one-sided communication

model ideally only one process is involved in the communication and can directly read

or write from the address space of the target process. The remote or target process

need not be involved in this communication and can perform computation simultane-

ously. This can potentially lead to better computation/communication overlap. The

MPI-2 standard provides one-sided communication or remote access memory (RMA)

semantics in addition to two-sided semantics. However the one-sided primitives are

often implemented on top of two-sided primitives thus resulting in poor performance.

Also some of the semantics are restrictive for an application writer to take advantage

of these operations. This has resulted in slow adoption of these semantics in scientific

applications. At the same time, several applications like PS-DNS [3], ENZO [25],

17

AWM-Olsen [68], mpiBlast [20] have communication characteristics that can poten-

tially benefit from one-sided communication model. Modern Interconnects like Infini-

Band provide a lot of network features that are a close match for these one-sided or

RMA operations.

The main objective of this dissertation is to “Design a High Performance and

Scalable One-sided Communication Subsystem leveraging directly the different network

primitives of modern Interconnects for next-generation HPC systems”.

Specifically, the dissertation aims to address the following challenges:

• Synchronization: Can we design truly one-sided passive synchronization using

InfiniBand’s hardware atomic operations to maximize overlap potential? How

much of these overlap benefits can be translated to actual performance improve-

ment in one-sided applications? Can existing design for collective synchroniza-

tion like Fence be enhanced to improve scope for overlap as well as reduce any

bottlenecks and hotspots in the network?

In Chapter 4, we design support for passive synchronization using InfiniBand

atomic operations. We also enhance the one-sided communication progress to

provide scope for better overlap. In Chapter 6, we evaluate the different de-

sign options for implementing fence mechanism and propose a novel fence syn-

chronization mechanism which uses InfiniBand’s RDMA Write with Immediate

capability to notify remote completions.

• Intra-node Optimizations for Multi-Core Architectures: Can we use the fast

atomic locks provided by processor architectures for efficient intra-node locking?

18

What are the challenges to design support for fast CPU locks for intra-node

operations and network based locks for remote operations?

In Chapter 5 we study the benefits of using fast CPU based locks for intra-

node operations. We come up with a hybrid design that can migrate between

CPU based locks and network locks depending on the migration policies. We

demonstrate the benefits of this design for different communication patterns.

• Read-Modify-Write Mechanisms: Read-Modify-Write operations are important

for one-sided applications. The MPI one-sided semantics does not explicitly

provide this interface. How can one-sided applications be written using exist-

ing one-sided interface for read-modify-write functionality? Can InfiniBand’s

features such as atomic operations be used to achieve high performance and

scalability for read-modify-write operations? What kind of hardware/network

mechanisms are needed to further optimize these operations?

In Chapter 7, we study the HPCC Random Access benchmark which primarily

uses read-modify-write operations. We evaluate different approaches of effi-

ciently implementing these operations using MPI-2 one-sided communication

semantics. We also propose an implementation of MPI Accumulate that can

make use of InfiniBand hardware fetch and add operations that yields good

performance.

• Non-Contiguous operations: In several applications the data communication

are often non-contiguous. The generic approach to handle non-contiguity is to

perform packing and unpacking of data into contiguous buffers. This requires

heavy CPU involvement on the origin and target side to copy the data into

19

contiguous buffer and copying the data out of contiguous buffers. Can the scat-

ter/gather capabilities be utilized to achieve zero copy cost as well as reduced

remote CPU involvement for non-contiguous data transfers for both point-to-

point and two-sided data transfers? What are the trade-offs involved and what

kind of application benefits can be achieved?

In Chapter 8, we discuss the various challenges in designing non-contiguous

data communication for both two-sided as well as one-sided communication.

The main overhead for non-contiguous communication is the overhead of data

copies on both the sender and receiver sides. We propose new zero-copy designs

for implementing non-contiguous data movement using InfiniBand’s hardware

based scatter/gather capability.

• Non-Blocking primitives: In order to obtain good computation communication

overlap, the RMA one-sided design should support efficient non-blocking oper-

ations. How can we implement efficient non-blocking primitives that provides

good scope for computation communication overlap? What are the challenges

and what are the associated benefits of providing non-blocking primitives?

In Chapter 9 we discuss the design issues in implementing non-blocking one-

sided operations. We also demonstrate the performance benefits of a non-

blocking design over a blocking design.

• Re-ordering and scheduling: MPI-2 standard allows the actual communication

for RMA operations happen at synchronization time and also allows re-ordering

20

of operations within an access epoch. Can we design schemes that take advan-

tage of this flexibility to achieve latency and better network bandwidth utiliza-

tion? Can these schemes show performance benefits for some communication

patterns?

In Chapter 10 we propose designs that can take advantage of the re-ordering se-

mantics to interleave, prioritize and aggregate the operations. We demonstrate

the performance benefits of these approaches for different communication sce-

narios.

Interconnects
Modern

Middleware

Scatter/Gather Send/Recv

Advanced InfiniBand Primitives

One−sided

Remote Atomics RDMA

(put,get,accumulate),datatypes

One−sided API

SCIENTIFIC APPLICATIONS AND BENCHMARKS

Enabling Overlap

Non−blocking

Passive sync

Optimizations
Non−contiguous

data transfer

Re−ordering &

Intra−Node

Migrating Locks

Designs and Optimizations

Optimized

capability

(active,collective,passive)
Data transfer Synchronization

Write
Read−Modify

Petascale
Applications

Fence sync scheduling

Figure 3.1: Broad Overview

21

Figure 4.1 provides an overview of all the above mentioned components. The

components that we focus in this dissertation are lightly shaded. We describe the

detailed design and the results of the various components of this dissertation in the

following sections.

22

CHAPTER 4

PASSIVE SYNCHRONIZATION MECHANISM

The one-sided communication model decouples data transfer and synchronization

operations. The synchronization operations ensure that the issued operations are

complete and appropriate semantics are maintained. Depending on the type of syn-

chronization, local and remote completions need to be ensured. These synchronization

operations are very important in one-sided communication and it is very essential to

provide efficient and low overhead synchronization mechanisms.

The MPI one-sided model provides two modes of synchronization.

• Active synchronization: where both the origin and target node are involved in

the synchronization. It has both point-to-point semantics (post/start,wait/complete)

as well as collective semantics (fence). The post/start wait/complete mecha-

nism allows only a subset of processes to synchronize. The fence has collective

semantics that requires the participation of all processes in the group.

• Passive synchronization: only the origin process is involved in the synchroniza-

tion. In MPI-2 passive one-sided communication, the target process does not

make any MPI calls to cooperate with the origin process for communication or

synchronization. The synchronization is done through lock and unlock calls by

the origin process on the window located on the target node.

23

Interconnects
Modern

Middleware

Scatter/Gather Send/RecvRemote Atomics RDMA

(put,get,accumulate),datatypes

One−sided API

SCIENTIFIC APPLICATIONS AND BENCHMARKS

Enabling Overlap

Non−blocking

Passive sync

Optimizations
Non−contiguous

data transfer

Re−ordering &

Intra−Node

Migrating Locks

Designs and Optimizations

Optimized

capability

(active,collective,passive)
Data transfer Synchronization

Write
Read−Modify

Petascale
Applications

Fence sync scheduling

Advanced InfiniBand Primitives

One−sided

Figure 4.1: Overview

The passive synchronization offers true one-sided benefits. However most existing

implementations do not provide these benefits because of limitations of current de-

signs. In this chapter, we explain how the H/W atomic primitives can be leveraged

for providing efficient and truly one-sided passive synchronzation mechanism which

provides good overlap capability. Specifically we work on the highlighted part in

Figure 4.1 of our proposed research framework.

4.1 Passive synchronization Design using InfiniBand Remote
Atomics

In this section we discuss the issues and design challenges in implementing an

efficient MPI-2 passive one-sided communications. Locks are used to protect accesses

24

to the protected target window affected by RMA calls issued between lock and un-

lock calls and to protect local load/store accesses to a locked local window executed

between the lock and unlock call. MPI-2 passive synchronization supports locking in

two modes: (i) exclusive mode and (ii) shared mode. Accesses that are protected by

exclusive locks will not be concurrent at the window site with other accesses to the

same window that are lock protected, i.e, only one process can have exclusive access

to a window at a time. Shared lock mode allows multiple processes (readers/writers)

to access the target window simultaneously. Accesses that are protected by a shared

lock will not be concurrent at the window site with accesses protected by exclusive

lock to the same window.

There are several different approaches for implementing passive synchronization.

The passive synchronization could be implemented on top of two-sided communi-

cation. Another approach to implement passive synchronization when the memory

window is not directly accessible by all the origin processes is by the use of an asyn-

chronous agent at the target. This agent can cause progress to occur. One approach

is to use a thread that periodically wakes up and checks for any pending one-sided

requests. If there is underlying hardware support, then it can be exploited to provide

truly one-sided passive synchronization.

There are several optimizations that are applicable to two-sided based approaches [60].

WMPI explored thread based one-sided communication and synchronization [44].

Previous work in MVAPICH2 used InfiniBand atomic operations to implement ex-

clusive locks [37]. This design has some limitations that it considers only locking in

the exclusive mode. In addition, this design does not guarantee immediate progress

of the one-sided operations which are deferred to the unlock phase. This can hurt the

25

overlap potential. Our new design takes a step further and aims to address the above

limitations while taking a similar approach of using hardware atomic operations. We

use MVAPICH2 [46] as the framework for our design. In the current version of MVA-

PICH2, the passive synchronization support is based on two-sided communication

primitives.

In this context we describe the two main aspects of our design: (i) efficient passive

synchronization with support for locking in both exclusive and shared modes and (ii)

enhancement of the scope for providing good overlap that the one-sided applications

can potentially leverage. The following sections look at the design in further detail.

Efficient passive synchronization support can be designed using InfiniBand’s re-

mote atomic operations. Locking in exclusive mode can be implemented using In-

finiBand’s atomic compare and swap operations. This approach does not involve the

remote process, and hence is a truly one-sided mechanism for passive synchroniza-

tion. However, since MPI-2 allows for both shared and exclusive modes of locking

for passive synchronization, it is imperative that our design allows for shared mode

locking to co-exist as well. The current MVAPICH2 design provides two-sided based

shared mode locking and this can be extended to work coherently with our design

based on remote atomic operations for exclusive mode locking.

For every window on a target process we maintain a 64-bit global lock state that

is registered with the NIC to support remote atomic operations. This 64-bit variable

can be accessed using RDMA atomic operations. This global lock state variable can

be in one of 3 states: (i) unlocked, (ii) locked in exclusive mode and (iii) locked in

shared mode.

26

Origin Process Target Process

Lock
Released

MPI_Win_lock

MPI_Win_unlock

Origin Processes Target Process

MPI_Win_lock

MPI_Win_unlock

Process 2 Process 3 Process 4

(a)

Process 1 Process 2

Global State

None

Global State

None

Global State

Shared

Compare
and

Swap

and
Swap

Compare

Process 1

Compare
and

Swap

Compare
and

Swap

Two−sided Requests

MPI_Put
MPI_Get

(b)

Global State

Excl

MPI_Put
MPI_Get

MPI_Put
MPI_Get

Acquired
Lock

MPI_Put
MPI_Get

Figure 4.2: Locking Mechanisms:(a)Handling Exclusive Lock and (b)Handling Shared
and Exclusive Lock

This variable is by default initialized to the unlocked state during window creation.

MPI Comm size is used to indicate this unlocked state. To obtain an exclusive lock

as seen in Figure 4.2(a), a network based atomic compare-and-swap operation is done

on this variable. If the compare-and-swap is successful, then the lock is obtained and

the global state variable is set to the process rank of the origin process indicating

that it is the current holder of the lock. During the unlock operation, this value is set

back to the default value. Other processes trying to obtain a lock at the same time

would fail and would keep trying till they obtain the lock once the holding process

relinquishes the lock.

In the case of a shared lock, we use the existing two-sided approach in which a

message is sent to an agent on the remote node. The agent queues up the requests

27

and performs the issuing of lock and unlock operations locally. However, this can lead

to conflicts with the exclusive mode locking and additional mechanisms are needed

to handle this case.

To allow both shared and exclusive mode locking we use the following coordina-

tion mechanism. When a shared lock request is received by the remote agent it also

performs an atomic compare-and-swap operation with the global lock state variable.

If it can obtain the lock, that means there are no exclusive locks on this window, it

sets the variable to a predefined value (MPI Comm size + 1) indicating that the lock

is currently issued in shared mode and therefore all exclusive lock operations will be

stalled. This agent also keeps a counter for the number of shared lock requests. When

unlock operations are called, it decreases the counter variable. Once the counter vari-

able reaches zero, it performs a compare-and-swap operation on global state variable

resetting the global state value to the default no lock state. Figure 4.2(b) shows the

basic protocol for shared mode locking. The dotted arrows in the figure indicates the

operations that could be deferred to actually occur in the unlock phase when using

the two-sided mechanism for obtaining shared locks.

The hardware based remote atomic operations have good scalability, but they

might have the problem of flooding the network when the contention for locks is

very high. However, mechanisms like exponential back off can be used to improve

performance in such scenarios [37]. Since this is an orthogonal issue from the focus

in this work, we have not incorporated this in our current design. We would like to

incorporate this in the future.

28

4.2 Improve Overlap Scope for MPI-2 One-Sided Operations

Another aspect we aim to highlight by using the truly one-sided passive syn-

chronization is to improve the overlap potential of the application. When two-sided

approaches are used, the communication operations are often delayed to the syn-

chronization phase and in some cases combined with an unlock synchronization call.

In order to improve the progress, which leads to better overlap, we make sure that

the one-sided operations within the passive epoch are issued immediately using the

RDMA Write and RDMA Read InfiniBand operations. The completion of these oper-

ations are handled in the unlock operation. InfiniBand has limitations on the number

of outstanding RDMA read and write operations. Hence to handle this in our design,

additional requests beyond this limit are queued up internally and issued as soon as

possible.

4.3 Overlap Analysis

In this section we analyze the different designs to understand the potential for

overlap while using passive synchronization. In a passive synchronization mode over-

lap can be achieved at the sender side as well as the receiver side. In the sender

side case, overlap can be more easily understood. Within the passive synchronization

access epoch we could have computation and one-sided communication operations. If

the one-sided routines are non blocking and can be initiated, then potentially we can

perform computation while the initiated communication occurs in the background.

More explicitly, we can do computation between MPI Get or MPI Put and the en-

suing MPI Win unlock operation as long as this computation is independent or does

not need the data from the one-sided operation. We refer to this as the sender side

29

Figure 4.3: Computation and Communication Overlap: (a) Sender Side Overlap and
(b) Receiver Side Overlap

overlap as shown in Figure 4.3(a). In addition to the sender side overlap in a passive

synchronization mode we can have computation on the target node while communi-

cations are occurring in its target window. This could be thought of as receiver side

overlap as seen in Figure 4.3(b). An MPI-2 one-sided library geared towards maxi-

mizing overlap should provide both these kinds of overlap benefits to the application

to the extent possible.

In this context, we try to analyze the two described approaches from the overlap

perspective. In the current two-sided approach there is a remote agent or receiver

(in the MPI library) that handles all the one-sided communication/synchronization

requests including lock, unlock, get, put. On the sender side (origin process) the lock

is a local operation that is queued. The data transfers are also queued and it is only

in the unlock phase that the entire lock/data transfer and unlock occurs. This kind

30

of implementation is good when there is a requirement for lower overhead synchro-

nization operations. Further, in this case the data transfer and the synchronization

messages can be combined thus reducing the number of required network operations

leading to benefits in certain scenarios. However, this results in extremely poor over-

lap capability for an application. Though lowering the overhead or latency of the

synchronization is important, it should not come at the cost of reducing the overlap

potential. Since the data transfer occurs in the unlock phase, any computation in the

passive epoch cannot be overlapped at all. Also the two-sided approach requires the

target node to be involved in both the computation as well as the synchronization

calls. Hence this affects the on-going computation on the target node thus resulting in

lower receiver overlap too. Whereas in the direct passive approach, the synchroniza-

tions as well as the communication operations are issued as early as possible. Further

all these operations are truly one-sided because they use the underlying RDMA op-

erations. Hence we expect better computation and communication overlap on both

the sender and receiver side for the direct passive approach.

4.4 Performance Evaluation

In this section we present the experimental evaluation of our direct passive imple-

mentation. We analyze the overlap scope with the two-sided based and direct passive

implementations. It is to be noted that we use locks in exclusive mode for our eval-

uation. We then describe the results for the modified MPI-2 version of the SPLASH

LU benchmark [54]. This version was obtained by modifying a shmem version of

SPLASH LU benchmark to use MPI-2 one-sided calls with passive synchronization.

31

Figure 4.4: Basic Passive Performance of (a) Put and (b) Get operations

Figure 4.5: Overlap Benefits of Basic One-sided operations: (a) Put and (b) Get

Figure 4.6: Overlap Benefits with Increasing Number of Operations: (a) Put and (b)
Get

32

We further profile the results of this SPLASH benchmark to analyze the performance

in greater detail.

Our experimental testbed is a 64 node Intel cluster. Each node of our testbed

is a dual processor (2.33 GHz quad-core) system with 4 GB main memory. The

CPUs support the EM64T technology and run in 64 bit mode. The nodes support

8x PCI Express interfaces and are equipped with MT25208 HCAs with PCI Express

interfaces. A Silverstorm 144 port switch is used to connect all the nodes. The

operating system used is RedHat Linux AS4.

4.4.1 Microbenchmarks

In this section we compare our new passive design with the existing design using

microbenchmarks that measure latency and overlap capabilities.

Overall Latency using Passive Synchronization

First we compare the basic performance of the two approaches: not just the cost

of synchronization, but from the perspective of data communication using passive

synchronization. This is often more representative of application behavior. We mea-

sure the time taken or latency for a lock operation followed by put and an unlock

operation for various message sizes. This benchmark shows the overall latency of the

two approaches.

The results are shown in Figure 4.4. As seen in the figure, the two-sided approach

performs better than the direct passive scheme for small messages. This is because for

small messages the synchronization overhead is a significant ratio of the total time.

i.e. the direct passive scheme needs two RDMA atomic compare and swap operations

for synchronization in addition to RDMA read/write communication operation. The

33

overhead is lower in the two-sided approach since it can combine the communication

and synchronization in a single message. For larger messages, the direct passive

scheme performs better or equally well, as the cost of data transfer is dominant.

However as we have discussed in earlier sections, latency alone is not the main metric.

The amount of the overlap capability the implementation can provide is critical to

the performance of a one-sided application. Hence we study the designs from the

overlap perspective in depth in the following section.

Overlap Potential

In this section we come up with a set of micro-benchmarks that can evaluate the

overlap potential both at the origin as well as the target process.

Sender Side Overlap: In this benchmark we evaluate the sender side overlap.

The following is a brief description of the benchmark. Process 0 (origin process)

does a lock/put/unlock on the window located on the remote target process. The

test estimates the time for the lock/put/unlock sequence. Between the get call and

unlock synchronization call, increasing amounts of computation as a percentage of

the estimated time are introduced. As long as the overall execution time does not

change, it implies that the computation time is being absorbed or overlapped with

the issued communication call. The results for this are shown in Figure 4.5(a). The

direct passive implementation shows very good overlap for large messages whereas in

the two-sided approach virtually no overlap is possible because all the data transfer

operations occur in the unlock phase. Please note that for the sake of visibility

in the graph, we have shown a small value for the two-sided approach which can

essentially be ignored. Similar results are seen for lock/get/unlock sequence shown

in Figure 4.5(b).

34

Sender Side Overlap with Varying #operations in Epoch: This benchmark is an

extension of the previous benchmark where we vary the number of get/put calls

between the lock and unlock operations. The message size used is 32K. This test tries

to mimic application scenarios where multiple get and put calls are issued between

the synchronization operations in order to amortize the overhead of synchronization.

As in the previous test increasing amounts of computation is introduced. Figure 4.6

shows the results of this benchmark. Once again the direct passive approach is able

to provide much higher overlap as opposed to no-overlap for the two-sided approach.

Receiver Side Overlap: This benchmark tries to measure the impact of target

involvement in passive mode communication on the ongoing computation. In this test

there is one origin process and one target process. The test performs a fixed amount

of computation on the target node. The execution time of this benchmark is the time

taken by the target node to perform the fixed amount of computation. At the same

time the origin process tries to access the memory window using MPI Get operations

within a lock/unlock passive epoch. This test in effect tries to measure receiver

(target) overlap, i.e, it tries to measure how much of the computation on the target

node can be overlapped with the ongoing communication operations.Figure 4.7(a)

shows the normalized execution time of this benchmark. As compared to execution

time with the direct passive scheme (which is normalized to 1), we observe that the

two-sided approach leads to considerably higher execution times. This indicates the

overhead of the target involvement for the two-sided approach or in other words this

shows the reduced overlap (or lack thereof) on the target node.

Receiver Side Overlap with Multiple Origin Processes: We further extend the

receiver overlap benchmark to multiple processes emulating one-sided application

35

patterns. In this benchmark the overlap capability is observed in the presence of

increased accesses to the target window. The message size used is 32K. Figure 4.7(b)

shows the results in terms of normalized execution time. We see that for 64 processes,

the deterioration in the execution time is about 4.5 times worse for the two-sided case

as compared to direct passive. This is largely because of the increased communication

overheads on the target node for the two-sided approach which delays the computation

adversely affecting the overall execution time.

4.4.2 Application evaluation with SPLASH LU benchmark

In this section we use a modified version of the SPLASH LU benchmark to demon-

strate the benefits of overlap for an one-sided application. The SPLASH LU bench-

mark does dense LU factorization. The dense n x n matrix is divided into an N x

N array of B x B blocks, such that n=NB. The blocks of the matrix are assigned to

processors using a 2D scatter decomposition. The communication in LU occurs when

a diagonal block is used by all the processors that require it to update the perimeter

blocks they own and when the perimeter blocks are used by all processors that require

them to update their interior blocks. We modified a shmem version of SPLASH LU

benchmark to use MPI-2 one-sided operations. We use MPI Get calls to fetch the

block of data and we use MPI Win Lock/MPI Win unlock passive synchronization

calls. The MPI Win lock calls are used in exclusive mode. The problem size gives

the size of the overall matrix and we can vary the block size. We show the results

for this benchmark for varying problem sizes and a block size of 128. This block size

gave the best results.

36

Figure 4.7: Receiver overlap capability with (a) two process and (b) multiple processes

Figure 4.8 shows the performance of the MPI-2 SPLASH LU benchmark for the

two approaches. We observe that the direct passive approach always outperforms the

two-sided approach. This is because the direct passive approach provides better over-

lap with reduced remote CPU involvement. In Figure 4.8(a) we show the performance

of SPLASH LU with a problem size 2048. We observe that the direct passive approach

performs about 25% - 81% better than the two-sided approach. Figure 4.8(b) shows

the performance for a larger problem size of 3000. In this case we observe higher gain

ranging from 58% - 87% for the direct passive case as compared to the two-sided case.

In order to further understand these results, we profile the application run. In

this we measure the average time spent by the application in each of the MPI library

calls. In particular, the only relevant MPI calls used in the SPLASH LU code are

MPI Win lock, MPI Win unlock, MPI Get and MPI Barrier. The remaining time

is classified as computation time. In Figure 4.9(a) we show the timing break up of

these operations for problem size 2048 for 8-64 processes. The results for problem

size 3000 are shown in Figure 4.9(b). The legends with T stand for the two-sided

based approach, and with O stand for the one-sided direct passive approach. As

37

Figure 4.8: MPI-2 SPLASH LU benchmark: (a) Problem Size 2048 and (b) Problem
Size 3000

Figure 4.9: Timing Breakup of MPI-2 SPLASH LU: (a) Problem Size 2048 and (b)
Problem Size 3000

38

discussed in Section 4.3 for the two-sided approach, we observe that the lock and get

operations for the two-sided approach take negligible time, since these operations are

queued locally. The actual progress of these operations occurs in the unlock phase,

i.e, the operations are initiated during the unlock operation. We see that the unlock

operations in this case take a large amount of time as expected. On the target node,

the progress for these operations is delayed and triggered only during the MPI barrier

calls. This is due to the fact that passive synchronization do not have explicit progress

calls for the target node.

On the other hand, the direct passive scheme acquires the lock and initiates the

one-sided RDMA data transfers immediately and the progress of these operations

are transparent to the target node. Since this does not need the remote process to

intervene, the remote process makes faster progress on its own tasks. In addition, since

the MPI Get operations do not need to wait for the target node to trigger progress,

these operations move ahead faster reducing the overall application time. This aspect

is clear from the numbers in Figure 4.9 where the two-sided approach spends a much

larger time in the MPI Barrier time in performing the remote get requests which

delays the computation. Consequently we also observe that the unlock time taken

for the two-sided cases is significantly higher (832ms for problem size 3000 and 64

processes) as compared to the direct passive (421ms for problem size 3000 and 64

processes).

To improve the performance of MPI-2 one-sided communication, in this work,

we focussed on the following important aspects: (i) direct passive synchronization

support using InfiniBand atomic operations and (ii) enhancement of one-sided com-

munication progress to provide scope for better overlap that one-sided applications

39

can leverage. In addition we performed an in-depth study to characterize the sender

side and receiver sideoverlap capabilities of our direct passive design.

Our evaluation shows significant improvement in the overlap potential for the

direct passive design that can be leveraged by a one-sided application. Our micro-

benchmarks show that the overlap on both the sender and receiver side is significantly

enhanced using our approaches. In addition to the micro-benchmarks we also demon-

strate a significant improvement ranging between 58% - 87% in the performance of an

MPI-2 one-sided version of the SPLASH LU benchmark as compared to the existing

design. Our detailed analysis shows that the potential benefits in this case come from

the reduced remote side involvement that is achievable by our design.

4.5 Related Work

There are several studies regarding implementing one-sided communication in

MPI-2. Some of the MPI-2 implementations that support one-sided communication

are: MPICH2 [9], WMPI [44], NEC [63] and SUN-MPI [16]. Besides MPI, there

are other programming models that use one-sided communication. ARMCI [47],

GASNET [15] and BSP [28] are some examples of this model.

Researchers in [21] have proposed distributed queue based DLM using RDMA

operations. Though this work exploits the benefits of RDMA operations for locking

services, their design can only support exclusive mode locking. Further, prior research

in [45] extensively utilizes InfiniBand’s remote atomic operations for shared and ex-

clusive mode locking, however, the main focus in their work is not in the context

of MPI-2 one-sided synchronization but rather as a system-wide distributed locking

40

service typically used in data-centers. In the context of MPI, previous work in MVA-

PICH2 have studied the benefits of RDMA atomic operations to efficiently implement

locks in exclusive mode [37]. However their design does not take shared locks into

account. OpenMPI [12] is another open source MPI implementation that supports

MPI-2 standards. In OpenMPI, the library is single threaded by default and uses the

two-sided approach for passive synchronization currently and depends on the target

process making MPI calls to make progress. Our new design goes a step further to

address the limitations of these approaches. It provides exclusive lock mode using

atomic operations and shared mode locking support by extending the existing two-

sided based shared locking in the MPI library and also tries to maximize the overlap

potential.

41

CHAPTER 5

MIGRATING LOCKS FOR MULTI-CORES AND
HIGH-SPEED NETWORKS

Most processor architectures provide fast atomic locks based on few CPU instruc-

tions. These can be used to implement locks efficiently across processes within the

same node. As described in previous chapter, networks such as IB provide network

atomic operations that can be used to implement locks across nodes in an efficient

and truly one-sided fashion. However, these two forms of locks are not interoperable.

Specifically, network-based atomic operations achieve their atomicity through serial-

ization at the network adapter. That is, the network adapter orders accesses to the

atomic variable in the order in which it receives requests, thus guaranteeing that the

variable is always in a consistent state. CPU-based atomic operations, on the other

hand, do not pass through the network adapter at all, and are handled fully in the

processor cache.

If both the CPU and the network try to work on the same lock, it is possible that

the CPU fetches the variable to cache to perform an operation on it. At the same

time, the network can trigger a cache flush through the chipset, forcing the variable

to be in an inconsistent state.

42

In short, the CPU and the network need to work on different locks leading to

several challenges in achieving lock coherence in a one-sided manner, that we will

address in this work.

While using IB network atomic operations for one-sided communication allows

for truly one-sided passive synchronization, this approach might not be the best in

light of the increasing number of multi-core systems and the number of cores on each

system. Specifically, using network operations to synchronize even between processes

on the same node can have performance implications (since all the data has to traverse

down to the network adapter and back) as well as network contention issues (since

the network adapter is shared between all the cores). Thus, in this chapter, we

propose a new hybrid migrating locks design shown in highlighted part of Figure 5.1

of our proposed research framework that utilizes CPU-based atomic operations in

conjunction with network atomic operations to take advantage of both.

5.1 Proposed Hybrid Design

Simultaneously utilizing both CPU-based atomic operations as well as network

atomic operations is not trivial because of interoperability issues between these two

operations as discussed above. Thus, there has to be a coordination mechanism

between the network based locks and the CPU based locks. Our proposed solution

to the problem is to migrate between the two locking mechanisms (network locks and

CPU locks) when required. Since the locking is per-window based, different windows

on the same process could be in a different locking mode depending upon the nature

of the lock requests for that window.

43

Interconnects
Modern

Middleware

Scatter/Gather Send/Recv

Advanced InfiniBand Primitives

One−sided

Remote Atomics RDMA

(put,get,accumulate),datatypes

One−sided API

SCIENTIFIC APPLICATIONS AND BENCHMARKS

Enabling Overlap

Non−blocking

Passive sync

Optimizations
Non−contiguous

data transfer

Re−ordering &

Intra−Node

Migrating Locks

Designs and Optimizations

Optimized

capability

(active,collective,passive)
Data transfer Synchronization

Write
Read−Modify

Petascale
Applications

Fence sync scheduling

Figure 5.1: Overview

Every node maintains the following state variables: (i) locking mode (network or

CPU based), (ii) CPU lock and (iii) 64 bit global network lock. The locking mode

variable and CPU lock variable are placed in shared memory so that other processes

on that node can access it. The network lock can have the following values: (i) a value

of 0 to (MPI Comm size - 1) indicates that the lock is in network mode and the actual

value denotes the process that holds the network lock, (ii) a value of MPI Comm size

indicates that it is unlocked, and (iii) a value of MPI Comm size + 1 indicates that

the lock is in CPU mode.

In the network lock mode described in Figure 5.2, all the locks use IB atomic

operations to obtain the network lock. In the CPU lock mode described in Figure 5.3,

the intra-node locks use fast CPU based locks and the inter-node locks use a two-sided

44

approach of sending the lock request to the lock manager (step 1) which then obtains

the CPU lock on its behalf (step 2) and responds with lock granted (step 3).

By default, the lock is preset to one of the above two-modes, for example CPU

based mode. When the mode needs to be migrated, a two-sided message is sent to

the lock manager which acquires both the network as well as CPU lock, modifies the

locking mode to ’network’, and then grants the lock. Any further locking now happens

through IB atomic operations in a completely one-sided manner. The lock migration

from a CPU mode to network mode is illustrated in Figure 5.4. When a remote

process wants to acquire a lock, it performs a compare and swap with the network

lock state (step 1). If the remote process discovers that the lock is in CPU mode, and

it wants to migrate the lock to network mode, it sends a two-sided message to the lock

manager requesting migration to network mode (step 2). The lock manager acquires

both the network lock and the CPU lock (step 3), modifies the lock mechanism to

CPU mode (step 4), and sends the lock granted packet to the remote process (step

5). A similar approach is done to reset the lock to CPU based. In this way, the locks

can be migrated from one mechanism to other.

Thus, in summary, intra-node locks are completely one-sided as long as the lock is

in CPU-mode and inter-node locks are completely one-sided as long as the lock is in

network mode. If the lock is not in the appropriate mode, a two-sided synchronization

is needed to migrate the lock to the appropriate mode. Henceforth we will refer to

this approach as ‘Hybrid’.

45

Figure 5.2: Locking Mechanisms: Network Lock

Figure 5.3: Locking Mechanisms: CPU Lock

46

Figure 5.4: Locking Mechanisms: Lock Migration

5.2 Migration Policies

Migration of locks could be based on various criteria. It could be based on: (i)

communication pattern, (ii) history, (iii) priority, (iv) native hardware capabilities

and so on. The criteria used to migrate the locks is not the focus in this thesis, and

could be part of follow up work. In all the evaluations in this paper, the lock is preset

to CPU mode for simplicity. Any remote node process lock request migrates the lock

to network mode and any future intra-node lock request migrates the lock to CPU

mode.

47

5.3 Experimental Results and Analysis

In this section we evaluate the performance of our migrating locks based ‘hybrid’

design with the purely ‘two-sided’ based and the network based ‘one-sided’ approaches

described in Section 4.1. We evaluate the performance for a wide range of scenarios.

First, we evaluate and analyze the performance when the lock/unlock operations

occur within the same node (intra-node) among the different cores. Then we show

the performance when the operations are purely inter-node. Then, we evaluate the

performance for a combination of inter-node and intra-node operations. We also

measure the overhead involved when the locks are migrated. Finally we evaluate the

performance for SPLASH LU benchmark.

Experimental Testbed

Each node of our testbed has 16 AMD Opteron 1.95 GHz processors with 512 KB

L2 cache. Each node also has 16 Gigabyte memory and PCI-Express bus. They are

equipped with MT25418 HCAs with PCI-Ex interfaces. A 24-port Mellanox switch

is used to connect all the nodes. The operating system used is RedHat Enterprise

Linux Server 5.

5.3.1 Intra-node Performance

In this section, we first evaluate the performance of our new design for intra-

node operations on a single node. Figure 5.5 shows the performance of lock/unlock

operation comparing the three approaches. As expected our new hybrid design per-

forms the best, since the lock/unlock operations within a node are basically few CPU

instructions. In the two-sided approach, a lock request packet is sent to the lock

48

manager of the target process. The lock manager responds with the lock granted

packet. These lock requests and lock granted packets go over shared memory since

the target is on the same node. In the one-sided based approach, the lock operation

is achieved through an IB loop-back atomic fetch and add operation. Since the loop-

back operation is expensive, it has the lowest performance for a single lock/unlock

operation.

Figure 5.5: Lock/Unlock Performance

Intra-node Performance with Remote Computation

Next we evaluate the performance of the three approaches in the presence of

computation on remote/target process. Minimal remote/target process involvement

is important for one-sided passive synchronization calls so that the target can proceed

with its computation. In this benchmark, the origin process acquires the lock and

unlock operation on target process while computation is performed on the target

49

process. The computation is a dummy loop that is executed on the remote/target

process. In this experiment the performance of the three schemes is measured for

varied amounts of dummy loop computation. The results are shown in Figure 5.6.

Here the one-sided approaches (network based, one-sided and hybrid approach) are

not affected with increasing amounts of computation on the target process, since they

are not dependent on the target process to progress. Whereas, the performance of the

two-sided scheme degrades with increasing amount of computation. This is expected

because the two-sided approach requires target process involvement. In the presence

of computation, it takes longer to respond to the lock/unlock requests.

Figure 5.6: Lock/Unlock Performance with Remote Computation

5.3.2 Concurrency and Contention

Next we evaluate the performance of the different approaches when several lock/unlock

operations occur concurrently. These experiments are conducted on a single node.

50

Network Contention

In the first micro-benchmark, each process locks its neighboring process (rank+1)

on the same node. Thus in this benchmark, there are as many lock/unlock operations

happening concurrently as the number of cores for which the benchmark is run. We

measure the average latency of lock/unlock operation in this scenario. The results

are shown in Figure 5.7. We observe that the two-sided performance is not degraded

since the lock/unlock requests messages are sent over shared memory and there is no

network contention. However the one-sided scheme using loop-back suffers degrada-

tion due to network contention since all the lock/unlock operations result in network

transactions. In this scenario also, the hybrid scheme performs the best since the

CPU based locks do not result in network contention.

Figure 5.7: Lock/Unlock Performance with Network Contention

51

Lock Contention

The next benchmark shows the performance of the three approaches when several

processes are contending for a lock on the same window. The results are shown in

Fig. 5.8. The hybrid scheme performs the best for up to three lock contentions.

Beyond four contentions, the two-sided approach performs better than the hybrid

scheme. The one-sided approach performs the least. This is expected since there

would be lots of network transactions in the presence of contention.

Figure 5.8: Lock/Unlock Performance with Lock Contention

5.3.3 Inter-node Performance

In this section, we compare the performance of the three approaches when the

operations are purely inter-node. We use a micro-benchmark to demonstrate the

benefits of one-sided approaches in the presence of computation and skew. We used

Testbed B for this experiment, since we had more number of nodes to understand

52

the inter-node performance. The experimental testbed (Testbed B) used for this

benchmark is a 64 node Intel cluster. Each node of the testbed is a dual processor

(2.33 GHz quad-core) system with 4GB main memory.

The benchmark simulates a ring type of communication wherein each process locks

the window of its successor, puts some data in the target window and updates a tag

indicating completion of the data transfer to that window. The target process then

makes sure that the data is available in its window, then performs the same operation

on its successor. The communication terminates when the message traverses through

the complete ring. Simultaneously all the nodes are also performing computation in

the form of a dummy loop. For the sake of simplicity, a fixed amount of computa-

tion is being performed by all the nodes. This benchmark evaluates the capability to

overlap computation and communication. The results are shown in Figure 5.9. The

one-sided and the hybrid approach outperforms the two-sided approach. This is due

to the ability of the one-sided and hybrid approach to perform the lock/unlock oper-

ations in a truly one-sided fashion, whereas the two-sided approach requires remote

host involvement to make progress. This results in delay for the target process in

responding to lock requests. Since this benchmark is a ring type of communication,

this could manifest itself as skew for the other processes further in the ring resulting

in a cascading effect. In this scenario, the hybrid scheme remains in the network

locking mode exclusively and hence its performance is similar to that of the one-sided

approach.

53

Figure 5.9: Inter-node Performance

5.3.4 Lock Migration

In this section, we try to evaluate the overhead incurred due to lock migration. The

benchmark measures the average time taken for an intra-node lock/unlock operation

and an inter-node lock/unlock operation in the presence of migration of the lock

mechanism from network mode to CPU mode and vice-versa. The experiment is a

two node experiment in which a process P1 acquires a lock/unlock on a process P0

on the same node 1000 times. During this duration, a process P2 on the second node

tries to obtain the lock on P0 for x times triggering a migration each time.

The intra-node line in Figure 5.10 shows the latency of the lock/unlock operation

happening on the same node with increasing percentage of migrations. We observe

that for small percentage of migrations, the overhead is not very high as compared

to case when no migrations occur. The inter-node line similarly shows the latency

of the lock/unlock operation happening across nodes with increasing percentage of

54

migrations. For smaller number of migrations, the overhead incurred is quite less.

Large number of migrations lead to some overhead. However it is to be noted that,

the biggest benefit achieved by this approach is to be able to maintain the truly

one-sided nature of the locks once the migration has been achieved and thus provide

greater potential for asynchronous communication as well as higher computation com-

munication overlap. Also the migration policy described in Section 5.2 can be used

appropriately to minimize the number of migrations.

Figure 5.10: Lock Migration Overhead

5.3.5 Hierarchical Task Sharing Communication Pattern Micro-
benchmark

In this section, we evaluate the performance for a combination of inter-node and

intra-node operations with lock migrations by simulating a benchmark that performs

task sharing and redistribution. The details of the benchmark is described below.

55

The experiment is run on 4 nodes with 16 cores on each node for a maximum total of

64 cores. A hierarchy of leaders is created with one leader process designated on each

node. First, the leader on every node performs 1000 Lock-Put-Unlock on every other

local process on the same node. Then, the leader performs 1000 Lock-Put-Unlock

on the leader of every other node. Finally, the leader on every node performs 1000

Lock-Put-Unlock on every local process again. The benchmark tries to simulate a

scenario in which a leader process tries to get data/work from close neighbors, then

gets data from remote neighbors in a cycle. The resulting communication pattern

is a clique-based communication described in earlier sections. The results are shown

in Figure 5.11. The communication pattern described above has lot more intra-node

operations than inter-node operations. The hybrid scheme performs the best because

it uses the fast CPU locks for the intra-node operations, and when the operations

are inter node, it migrates to network mode. Thus it provides the best performance

for such a communication scenario and we also observe that the performance gap is

sustained for increasing number of processes.

5.3.6 Evaluation with SPLASH LU benchmark

In this section we evaluate the performance of the the three schemes using a mod-

ified version of SPLASH LU benchmark. The SPLASH LU benchmark was modified

to use MPI-2 one-sided communication. It uses MPI Win lock/MPI Win unlock pas-

sive synchronization operations and uses MPI Get operations to fetch the block of

data. The MPI Win lock calls are used in exclusive mode.

The results are shown in Figure 5.12. The x axis gives the number of processes

(a*b indicates a - number of nodes, b - number of cores per node) and y axis shows

56

Figure 5.11: Hierarchical Task Sharing Communication Pattern

the time taken in milli seconds for problem size 2048. Here we observe that the

hybrid scheme performs the best when all the processes run on one node. For all the

other cases the two-sided approach performs the best and the hybrid scheme fares

badly. To understand this better, we profiled the number of inter-node and intra-node

operations as well as the number of migrations occurring for the hybrid approach

during the benchmark run. These results are shown in Table 5.1 and Table 5.2.

For the one node case, all the operations are intra-node operations. In this case the

hybrid scheme uses the fast CPU locks and there is no migration at all during the run.

Hence in this case the hybrid approach gives the best performance. The one-sided

case performs the worst as expected. For the other cases (2*8, 4*8 and 8*8), we have

both inter-node and intra-node operations. Also with more nodes, the percentage of

inter-node operations in the SPLASH LU benchmark become more significant, around

90% in case of 8*8 configuration. At the same time we also observe that the total

57

number of lock migrations for the hybrid scheme increase with increasing number of

nodes.

The poor performance of the one-sided design could be attributed to the overhead

of the loop-back operations for intra-node operations as well as network contention.

For the hybrid approach, the number of migrations seems to significantly affect the

performance of the hybrid design. During migration, both the network lock and the

CPU lock needs to be acquired before the mode can be switched. If several local lock

requests occur concurrently, it is possible that it takes a longer time to acquire both

the network and CPU locks in order to modify the lock mode. This could result in

poor performance. In such situations it would be better for the lock manager to keep

track of the incoming lock request pattern and yield the lock. The current design

does not keep track of such information. Also the existing migration policy leads to

frequent migrations.

One possible enhancement is for the migration policies to take into account the

arrival pattern of the lock requests and grant the requests more intelligently.

Numprocs Intra-Node Locks Inter-Node Locks
1*8 57744 0
2*8 36144 59840
4*8 14560 114704
8*8 14560 192080

Table 5.1: Inter-node vs Intra-node locks

58

Figure 5.12: SPLASH LU Benchmark

5.3.7 Discussion

As seen from the above results, the performance of the hybrid approach is depen-

dent on the pattern of the communication operations. Based on the results from the

SPLASH benchmark result, a naive migration policy of migrating for every request

is not a good choice. Further the lock manager needs to be enhanced to keep track of

the state of the different incoming requests as well as the history of incoming requests

so that it can make decisions more intelligently. Also different migration policies need

to be implemented and evaluated.

Another aspect that is important is how can the application writers/users take

advantage of the migration policies. If the users are aware that there are going to be

very few inter-node operations, or in the case where the hardware does not support

59

Numprocs Migrations
1*8 0
2*8 9346
4*8 10180
8*8 16400

Table 5.2: Num of Migrations

network locks, then the lock mechanism can always be set to the CPU mode and the

inter-node locks can use two-sided based approach. The user can also specify to the

library that the lock should be switched only after a certain number of network lock

/ CPU lock requests occur back to back so that the lock migrations do not occur

frequently. Another approach is to pass communication pattern information as well

as other guideline information to the MPI library in the form of hints. MPI standard

supports the interface for providing hints to the library. This can be used to give

priority to a particular lock operation for instance.

5.4 Related Work

There are several studies regarding implementing one-sided communication in

MPI-2. Most of the related work has been described in Section 4.5 of the previous

chapter.

Further researchers in [17] have studied efficient implementation of locks using

NIC based atomic operations on Myrinet.

60

CHAPTER 6

FENCE SYNCHRONIZATION

In scientific applications, often the communication occurs among a subset of pro-

cesses like near-neighbourcommunication, ghost cell updates etc. For such scenarios

a collective synchronization is semantically more easier to use as well more efficient

to implement in the library. In this work, shown in the highlighted part of Figure 6.1

of the proposed research framework, we look at the various methods and algorithms

to implement fence synchronization and provide an improved design and study the

trade-offs.

Fence is an active synchronization method which is collective over the communica-

tor associated with the window object. Fig. 6.2 shows a typical fence usage scenario.

The first fence call makes sure that the window on the remote process is ready to be

accessed. A process may issue one-sided operations after the first call to fence returns.

The next call to fence or the second fence completes the one-sided operations issued

by this process as well as the operations targeted at this process by other processes.

An implementation of fence synchronization must support the following semantics:

A one-sided operation cannot access a process’s window until that process has called

fence, and the second fence on a process cannot return until all processes needing to

61

Interconnects
Modern

Middleware

Scatter/Gather Send/Recv

Advanced InfiniBand Primitives

One−sided

Remote Atomics RDMA

(put,get,accumulate),datatypes

One−sided API

SCIENTIFIC APPLICATIONS AND BENCHMARKS

Enabling Overlap

Non−blocking

Passive sync

Optimizations
Non−contiguous

data transfer

Re−ordering &

Intra−Node

Migrating Locks

Designs and Optimizations

Optimized

capability

(active,collective,passive)
Data transfer Synchronization

Write
Read−Modify

Petascale
Applications

Fence sync scheduling

Figure 6.1: Overview

access that process’s window have completed doing so. In addition the second fence

also needs to start the next access epoch as seen in Fig. 6.2.

6.1 Design Alternatives

In this section we discuss the design choices for implementing fence mechanisms,

identify the limitations and propose our optimizations.

In the MPI implementations derived from MPICH2 [9, 46, 60], there are two

options for implementing fence: i) Deferred and ii) Immediate. In the Deferred ap-

proach, all the operations and synchronizations are deferred till the subsequent fence.

In the Immediate method, the synchronization and communication operations happen

as they are issued. We explore the design issues involved in both these approaches.

62

Fence FenceFence

Fence FenceFence

Fence FenceFence

Put (2) Put (0)

Put (0) Put (1)

START: Epoch_0

END: Epoch_1

END: Epoch_0
&

START: Epoch_1

Process: 2Process: 1Process: 0

Figure 6.2: Fence Usage

As described in the previous section, a fence call needs to provide two function-

alities: (i) it completes the previous epoch i.e it ensures that all the preceding RMA

operations have completed and (ii) it begins the next exposure epoch.

Next we describe the design for implementing fence using the Deferred Approach.

6.2 Deferred Method using two-sided communication (Fence-
Def)

In this design, the first fence call does nothing and returns immediately. All the

ensuing one sided operations are queued up locally. All the work is done in the second

fence, where each process goes through its list of queued operations to determine its

target processes. This information is stored in an array and in the second fence

operation a MPI Reduce scatter operation is performed to let every other process

know if it is the target of RMA operations from this process. The remote process can

then wait for the RMA operations from these nodes. The last RMA operation from

each process is conveyed to the remote process by setting a flag in that RMA message.

63

Since the deferred approach is based on two-sided, the remote process is involved in

receiving the RMA message and by looking at the flag, it ensures that it has received

all the messages from that process. Since all the RMA messages are queued and issued

during the fence, certain optimizations can be done that can improve the latency of

the messages as well as reduce the overhead of the fence operations. However, there

is no scope for providing overlap using this approach. In this design there is a notion

of a remote agent that can handle incoming one-sided and synchronization messages

and we refer to this two sided based design as Fence-Def.

6.3 Immediate Method using RDMA Semantics

Next we discuss fence implementations that uses immediate approach and RDMA

semantics of the interconnects for communication operations. This is the main focus

of our work since we are interested in fence implementation on networks that support

RDMA semantics.

One of the main challenges in designing fence for RDMA operations is the detec-

tion of remote completion of the Put operations.

One approach to handle remote completion is to wait for local completions and

then issue a Barrier operation. This seems perfectly plausible as the Barrier is called

after all the Puts are issued and completed. However this does not completely guar-

antee correctness as shown in Fig. 6.3. There is scope for the Barrier messages to

overtake the Put messages issued to process 3 as the Barrier can be implemented in

a hierarchical fashion and can complete earlier than the Put. If there is a hardware

implementation of Barrier and the underlying hardware guarantees that the messages

are not overtaken, only then this is a valid solution but not otherwise.

64

Process: 0 Process: 1

Process: 3Process: 2
Barrier: step 1

Barrier: step 2Barrier: step 2

Barrier: step 1

PUT: from 0 to 3
(Arrives After step 2)

Figure 6.3: Barrier Messages overtaking Put

Another method of handling remote completion is by sending completion or fin-

ish notification messages that indicate that all messages on this channel have been

received. There are some limitations of this approach with increasing scale.

6.3.1 Basic Design for Fence (Fence-Imm-Naive)

The MVAPICH2 library takes advantage of RDMA Read and Write operations

to improve the performance of contiguous Get and Put operations. These one-sided

operations are issued immediately. The one-sided based implementation provides

higher bandwidth for large put and get messages than the two sided based design

(Deferred method) and also provides greater potential for overlap of computation

and communication. The current fence implementation is based on this design and is

shown in Fig. 6.4. In order to completely implement the fence usage semantics shown

earlier in Fig. 6.2, we need to support the following two functionalities: i) ensure

65

local and remote completion of operations in the current epoch and ii) indicate the

beginning of the next access epoch.

P0 P1 P2 P3

PUT
PUT

PUT

Finish message

REDUCE SCATTER

epoch 1
starting

completing
epoch 0

epoch 0

finish mesg
completion

completion
local

Fence begin

Fence end

Figure 6.4: Fence-Imm-Naive

In this approach, polling for local completions are done to make sure that the

issued one-sided operations are completed locally. For Get operations which are

implemented on top of RDMA Read, local completion is sufficient to indicate that the

Get operations are complete. The Put operations which are based on RDMA Write

need remote completions. To handle this, a finish message is sent on each channel

on which a put operation is issued to indicate that it has sent all the messages on

that channel. Since the RDMA write operations on the same channel are ordered,

when the finish message is received, all the RMA operations issued previously to that

node are assured to be completed. Polling for local completions is done to make sure

66

that all the messages sent have completed locally. A Reduce scatter operation is used

to let a process know if it is the target of RMA operations. The target node then

waits for finish messages from all these nodes. At this point, the fence has finished

completion of messages for that epoch. The next part is to indicate to all the other

processes that the next epoch can begin and it is safe to access the window. The

current design posts a flag to every other process to indicate that the window can

now be safely accessed for the next epoch.This results in all pair-wise synchronization

of the processes. This is a naive approach and leads to flood of messages in the

network. We will refer to this approach as Fence-Imm-Naive.

This design has several drawbacks that need to be addressed. From the description

of the design in the previous section, we can see that there could be two potential

floods of messages during the fence. The first is a flood of finish messages to handle

remote completion if the process is communicating with several peers. The second

flood is the flood of messages to post a flag to indicate that the window can be

accessed for the next epoch.

6.3.2 Fence Immediate with Optimization (Fence-Imm-Opt)

As an optimization to this approach, we use a barrier instead of the pair-wise

synchronization to indicate the beginning of the next epoch. This alleviates the

second flood of messages described above. Figure 6.5 describes this approach and is

a more scalable solution since it uses O(logn) communication steps. We refer to this

approach as Fence-Imm-Opt.

These approaches described above still have the issue of completion messages

being sent on all the channels. As the number of processes scale to large number,

67

P0 P1 P2 P3

PUT
PUT

PUT

Finish message

REDUCE SCATTER

epoch 1
starting

completing
epoch 0

epoch 0

finish mesg
completion

completion
local

Fence begin

BARRIER

Fence end

Figure 6.5: Optimized Design (Fence-Imm-Opt)

this could become a bottleneck. We propose a new design that uses the remote

notification provided by the InfiniBand networks to design a novel and scalable fence

implementation.

6.3.3 New Scalable Fence Design With Remote Notification
(Fence-Imm-RI)

In this section we describe our new scheme which is also an Immediate method,

but offers greater scalability. The new fence implementation is shown in Fig. 6.6. The

main design and implementations issues are as follows:

Remote notification of one-sided operations

As described earlier, one approach to handle remote notifications is by flushing

all the channels using a finish message. However, this approach is not scalable as

68

P0 P1 P2 P3

PUT

BARRIER

ALL REDUCE

(RDMA write with imm)

complete

Start Epoch 1

Epoch 0

Epoch 0

local
completion

RDMA Immediate
Remote

completion

Fence begin

Fence end

(RDMA write with imm) (RDMA write with imm)
PUT PUT

Figure 6.6: New design (Fence-Imm-RI)

it could lead to a flood of messages. In this design, we use the RDMA Write with

Immediate operations to issue Put operations which creates a completion entry on the

remote node. After polling for local completions, the remote node is informed of the

number of such operations from all the processes through an MPI AllReduce call. The

remote node then polls till it receives completion notifications for that many number

of RDMA write with Immediate operations. The completion of the Get operations

is handled by waiting for local completions for the RDMA Read operations. This

eliminates the first flood of messages.

Notification of beginning of next epoch

The next part is to indicate the beginning of the next epoch, i.e, to make sure

that it is safe to access the window for the next epoch. It is to be noted that MPI

69

calls provide assertions that can be used to give hints if there are no preceding or

succeeding one-sided operations and in that case the fence can be optimized. Here

we do not handle the assertions, but look at the general case. In our design, we use a

MPI Barrier call to indicate the beginning of the next epoch. As mentioned earlier,

typical Barrier implementation uses log(n) communication steps leading to a scalable

solution. One trade-off of using this approach is that it forces everyone in the group

to synchronize and we might lose out on some finer grain synchronization between a

subset of members of the fence group.

Preposting Receive Descriptors

One issue with using RDMA Write with immediate functionality is the need to

prepost receiver descriptors. We currently handle this issue by preposting a fixed

number of receive descriptors initially and repost additional descriptors in the fence

synchronization call. We post additional receives on receiving RDMA write comple-

tions. However, in cases where the fence synchronization is not called often and there

are extremely large number of Put operations, there is a scenario in which we might

run out of receive descriptors. One solution to this approach is to use the InfiniBand

Shared Receive Queue (SRQ) mechanism [57] which allows efficient sharing of receive

buffers across many connections. When the number of available buffers in the shared

queue drops below a low watermark threshold, an interrupt can be generated and

additional buffers are posted. Another approach is to use an asynchronous thread

that can post the receives.

Henceforth we will refer to this approach as Fence-Imm-RI. In this work we have

focused on InfiniBand Architecture. However, similar designs can be proposed for

70

other interconnects that can provide remote completion mechanisms for RDMA op-

erations.

6.4 Experimental Results

In this section we present the experimental evaluation of the different fence designs.

We characterize the performance of the proposed designs with the different micro-

benchmarks representing various communication patterns.

Experimental testbed

Our experimental testbed is a 64 node (512-core) Intel cluster. Each node of our

testbed is a dual processor (2.33 GHz quad-core) system with 4 GB main memory.

The CPUs support the EM64T technology and run in 64 bit mode. The nodes support

8x PCI Express interfaces and are equipped with MT25208 HCAs with PCI Express

interfaces. A Silverstorm 144 port switch is used to connect all the nodes. The

operating system used is RedHat Linux AS4. All the experiments are run with one

process per node configuration.

Methodology

In this section we describe the methodology for our evaluation. First we demon-

strate the overlap capabilities of one sided based implementations as compared to one

sided communication over two sided based implementations. Next, we focus on the

synchronization overhead of our new Fence-Imm-RI design comparing it with imple-

mentations through a set of micro benchmarks and finally we compare the different

designs for a Halo communcation pattern benchmark.

71

6.4.1 Overlap

In this section we demonstrate the overlap potential for our one-sided immediate

approaches compared with the two sided implementation. Each process issues Put

calls to its neighbor between two fence synchronization calls. Increasing amount of

computation is inserted after the Put call and before the second fence call. The overlap

is measured as the amount of computation that can be inserted without affecting the

overall latency. The experiment was run for varying message sizes. The results are

shown in Fig. 6.7. We observe that the two sided Deferred implementation shows

virtually no overlap. This is expected because all the Put operations are deferred

and issued inside the second fence and hence there is no scope for overlap. Whereas

for all the Immediate approaches using one sided implementation good overlap can

be achieved for message sizes beyond 16K and close to 90% overlap for message

sizes larger than 64k. In the following sections we concentrate on comparing the

synchronization overhead of our new fence design (Fence-Imm-RI) as compared to all

the other approaches.

6.4.2 Basic Collectives Performance

Since the fence designs use some of the collectives in its implementation in order

to exchange the number of remote operations as well as to synchronize for the next

epoch, we show the baseline performance of the collective operations: Barrier,All-

Reduce and Reduce scatter first in this section. This would help us in understanding

the performance of various fence designs. Table 6.1 shows the results for up to 64

processes, for these collectives. The All-Reduce and Reduce scatter numbers are

72

 0

 20

 40

 60

 80

 100

16 64 256 1k 4k 16k 64k 256k

Pe
rc

en
ta

ge
 o

ve
rla

p

Message size

Fence-Def
Fence-Imm-Naive

Fence-Imm-Opt
Fence-Imm-RI

Figure 6.7: Overlap performance

shown for 256 bytes message size. These collectives show good scalability with 40-50

usecs latencies on 64 processes.

Numprocs Barrier Allreduce Reduce Scatter
2 3.66 7.75 6.84
4 10.79 13.78 11.27
8 18.65 20.9 16.26
16 27.21 30.34 21.99
32 37.89 43.15 29.19
64 44.13 51.9 33.18

Table 6.1: Basic Collectives Performance (usecs)

6.4.3 Fence Synchronization Performance

In this section we evaluate the performance of the fence alone without any one-

sided communication operations. This measures the overhead involved in a fence

73

������������������������
Fence−Def
Fence−Imm−Naive
Fence−Imm−Opt
Fence−Imm−RI

	�	
�
 �� �� ����������������
��

���������
���������
���
���������
���������
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
�

���
���
���
���
���
���
���
���
�

���� ���� ���������
���
���
�

���
�

 !�!" ##$

$
%%&
&

'�''�'(�((�(
 0

 200

 400

 600

 800

 1,000

 1,200

8 16 32 64

La
te

nc
y

(u
s)

Num of procs

Figure 6.8: Fence Performance for Zero Put

synchronization. The results are shown in Fig. 6.8. Since there are no data transfer

operations, there is no overhead of the data messages in terms of local and remote

completions for one-sided operations. We still need to use the collectives to inform

the other processes that the fence can complete and also that the next fence epoch

can begin. The Fence-Imm-Naive performs the worst, because of the all pair-wise

synchronization happening to indicate the end of the epoch. The Fence-Imm-Opt

and Fence-Imm-RI perform close to each other since both of them use Barrier to

indicate the start of next epoch. The Fence-Imm-Opt performs slightly better than

the Fence-Imm-RI, the reason for this is because the Fence-Imm-Opt uses Reduce

Scatter collective as opposed to the AllReduce collective used by the Fence-Imm-RI

scheme. From Table 6.1, we can see that the Reduce Scatter collective has a lower

latency than that of AllReduce. We see that the Fence-Def which uses the two sided

approach performs the best, since it does not need to use additional collective to

indicate the start of an epoch.

74

)�)*�*+�+,�,-�-.�./�/0�0
Fence−Def
Fence−Imm−Naive
Fence−Imm−Opt
Fence−Imm−RI

1�12�2 34 5566 7�77�77�78�88�88�8999:
::

;�;;�;;�;
;�;;�;;�;
<�<<�<<�<
<�<<�<<�<

===
===
===
===

>>>
>>>
>>>
>>>

???
???
???
???
???
???
???
???
?

@@@
@@@
@@@
@@@
@@@
@@@
@@@
@@@
@

AAAB
BB

CCC
CC
DDD
DD E�EE�EE�E

E�EE�EE�E
E�E
FFF
FFF
F

GGG
GGG
GGG
GGG

HHH
HHH
HHH
HHH

I�IJ KL MMNN O�OO�OP�PP�P
 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

8 16 32 64

La
te

nc
y

(u
s)

Num of procs

Figure 6.9: Fence Performance for Single Put

6.4.4 Fence Synchronization with Communication Performance

In the previous section, we evaluated the different schemes for just the fence

synchronization overhead. In this section we evaluate the scalability of our fence im-

plementations with communication operations which is more reflective of usage in a

one-sided application. First we evaluate the performance of fence with a single Put of

16 bytes message size issued by all the processes. The results are shown in Fig. 6.9.

For this pattern, we observe that Fence-Imm-Naive performs very badly. However it

is interesting to compare the performance of Fence-Imm-Opt and Fence-Imm-RI. We

now see that the Fence-Imm-RI outperforms the Fence-Imm-Opt scheme. The reason

for this is the Fence-Imm-RI relies on the hardware RDMA-Write with immediate

for remote completions, whereas the Fence-Imm-Opt has to issue completion mes-

sages which increases the overhead. This difference is magnified further in the next

experiment where each process issues Puts to 8 neighbors and hence the number of

completion messages increases further for the Fence-Imm-Opt. The results for this

75

Q�QR�RS�ST�TU�UV�VW�WX�X
Fence−Def
Fence−Imm−Naive
Fence−Imm−Opt
Fence−Imm−RI

Y�YZ�Z [[\\]]]^^^ _�__�_`�``�`aaa
a
bbb
b c�cc�cc�c

c�cc�cc�c
c�c

d�dd�dd�d
d�dd�dd�d
d�d

eee
eee
eee
eee
eee

fff
fff
fff
fff
fff

ggg
ggg
ggg
ggg
ggg
ggg
ggg
gg

hhh
hhh
hhh
hhh
hhh
hhh
hhh
hh

iii
i
jjj
j

kkk
k
lll
l

m�mm�mm�m
m�mm�mm�m
m�m
nnn
nnn
n

ooo
ooo
ooo
ooo
oo

ppp
ppp
ppp
ppp
pp

q�qr sstt uuvv w�ww�wx�xx�x
 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

8 16 32 64

La
te

nc
y

(u
s)

Num of procs

Figure 6.10: Fence Performance for Multiple Puts

experiment is shown in Fig. 6.10. The two-sided approach still performs the best be-

cause it has lower overhead for small messages and can combine the data transfer and

synchronization message. But it needs to be noted that it has poor overlap capability.

6.4.5 Halo Exchange Communication Pattern

Scientific applications often communicate in a regular pattern. Halo exchange of

messages is a very popular model in which each node communicates with a fixed num-

ber (4, 8, 26, etc) of neighbors. These usually correspond to the parallel processing

of multi-dimensional data in which each compute process handles a certain section of

this data set. The neighbors exchange messages to handle border conditions. This

communication pattern is more representative of real world applications. We simu-

late this halo exchange pattern for 4 and 8 neighbors and evaluate the two schemes.

Every process initiates the one-sided operation with its neighbor and simultaneously

performs a fixed amount of computation.

76

y�yz�z{�{|�|}�}~�~������
Fence−Def
Fence−Imm−Naive
Fence−Imm−Opt
Fence−Imm−RI

���������
������
���
��

���
��
���
��

���
���
���
���

���������
���������
������

���������
���������
������

���
���
���
���

���������
���������
���������

���������
���������
���������

���
���
���
���
��

���
���
���
���
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
�
���
�

���
���
���
���

���������
���������
���
���������
���������
���

���
���
���
��

���
���
���
��

������
���
������
���

���
�

��
�
��
�

������
���

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

8 16 32 64

La
te

nc
y

(u
s)

Num of procs

¡�¡¢�¢£�££�£¤�¤¤�¤¥�¥¦�¦§�§¨�¨
Fence−Def
Fence−Imm−Naive
Fence−Imm−Opt
Fence−Imm−RI

©�©©�©©�©
©�©©�©©�©
ª�ªª�ªª�ª
ª�ªª�ªª�ª

«««
«««
««

¬¬¬
¬¬¬
¬¬

®®®
®®®
®

¯�¯¯�¯¯�¯
¯�¯¯�¯¯�¯
¯�¯¯�¯

°�°°�°°�°
°�°°�°°�°
°�°°�°

±±±
±±
²²²
²²

³�³³�³³�³
³�³³�³³�³
³�³³�³

´�´´�´´�´
´�´´�´´�´
´�´´�´

µµµ
µµµ
µµµ
µµµ
µµ

¶¶¶
¶¶¶
¶¶¶
¶¶¶
¶¶

···
···
···
···
···
···
···
···
·

¸¸¸
¸¸¸
¸¸¸
¸¸¸
¸¸¸
¸¸¸
¸¸¸
¸¸¸
¸

¹¹¹
¹¹
ººº
ºº

»»»
»»»
¼¼¼
¼¼¼ ½�½½�½½�½

½�½½�½½�½
½�½½�½

¾¾¾
¾¾¾
¾¾

¿¿¿
¿¿¿
¿¿¿
¿¿¿

ÀÀÀ
ÀÀÀ
ÀÀÀ
ÀÀÀ

Á�ÁÁ�ÁÂ
Â

ÃÃÄ
Ä

ÅÅ
Å
ÆÆ
Æ

Ç�ÇÇ�Ç
Ç�Ç
È�ÈÈ�È
È�È

 0

 500

 1,000

 1,500

 2,000

8 16 32 64

La
te

nc
y

(u
s)

Num of procs

Figure 6.11: Fence performance with Halo Exchange: (a) 4 neighbors and (b) 8
neighbors

The results for 4 and 8 neighbors are shown in Fig. 6.11(a) and Fig. 6.11(b),

respectively. Here we observe that our new Fence-Imm-RI scheme outperforms all

the other schemes. All the immediate approaches have good computation/ commu-

nication overlap, whereas the two-sided deferred approach has very poor computa-

tion/communication overlap. The Fence-Imm-RI has reasonably low synchronization

overhead and very good computation/communication overlap and hence shows the

best performance.

77

6.5 Related Work

Some of the MPI-2 implementations that support one-sided communication are

MPICH2 [9, 33], OpenMPI [12],WMPI [44], NEC [63], SUN-MPI [16]. The NEC

implementation [63] uses Allreduce and Barrier to implement fence synchronization.

However they do not use RDMA Write with Immediate mechanism for remote no-

tifications. The RDMA Write with Immediate feature has been explored in [42]

for designing MPI Alltoall over InfiniBand. In our work we are using it to design a

scalable fence synchronization.

78

CHAPTER 7

READ MODIFY WRITE MECHANISMS

One of the important operations in a one-sided model is read-modify-write. Applica-

tions like Hydra[51] which is based on MPI-2 one-sided, predominantly use this oper-

ation. One-sided applications can either use these interface if they are provided, else

they need to build on top of existing primitives. MPI-2 semantics provide MPI Put,

MPI Get and MPI Accumulate operations that can be used to implement the read-

modify-write operations. In this work, shown in the highlighted part of Figure 7.1

of the proposed research framework, we study the different mechansims for providing

this capability and further explore how the remote atomic operations provided by

InfiniBand can be leveraged to provide better support for these operations.

7.1 HPCC Benchmark

HPCC Benchmark suite is a set of tests that examine the performance of HPC

architectures that stress different aspects of HPC systems involving memory and

network in addition to computation [56]. HPCC Random Access benchmark is one of

the benchmarks in this suite which measures the rate of random updates to remote

memory locations. Currently this benchmark is implemented based on MPI two-

sided semantics. In this work we design different MPI-2 versions of the Random

79

Interconnects
Modern

Middleware

Scatter/Gather Send/Recv

Advanced InfiniBand Primitives

One−sided

Remote Atomics RDMA

(put,get,accumulate),datatypes

One−sided API

SCIENTIFIC APPLICATIONS AND BENCHMARKS

Enabling Overlap

Non−blocking

Passive sync

Optimizations
Non−contiguous

data transfer

Re−ordering &

Intra−Node

Migrating Locks

Designs and Optimizations

Optimized

capability

(active,collective,passive)
Data transfer Synchronization

Write
Read−Modify

Petascale
Applications

Fence sync scheduling

Figure 7.1: Overview

Access benchmark using the MPI-2 one-sided alternatives. We use the one-sided

versions of the Random Access benchmark as a case study for studying different

implementations of the read-modify-write operations and provide optimizations to

improve the performance.

The HPC Challenge (HPCC) benchmark suite has been funded by the DARPA

High Productivity Computing Systems (HPCS) program to help define the perfor-

mance boundaries of future Petascale computing systems [22]. HPCC is a suite of

tests that examine the performance of high-end architectures using kernels with mem-

ory access patterns more challenging than those of the High Performance LINPACK

(HPL) benchmark used in the Top500 list. The Random Access benchmark measures

80

the rate of integer updates to random memory locations (GUPs). It uses xor opera-

tion to perform the updates on the remote node. The verification procedure allows 1%

incorrect or skipped updates which allows loose concurrent memory update semantics

on shared memory architecture. It allows optimization in terms of aggregating up to

1024 updates to improve the performance. There has been earlier work to improve

the performance of this benchmark for blue-gene clusters [26].

7.2 One sided HPCC Random Access Benchmark: Design

Alternatives

In this section we describe the different approaches taken to implement the one

sided version of the HPCC Random Access benchmark. As described earlier, the

random access benchmark measures the GUPs rating. The term randomly means

that there is little relationship between one address to be updated and the next. An

update is a read-modify-write operation on a table of 64-bit words. An address is

generated, the value at that address read from memory, modified by an xor operation

with a literal value and that new value is written back to memory. Currently the MPI

version of the benchmark is based on two sided version. In this version the random

address and value is generated and is sent to the remote node. The remote node

receives this data and appropriately updates the memory location.

Design Issues

In this section we first describe the semantics and mechanisms offered by MPI-2

for designing one-sided applications. In a one-sided model, the sender can access the

remote address space directly without an explicit receive posted by the remote node.

The memory area on the target process that can be accessed by the origin process

81

is called a Window. In this model we have the communication operations MPI Put,

MPI Get and MPI Accumulate and the synchronization calls to make sure that the

issued one sided operations are complete. There are two types of synchronization:

a) active in which the remote node is involved and b) passive in which the remote

node is not involved in the synchronization. The active synchronization calls are

collective on the entire group in case of MPI Fence or a smaller group in case of

Start Complete and Post Wait model. This could lead to some limitations when the

number of synchronizations needed per process are different for different nodes. In

passive synchronization the origin process issues MPI Lock and MPI Unlock call to

indicate the beginning and end of the access epoch. Next we describe our approach

taken in designing the one-sided versions of the HPCC Random Access benchmark.

We map the table memory to the Window so that the one-sided versions can read

and write directly to this memory.

7.2.1 HPCC Get-Modify-Put (HPCC GMP)

In the first approach we call MPI Get to get the data, perform the modification,

then use MPI Put to put the updated data to the remote location. As compared

to the two sided versions there are no receive calls made on the remote node. Also

the active synchronization model cannot be used since we cannot match the number

of synchronization calls across all nodes. This is because the number of remote

updates as well as the location of the remote updates for each node can vary randomly.

Hence we use passive synchronization MPI Lock and MPI Unlock calls in this scheme.

Further we need one set of Lock and Unlock calls to fetch the data, perform the

modification, then another set of Lock and Unlock operations to put the data. The

82

reason for this is the flexibility of MPI-2 semantics which allows MPI Get to fetch

the data in Unlock. Also the MPI Get and MPI Put can be reordered within an

access epoch. We describe this approach in Fig. 7.2a and will henceforth refer to

it as HPCC GMP. This approach leads to a lot of network operations resulting in

lower performance. Further the possibility of incorrect updates increases. This is

due to the coherency issues that might arise because of parallel updates occurring

simultaneously. To make sure that there are no incorrect updates, mutual exclusion

(atomicity) has to be implemented on top of the existing approach which could lead

to further degradation in performance.

7.2.2 HPCC Accumulate (HPCC ACC)

Our next approach uses the MPI Accumulate operation provided by MPI-2. MPI-

2 semantics provide MPI Accumulate which are basically atomic reductions. This

non collective one-sided operation combines communication and computation in a

single interface. It allows the programmer to update atomically remote locations

by combining the content of the local buffer with the remote memory buffer. This

implementation calls MPI Accumulate between MPI Lock and MPI Unlock synchro-

nization calls. Using this approach shown in Fig. 7.2b, we do not have the issue of

incorrect updates. Also as compared to our HPCC GMP, the number of network op-

erations is significantly reduced. Another approach is to use Accumulate with Active

synchronization model using Win Fence. This could be done by calling Win Fence

at the very beginning, performing all the updates using MPI Accumulate and then

call one Win Fence at the very end. All the processes need to call two Win Fence

83

MPI_Free_Win()

MPI_Create_Win()MPI_Create_Win() MPI_Create_Win()
MPI_Type_Create_Struct (datatype)

MPI_Type_Commit (datatype)

MPI_Lock()
MPI_Accumulate(datatype)
MPI_Unlock()

MPI_Type_Free(datatype)

MPI_Free_Win()

MPI_Lock()
MPI_Accumulate()

MPI_Unlock()

MPI_Free_Win()

MPI_Lock()

MPI_Get ()

MPI_Unlock ()
Modify Operation

MPI_Unlock ()

MPI_Lock()

LOOP LOOP LOOP

 a) HPCC_GMP b)HPCC_ACC c)HPCC_ACC_AGG

MPI_Put ()

Figure 7.2: Code snippets of one-sided versions of HPCC Random Access benchmark

calls, one at the beginning and one at the end. However since MPI-2 semantics al-

lows the actual data transfer to occur inside the synchronization call that closes the

exposure epoch, all the accumulates could happen during the second Win Fence call.

Many MPI implementations actually make use of this flexibility. This violates the

random benchmark rule that you could store only 1024 updates at the maximum

before sending them. Hence we did not consider this approach.

7.3 Optimizations

In this section we describe two optimizations we propose in this paper to improve

the performance of the one-sided version of HPCC Random Access benchmark.

7.3.1 Software Aggregation

In this technique we want to aggregate or pack a number of update operations

together so that the overhead of sending as well as synchronization operations can

84

be reduced. Using this approach, we aggregate a bunch of update operations before

sending them as a single communication operation. The HPCC random access bench-

mark allows each processor to store up to 1024 updates before sending them out. The

MPI-2 semantics provides datatypes feature that can be leveraged to achieve aggre-

gation. For one-sided operations both the sender and destination datatypes need to

be created. We create MPI Type struct sender and receiver datatypes to represent a

bunch of updates in the following manner. The count holds the number of updates to

be aggregated, the block lengths are all one, the displacement array holds the remote

address or local address respectively of each update and the MPI datatype of each

entry is 64 bit unsigned integer. We then use the created datatypes to issue a single

communication call as shown in Fig. 7.2c. Using this approach we expect to improve

the performance since the number of network operations are minimized.

7.3.2 Hardware based Direct Accumulate

InfiniBand provides hardware atomic fetch and add operation that can be lever-

aged to optimize MPI Accumulate operation for MPI SUM. The Accumulate opera-

tions use the hardware fetch and add operation that can provide good latency and

scalability. One of the limitations of this approach is that we can only do single 64 bit

accumulates with each fetch and add operation, i.e. aggregation is not possible. A

benefit of using this approach is that since it is truly one-sided in nature, it provides

more scope for overlap that can lead to improved performance. It is to be noted

that this optimization is implemented in the underlying MVAPICH2 MPI library as

a prototype and is transparent to the application writer.

85

7.4 Performance Evaluation

In this section, we evaluate the performance of the one-sided version of the HPCC

benchmark for the different schemes. We present some micro-benchmark results to

give the basic performance of different one-sided operations and show the potential of

our proposed optimizations. The experimental testbed is x86 64 node cluster with 32

Opteron nodes and 32 Intel nodes. Each node has 4GB memory and equipped with

PCI-Express interface and InfiniBand DDR network adapters (Mellanox InfiniHost

III Ex HCA).

Basic performance of one-sided operations

In this section we show the performance of the basic one-sided operations MPI Put,

MPI Get and MPI Accumulate. Fig. 7.3a shows the small message latency for these

operations. The latency for 8bytes for put and get are 5.68 and 11.03 usecs, respec-

tively, whereas the accumulate latency is 7.06 usecs. Since get modify put implemen-

tation needs both get and put in addition to modify and synchronization operation,

we expect this performance to be lower compared to the accumulate based approach.

HPCC one-sided benchmark performance with different schemes

In this section we evaluate the performance of the two different versions of the

benchmark HPCC GMP and HPCC ACC. The results are shown in Fig. 7.3b. As

expected the HPCC ACC performs better than the HPCC GMP because of the num-

ber of synchronization and communication operations in HPCC GMP. The overhead

of these additional network operations leads to lower performance of HPCC GMP.

86

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64 128 256 512
Message Size (bytes)

La
te

nc
y

(u
se

cs
)

MPI_Put MPI_Get MPI_Acc

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

4 8 16 32 64
Number of Processors

G
UP

s

HPCC_GMP HPCC_ACC

Figure 7.3: Basic Performance (a) Micro-benchmarks and (b) Basic HPCC GUPs

This performance gap increases with increasing number of processors since the syn-

chronization cost increases further for larger number of nodes. Hence we choose

HPCC ACC as our base case for further optimizations and evaluations.

Aggregation Benefits

To improve the performance of the Accumulate operation, we proposed aggrega-

tion using Accumulate with datatype. In this section we evaluate the performance

benefits of using datatype at micro-benchmark level. In the basic version we do mul-

tiple accumulates corresponding to the number of updates. In the aggregated version

we create a datatype corresponding to the number of updates and perform a single

accumulate operation with that datatype. Fig. 7.4a shows the results of our study.

With increasing amounts of aggregation, the Accumulate with datatype outperforms

the multiple accumulate schemes. With aggregation the cost of sending overhead and

the synchronization overheads are limited to the number of aggregated operations.

Next we compare the performance of HPCC ACC AGG with HPCC ACC for 512

and 1024 aggregations. The results are shown in Fig. 7.4b. We observe a similar

87

0
100
200
300
400
500
600
700
800
900

1000

8 16 32 64 128
Number of updates

La
te

nc
y

(u
se

cs
)

Acc_without_agg Acc_with_agg

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

4 8 16 32 64
Number of processors

G
UP

s

No Aggregation 512 aggregation 1024 aggregation

Figure 7.4: Aggregation Performance Benefits (a) Basic Aggregation Micro-
benchmarks and (b) HPCC with Aggregation

trend with the optimized HPCC ACC AGG performing better than the HPCC ACC

scheme. This result demonstrates the benefits that aggregation can provide.

Hardware based Direct Accumulate

In this section we first study the benefits that could be achieved using the hard-

ware based fetch and add operation to implement a read modify write operation at

microbenchmark level (DIRECT ACC). We compare its performance with the the

schemes that uses Get Modify Put (GMP) approach and MPI Accumulate (ACC)

approach. The MPI implementation allows optimizations that delays the actual lock

and data transfer operation to happen during unlock. In this case measuring just the

lock and unlock cost does not provide any additional insight. Hence we measure the

latency that includes both data transfer and lock/unlock synchronization operation.

Fig. 7.5 compares the basic performance of GMP, ACC and DIRECT ACC. We note

that for single updates of 64bit integer, the (DIRECT ACC) scheme provides the

88

0

2

4

6

8

10

12

14

16

Direct_Accum Accum Get_modify_put

La
te

nc
y

Us
ec

s
Figure 7.5: Direct Accumulate Performance Benefits: Micro-benchmarks

lowest latency. This is because the existing MPI Accumulate implementation is in-

herently two sided whereas the Direct Accumulate implementation makes use of the

truly one-sided hardware feature.

Next we try to understand the benefits that a hardware based Accumulate op-

eration can provide to an application. To evaluate this we modify the HPCC ACC

benchmark to use the MPI SUM operation instead of the MPI BXOR operation and

call this as HPCC ACC MOD. The verification phase is correspondingly modified.

We then compare the HPCC ACC which uses the existing MPI Accumulate imple-

mentation in the MVAPICH2 library with the modified HPCC ACC MOD which uses

our Direct Accumulate prototype implementation. The results are shown in Fig. 7.6.

We observe that the Direct accumulate performs significantly better than the basic

accumulate. Also the Direct Accumulate seems to scale very well with increasing

number of processors. The reason for this is two-fold: 1) low software overhead and

2) true one-sided nature of the hardware based Direct Accumulate.

89

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

4 8 16 32 64
number of processors

G
UP

s

Accum Direct accum

Figure 7.6: HPCC with Direct Accumulate

Finally we compare our two proposed techniques Direct Accumulate and software

aggregation (Accumulate with datatype). The results are shown in Fig. 7.7. The

software aggregation scheme beats the hardware based direct accumulate approach

since currently the hardware fetch and add operation does not support aggregation.

Also the gap between the two schemes seem to be narrowing with increasing nodes.

This demonstrates the scalability of the hardware based operations and suggests the

benefits of having aggregation in hardware as well.

In this work, we designed MPI-2 one-sided versions of HPCC random access bench-

mark using get modify put and MPI Accumulate operations. The modified one-sided

HPCC Random Access benchmarks are available on line for reference [13]. We evalu-

ated these two different approaches on a 64 node cluster. To improve the performance

we explored two different techniques: a) software based aggregation and b) utilizing

hardware atomic operations. We analyzed the benefits and trade-offs of these two

90

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

4 8 16 32 64
Number of processors

G
UP

s

 accumulate direct accumulate accumulate with agg

Figure 7.7: Software Aggregation vs Hardware Direct Accumulate benefits

approaches. Our studies show that the software based aggregation performs the best.

We also demonstrated the potential and scalability of the hardware based approach.

7.4.1 Discussion

Current implementations for HPCC Random Access benchmark are based on two-

sided communication primitives. While the main objective of this work is not to

compare the designs based on one-sided and two-sided semantics, it is also impor-

tant in this context to note that the current one-sided implementations are largely

based on two-sided primitives in the MPI libraries and hence, such an evaluation is

not as informative. InfiniBand’s hardware fetch and add operation provides a de-

sign opportunity for a Direct Accumulate for MPI Sum operation for a single 64 bit

field. While we have demonstrated that both aggregation and direct hardware based

accumulation has benefits, an aggregated direct accumulate is likely to yield much

higher performance benefit. However it is clearly not possible to implement such a

design with current InfiniBand’s hardware. Also, it is to be noted that the hardware

91

fetch and add operation currently only allows the implementation of accumulation of

MPI Sum for 64 bit fields and other operations need additional hardware support.

7.5 Related Work

In [40, 37], the authors have used InfiniBand hardware features to optimize the

performance of MPI-2 one sided operations. Other researchers [39] study the different

approaches for implementing the one sided atomic reduction. The authors in [17]

have looked at utilizing the hardware atomic operations in Myrinet/GM to implement

efficient synchronization operations. Recently several researchers have been looking at

providing optimizations to the HPCC benchmark. In [26] the authors have suggested

techniques for optimizing the Random access benchmark for Blue Gene clusters. In

[59] the authors have evaluated UPC programming model on Cray machines using

the HPCC benchmark suite.

92

CHAPTER 8

NON-CONTIGUOUS DATA-TRANSFERS

Non-contiguous communication patterns are quite common in scientific applications.

several MPI applications such as (de)composition of multi-dimensional data vol-

umes [10, 24] and finite-element codes [18] often need to exchange data with algorithm-

related layouts between two processes. In the NAS benchmarks such as MG, LU, BT,

and SP, non-contiguous data communication has been found to be dominant [41]. As

one of its important features, MPI provides datatype as a powerful and general way

of describing arbitrary collections of data in memory in a compact fashion. The MPI

standard also provides run time support to create and manage such MPI derived

datatypes. MPI derived datatypes are expected to become a key aid in application

development. In practice, however, the poor performance of many MPI implementa-

tions with derived datatypes [18, 32] becomes a barrier to using derived datatypes.

This is primarily due to copy overhead associated with multiple copies from and to

contiguous buffers internally.

A programmer often prefers packing and unpacking non contiguous data manu-

ally even with considerable effort. Recently, a significant amount of research work

have concentrated on improving datatype communication in MPI implementations,

including 1) Improved datatype processing system [32, 52], 2) Optimized packing

93

and unpacking procedures [18, 32], and 3) Taking advantage of network features to

improve non contiguous data communication [67]. Our previous work used multiple

RDMA writes, henceforth referred to as Multi-W, as an effective solution to achieve

zero-copy datatype communication [67].

Interconnects
Modern

Middleware

Scatter/Gather Send/Recv

Advanced InfiniBand Primitives

One−sided

Remote Atomics RDMA

(put,get,accumulate),datatypes

One−sided API

SCIENTIFIC APPLICATIONS AND BENCHMARKS

Enabling Overlap

Non−blocking

Passive sync

Optimizations
Non−contiguous

data transfer

Re−ordering &

Intra−Node

Migrating Locks

Designs and Optimizations

Optimized

capability

(active,collective,passive)
Data transfer Synchronization

Write
Read−Modify

Petascale
Applications

Fence sync scheduling

Figure 8.1: Overview

In this work, shown in the highlighted part of Figure 8.1 of the proposed research

framework, we focus on improving non-contiguous data communication by taking

advantage of advanced features of modern interconnects. The drawback of the tradi-

tional pack/unpack based approaches for implementing datatypes is that it involves

memory copies on both sender and receiver sides. Thus, zero copy communication

protocols are of increased importance because they improve memory performance

94

and also have reduced host CPU involvement in moving data. Hence we focus on

leveraging the benefits of zero copy message transfers to implement efficient proto-

cols for datatype communication. In this work we explore zero-copy designs using

InfiniBand’s hardware scatter/gather operations.

8.1 Non-contiguous Point-to-point Data-transfer

The motivation for proposing our new zero-copy scheme is two-fold. First, we

would like to address/alleviate the limitations of our previous approaches. Secondly,

with the emergence of PCI-Express bus, the network bandwidth that can be utilized

is greatly enhanced. This further reinforces the need to come up with schemes that

can directly exploit this enhanced bandwidth to the maximum. Zero copy schemes,

because they are not limited by memory bandwidth are more appealing. However

based on our previous work, though the Multi-W zero copy scheme does better than

the copy based approaches, it still may result in under utilization of the network in

many scenarios. InfiniBand provides the Gather Send and Scatter Receive capability

through send/receive channel semantics. We would like to explore this option to come

up with an efficient zero copy scheme. The following experiment below tries to assess

the potential benefits of using Send Gather and Receive Scatter at the VAPI layer

(low level InfiniBand API provided by Mellanox).

Motivating Case Study for the Proposed SGRS Scheme

Consider a case study involving the transfer of multiple columns in a two dimen-

sional M × N integer array from one process to another. There are two possible

zero-copy schemes. The first approach is to use multiple RDMA writes, one per

row. The second approach uses Send Gather/Receive Scatter. We compare these two

95

schemes over the VAPI layer, which is an InfiniBand API provided by Mellanox [7].

The first scheme posts a list of RDMA write descriptors. Each descriptor writes

one contiguous block in each row. The second scheme posts multiple Send Gather

descriptors and Receiver Scatter descriptors. Each descriptor has 50 blocks from 50

different rows (50 is the maximum number of segments supported in one descriptor in

the current version of Mellnox SDK). We will henceforth refer to these two schemes as

“Multi-W” and “SGRS” in the plots. In the first test, we consider a 64×4096 integer

array. The number of columns being sent varies from 8 to 2048. The total message

size varies from 2 KBytes to 512 KBytes accordingly. The bandwidth test is used for

evaluation and the bandwidth number is reported in order of Million bytes (MB/s).

As shown in Figure 8.2, the SGRS scheme consistently outperforms the Multi-W

scheme. In the second test, the number of blocks varies from 4 to 64. Three different

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2K 4K 8K 16K 32K 64K 128K256K512K

B
an

dw
id

th
(M

B
/s

)

Message size (bytes)

SGRS-Bw
Multi-W-Bw

Figure 8.2: Bandwidth Comparison over
VAPI with 64 Blocks

 500
 550
 600
 650
 700
 750
 800
 850
 900

 4 8 16 32 64

B
an

dw
id

th
(M

B
/s

)

Num of Blocks

Multi-W-128
Multi-W-256
Multi-W-512
SGRS-128
SGRS-256
SGRS-512

Figure 8.3: Bandwidth Comparison over
VAPI with Varying Number of Blocks

message sizes were studied: 128 KBytes, 256 KBytes, and 512 KBytes. Figure 8.3

96

shows the bandwidth results with different number of blocks and different message

sizes. When the number of blocks is small, both Multi-W and SGRS schemes perform

comparably. This is because the block size is relatively large. The network utiliza-

tion in the Multi-W is still high. As the number of segments increase we observe a

significant fall in bandwidth for the Multi-W scheme whereas the fall in bandwidth is

negligible for the SGRS scheme. There are two reasons. First, the network utilization

becomes lower when the block size decreases (i.e. the number of blocks increases) in

the Multi-W scheme. However, in the SGRS scheme, the multiple blocks in one send

or receive descriptor are considered as one message. Second, the total startup costs

in the Multi-W scheme increases with the increase of the number of blocks because

each block is treated as an individual message in the Multi-W scheme and hence

the startup cost is associated with each block. From these two examples, it can be

observed that the SGRS scheme can overcome the two drawbacks in the Multi-W

by increasing network utilization and reducing startup costs. These potential ben-

efits motivate us to design MPI datatype communication using the SGRS scheme

described in detail in Section 10.

8.1.1 Proposed SGRS (Send Gather/Recv Scatter) Approach

In this section we first describe the SGRS scheme. Then we discuss the design

and implementation issues and finally look at some optimizations to this scheme. The

basic idea behind the SGRS scheme is to use the scatter/gather feature associated

with the send receive mechanism to achieve zero-copy communication. With this

feature we can send/receive multiple data blocks as a single message by posting

a send gather descriptor at source and a receive scatter descriptor at destination.

97

ÉÊÉÉÊÉËÊËËÊË
ÌÊÌÌÊÌÌÊÌÍÊÍÍÊÍÍÊÍ

ÎÊÎÎÊÎÎÊÎ
ÎÊÎ
ÏÊÏÏÊÏÏÊÏ
ÏÊÏ
ÐÊÐÐÊÐÑÊÑÑÊÑ

ÒÊÒÊÒÒÊÒÊÒÓÊÓÓÊÓ
ÔÊÔÊÔÔÊÔÊÔÕÊÕÕÊÕ

ÖÊÖÊÖÖÊÖÊÖÖÊÖÊÖ×Ê××Ê××Ê×ØÊØÊØØÊØÊØÙÊÙÙÊÙ

send gather

Sender

user buffer

receive scatter

Receiver

user buffer

SENDER RECEIVER

POST_GATHER

POST_SCATTER

DATA (SECOND CONNECTION)

REPLY CTRL MESG + DECISION INFO (PRIMARY CONNECTION)

REQUEST CTRL MESG + LAYOUT (PRIMARY CONNECTION)

Figure 8.4: a)Basic Idea of the SGRS Scheme and b) SGRS Protocol.

Figure 8.4a illustrates this approach. InfiniBand also provides RDMA Write with

Gather and RDMA Read with Scatter capability. The SGRS scheme can handle non-

contiguity on both sides. The RDMA Write Gather or RDMA Read Scatter handles

non-contiguity only on one side. Hence, to achieve zero-copy datatype communication

based on RDMA operations, the Multi-W scheme is needed [67]. Compared to the

Multi-W scheme, the SGRS scheme reduces the number of descriptors dramatically.

It also increases the network utilization. There are two requirements. First, all the

contiguous blocks need to be registered. Second, the sender should send its layout

information to the receiver. The cost of sending the layout could be high in some

cases. We describe optimization mechanisms like layout caching later in this section

to alleviate this problem.

98

Design and Implementation Issues

We now discuss the intrinsic issues related to the MPI implementation of the SGRS

scheme. The communication protocol and design issues such as secondary connec-

tion, progress, layout exchange, posting descriptors, and user buffer registration are

addressed here.

Communication Protocol

The SGRS scheme is deployed in Rendezvous protocol to transfer large datatype

messages. For small datatype messages, the Generic scheme is used. As shown in

Figure 8.4b, the sender first sends the Rendezvous start message with the data layout

information out. Second, the receiver receives the above message and figures out

how to match the sender’s layout with its own layout. Then, the receiver sends the

layout matching decision to the sender. After receiving the reply message, the sender

posts send gather descriptors. It is possible that the sender may break one block

into multiple blocks to meet the layout matching decision. There are several design

issues: Secondary connection, Progress, Layout exchange, Posting descriptors and

Registration.

Secondary connection

The SGRS scheme needs a second connection to transmit the non-contiguous data.

This need arises because it is possible in the existing MVAPICH design to prepost

some receive descriptors on the main connection as a part of its flow control mecha-

nism. These descriptors could unwittingly match with the gather-scatter descriptors

associated with the non-contiguous transfer. One possible issue with the extra con-

nection is scalability. In our design, there are no buffers/resources for the second

99

connection. The HCA usually can support a large number of connections. Hence

the extra connection does not hurt the scalability. The second issue is out of order

messages. Having two connections can create out of order arrival of messages which

have to be handled carefully. However, in our design, since the control messages as

shown in Figure 8.4b still use the primary connection, the out of order situation is

averted and the receiver still receives the message in the same order.

Progress and Completion

Another issue is handling of completion of a message. In our design we associate

a single completion queue with both connections. This fits in well with the existing

framework for ensuring progress of the communication call. The completion is handled

by polling for completion of scatter/gather descriptors on the second connection, and

we do not need an extra message to indicate completion.

Layout exchange

The MPI datatype has only local semantics. To enable zero-copy communication,

both sides should have an agreement on how to send and receive data. In our design,

the sender first sends its layout information to the receiver in the Rendezvous start

message as shown in Figure 8.4b. Then the receiver finds a solution to match these

layouts. This decision information is also sent back to the sender for posting send

gather descriptors. To reduce the overhead for transferring datatype layout infor-

mation, a layout caching mechanism is desirable [36]. Implementation details of this

cache mechanism in MVAPICH can be found in [67]. In Section 8.2, we evaluate the

effectiveness of this cache mechanism.

100

Posting Descriptors

There are three issues in posting descriptors. First, if the number of blocks in

the datatype message is larger than the maximum allowable gather/scatter limit,

the message has to be chopped into multiple gather/scatter descriptors. Second, the

number of posted send descriptors and the number of posted receive descriptors must

be equal. Third, for each pair of matched send and receive descriptors, the data

length must be the same. This basically needs a negotiation phase. Both these issues

can be handled by taking advantage of the Rendezvous start and reply message in

the Rendezvous protocol. In our design, the receiver makes the matching decision

taking into account the layouts as well as scatter-gather limit. Both the sender and

the receiver post their descriptors with the guidance of the matching decision.

User Buffer Registration

To send data from and receive data into user buffer directly, the user buffers need

to be registered. Given a non-contiguous datatype we can register each contiguous

block one by one. We could also register the whole region which covers all blocks and

gaps between blocks. Both attempts have their drawbacks [66]. In [66], Optimistic

Group Registration(OGR) has been proposed to make a trade off between the number

of registration and deregistration operations and the total size of registered space to

achieve efficient memory registration on datatype message buffers.

8.2 Performance Evaluation

In this section we evaluate and compare the performance of our SGRS scheme with

the Multi-W zero-copy scheme and the Generic scheme in MVAPICH. We perform

101

latency, bandwidth, bi-directional bandwidth and CPU overhead tests using a vector

datatype to demonstrate the effectiveness of our scheme. Then we show the potential

benefits that can be observed for collective communication such as MPI Alltoall that

are built on top of point-to-point communication. Further, we investigate the impact

of layout caching for our design. Another aspect of our evaluation is the impact

of our zero-copy scheme on different platforms. The evaluation has been done on

two different platforms. one platform based on PCI-X and the other based on PCI-

Express.

Experimental Testbed

For our experiments we used two clusters whose descriptions are given below.

• PCI-X based cluster: A cluster of 8 nodes, each with dual Intel Xeon 3.0 GHz

processors, 512 KB L2 cache, 2GB main memory, PCI-X 64-bit 133 MHz bus,

and connected to Mellanox InfiniHost MT23108 DualPort 4x HCAs. The nodes

are connected using the Mellanox InfiniScale 24 port switch MTS 2400. The

kernel version used is Linux 2.4.22smp. The InfiniHost SDK version is 3.0.1 and

HCA firmware version is 3.0.1. The Front Side Bus (FSB) runs at 533MHz.

• PCI-Express based cluster: A cluster of 4 nodes, each with dual Intel Xeon 3.4

GHz processors and 512MB DDR main memory. The nodes support 8x PCI-

Express and connected to Mellanox InfiniHost MT23108 DualPort 4x HCAs.

The nodes are connected using an InfiniScale switch. The kernel version used

is Linux 2.4.21-15.EL.

102

Microbenchmarks

In these benchmarks, increasing number of columns in a two dimensional M*4096

integer array are transferred between two processes. These columns can be repre-

sented by a vector datatype. We set up two cases for the number of rows (M) in

this array: case 1 with 64 rows and case 2 with 128 rows. Basically case 1 has a

‘degree of non-contiguity’ 64 and case 2 has a ‘degree of non-contiguity’ 128. The

number of columns is varied from 4 to 2048, the corresponding message size varies

from 2 KBytes to 512 KBytes. The latency, bandwidth and bidirectional bandwidth

experiments use this setup.

Latency

The latency test is a ping-pong latency test with the vector datatype described

above. The PCI-X latency results for cases 1 and 2 are shown in Figure 9.4 and

Figure 9.6. For each case we compare the two zero-copy schemes (SGRS and Multi-

W) and the Generic copy based approach. We also compare it with the latency of

the contiguous transfer which serves as the lower bound. When the message size is

small, the Generic scheme does better than the zero-copy schemes. This is because,

for this range, the copy cost is not substantial whereas the overhead associated with

posting the descriptors for the non-contiguous segments dominate. Beyond a cut-off

point, 32K in case of SGRS scheme, the zero-copy schemes start outperforming the

Generic scheme by a significant margin. Beyond the cut-off point the SGRS scheme

does better than the Multi-W. This difference also increases when the degree of non-

contiguity increases because Multi-W scheme needs to post a descriptor for each

segment individually. We observe that the SGRS scheme reduces the latency by up

103

to 61% compared to that of the Multi-W scheme. On PCI-Express platforms almost

similar trend can be observed for latency for the two cases as seen in Figure 9.5 and

Figure 9.7 except that the gap between the SGRS scheme and the Multi-W scheme

widens. SGRS scheme reduces the latency by up to 69% compared to that of the

Multi-W scheme. Also on the PCI-Express platform the cut off point beyond which

the zero-copy scheme performs better is lowered.

Bandwidth

The bandwidth experiment uses the standard bandwidth test except that the

datatype is a vector datatype described above. The PCI-X bandwidth results for

cases 1 and 2 are shown in Figure 8.17 and Figure 8.19. The improvement factor

over the Multi-W scheme varies from 1.12 to 4.0. It can also be observed that when

the degree of non-contiguity is large, the improvement of the SGRS scheme over

the Multi-W scheme is higher. This is because the improved network utilization in

the SGRS scheme is more significant when there are more non-contiguous blocks of

small size. When the block size (the size of non-contiguous segment) is large enough,

RDMA operations on each block can achieve good network utilization as well and

both schemes perform comparably. For large messages our scheme is able to achieve a

bandwidth close to that of the peak contiguous bandwidth. This is due to the fact that

the large size of messages assisted by the zero-copy mechanism is able to completely

saturate the network which is desirable. On PCI-Express platforms, Figure 8.18 and

Figure 8.20 show the bandwidth comparison. The trends seen on PCI-X platform are

further magnified in the context of PCI-Express. SGRS scheme performs considerably

better than the Multi-W scheme and this performance gap is more prominent in PCI-

Express as compared to PCI-X. The improvement factor over Multi-W is upto 7.2 on

104

PCI-Express platforms. Further both the zero-copy approaches show improvement in

bandwidth on PCI-Express platform as compared to PCI-X. The Generic copy based

scheme does not show any significant improvement across the two platforms. This can

be attributed to the fact that the memory bandwidth on the PCI-Express platform

is similar to that of the PCI-X platform, and since the Generic scheme is based on

copy, and the memory bandwidth is the bottleneck on our PCI-Express platform, the

Generic scheme is not able to leverage the improvement in the network bandwidth.

Bidirectional Bandwidth

The memory bandwidth limitation of copy based schemes can have serious impact

when we take a look at the bidirectional bandwidth. In a bidirectional bandwidth test,

the non-contiguous data flow takes place simultaneously in both the directions. On a

PCI-X platform the bidirectional bandwidth attains a peak of 941MB/s for contiguous

data. The SGRS scheme and the Multi-W scheme are able to take advantage of this

improvement in the bandwidth whereas the copy based Generic scheme saturates

around 548MB/s because the bottleneck is the memory copy. The results are shown

in Figure 8.21 and Figure 8.2. Compared to the Multi-W scheme, the SGRS scheme

does consistently better and is able to achieve a peak bandwidth of 910MB/s for

512K message. This behaviour stands out further on PCI-Express platform which can

achieve a peak bidirectional bandwidth of upto 1920MB/s almost double that of uni-

directional bandwidth. The PCI-Express bidirectional bandwidth results are shown

in Figure 8.2 and Figure 8.2. The zero-copy based schemes can directly leverage this

improvement in the network bandwidth and can achieve a bidirectional bandwidth of

1876MB/s close to that of peak contiguous bidirectional bandwidth whereas there is

very little improvement for the copy based scheme. Further compared to the Multi-W

105

scheme, the SGRS performs significantly better and shows an improvement of up to

3 times.

The new and emerging trends in memory technology like DDR2, QDR, etc. could

significantly relocate the bottlenecks in the system, presenting new interesting sce-

narios for further investigations.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2K 4K 8K 16K 32K 64K 128K256K512K

La
te

nc
y

(u
se

c)

Message size (bytes)

SGRS-64
Multi-W-64
Contiguous
Generic-64

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2K 4K 8K 16K 32K 64K 128K256K512K

La
te

nc
y

(u
se

c)

Message size (bytes)

SGRS-64
Multi-W-64
Contiguous
Generic-64

Figure 8.5: MPI Level Vector Latency 64 blocks a)PCI-X and b)PCI-Express

Performance of MPI Alltoall

Collective datatype communication can benefit from high performance point-to-

point datatype communication provided in our implementation. We designed a test to

evaluate MPI Alltoall performance with derived datatypes. We use the same vector

datatype we had used for our earlier evaluation.

Figure 8.11a shows the MPI Alltoall latency performance of the various schemes

on 8 nodes for the PCI-X platform. We study the Alltoall latency over the message

range 4K-512K. We ran these experiments for two different numbers of blocks: 64 and

106

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2K 4K 8K 16K 32K 64K 128K256K512K

La
te

nc
y

(u
se

c)

Message size (bytes)

SGRS-128
Multi-W-128
Contiguous

Generic-128

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2K 4K 8K 16K 32K 64K 128K256K512K

La
te

nc
y

(u
se

c)

Message size (bytes)

SGRS-128
Multi-W-128
Contiguous

Generic-128

Figure 8.6: MPI Level Vector Latency 128 blocks a)PCI-X and b)PCI-Express

 0

 200

 400

 600

 800

 1000

2K 4K 8K 16K 32K 64K 128K256K512K

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

SGRS-64
Multi-W-64
Contiguous
Generic-64

 0

 200

 400

 600

 800

 1000

2K 4K 8K 16K 32K 64K 128K256K512K

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

SGRS-64
Multi-W-64
Contiguous
Generic-64

Figure 8.7: MPI Level Vector Bandwidth 64 blocks a)PCI-X and b)PCI-Express

107

 0

 200

 400

 600

 800

 1000

2K 4K 8K 16K 32K 64K 128K256K512K

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

SGRS-128
Multi-W-128
Contiguous

Generic-128

 0

 200

 400

 600

 800

 1000

2K 4K 8K 16K 32K 64K 128K256K512K

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

SGRS-128
Multi-W-128
Contiguous

Generic-128

Figure 8.8: MPI Level Vector Bandwidth 128 blocks a)PCI-X and PCI-Express

 0

 500

 1000

 1500

 2000

2K 4K 8K 16K 32K 64K 128K256K512K

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

SGRS64
Multi-W-64
Contiguous
Generic-64

 0

 500

 1000

 1500

 2000

2K 4K 8K 16K 32K 64K 128K256K512K

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

SGRS-64
Multi-W-64
Contiguous
Generic-64

Figure 8.9: MPI Level Vector Bi-directional Bandwidth 64 blocks a)PCI-X and
b)PCI-Express

108

 0

 500

 1000

 1500

 2000

2K 4K 8K 16K 32K 64K 128K256K512K

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

SGRS-128
Multi-W-128
Contiguous

Generic-128

 0

 500

 1000

 1500

 2000

2K 4K 8K 16K 32K 64K 128K256K512K

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

SGRS-128
Multi-W-128
Contiguous

Generic-128

Figure 8.10: MPI Level Vector Bi-directional Bandwidth 128 blocks a)PCI-X and
b)PCI-Express

0

2000

4000

6000

8000

10000

4K 8K 16K 32K 64K 128K 256K 512K

La
te

nc
y

(u
se

c)

Message size (bytes)

SGRS-64 segments
SGRS-128 segments
Multi-W-64segments

Multi-W-128 segments

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

4K 8K 16K 32K 64K 128K 256K 512K

La
te

nc
y

(u
se

c)

Message size (bytes)

SGRS-64 segments
SGRS-128 segments
Multi-W-64segments

Multi-W-128 segments

Figure 8.11: MPI Alltoall Vector Latency a)PCI-X and b)PCI-Express

109

128. We observe that the SGRS scheme outperforms the Multi-W scheme consistently.

The gap widens as the number of blocks increases. This is because the startup costs in

the Multi-W scheme increase with the increase of the number of blocks. In addition,

given a message size, the network utilization decreases with the increase of the number

of blocks in the Multi-W scheme.

The MPI Alltoall latency performance for PCI-Express platform was evaluated

on 4 nodes. The results are shown in Figure 8.11b. The SGRS scheme performs

better than the Multi-W scheme and this performance difference is higher on the

PCI-Express platform as comapared to PCI-X platform.

CPU overhead evaluation

In addition to the latency and bandwidth, the host CPU usage for the message

transfer is also a relevant metric, because it indirectly gives an estimate of CPU

availability for the application progress. In this section we measure the CPU overhead

involved for the two schemes. These tests were conducted on the PCI-X platform.

Figures 8.12 and 8.13 compare the CPU overheads associated at the sender side and

receiver side, respectively. The SGRS scheme has lower CPU involvement on the

sender side as compared to Multi-W scheme. However on the receiver side the SGRS

scheme has an additional overhead as compared to practically close to zero overhead

in case of Multi-W scheme.

Impact of Layout Caching

In both the Multi-W and SGRS schemes, the layout has to be exchanged between

the sender and receiver before data communication. In this test, we studied the

overhead of transferring the layout information. We consider a synthetic benchmark

110

 0

 10

 20

 30

 40

 50

 60

2k 4K 8K 16K 32K 64K 128K256K512K

C
P

U
 o

ve
rh

ea
d

(u
se

c)

Message size (bytes)

MultiW-64 segments
MultiW-128 segments

SGRS-64segments
SGRS-128 segments

Figure 8.12: Sender side CPU overhead

 0

 5

 10

 15

 20

2k 4K 8K 16K 32K 64K 128K256K512K

C
P

U
 o

ve
rh

ea
d

(u
se

c)

Message size (bytes)

MultiW-64 segments
MultiW-128 segments

SGRS-64segments
SGRS-128 segments

Figure 8.13: Receiver side CPU over-
head

where this effect might be prominent. In our benchmark, we need to transfer the two

leading diagonals of a square matrix between two processes. These diagonal elements

are actually small blocks rather than single elements. Hence, the layout information

is complex and we need considerable layout size to describe it. As the size of the

matrix increases, the number of non-contiguous blocks correspondingly increases as

well as the layout description.

Figure 8.14 shows the percentage of overhead that is incurred in transferring this

layout information when there is no layout cache as compared with the case that has

a layout cache. For smaller message sizes, we can see a benefit of 10 percent and

this keeps diminishing as the message size increases. Another aspect here is that

even though for small messages the layout size is comparable with message size, since

the layout is transferred in a contiguous manner, it takes a lesser fraction of time to

transfer this as compared to the non-contiguous message of comparable size. Since

111

0
5

10
15
20
25
30
35
40

500 750 1000 1250 1500 1750 2000

P
er

ce
nt

ag
e

of
 O

ve
rh

ea
d

Num of blocks

blocksize: 4bytes
blocksize:8 bytes

blocksize:16 bytes

Figure 8.14: Overhead of Transferring Layout Information

the cost associated in maintaining this cache is virtually zero, for message sizes in

this range we can benefit from layout caching.

112

8.3 Non-contiguous One-sided Data-transfer

In this section we address how to handle non-contiguous data transfer efficiently in the

context of one-sided communication. In one-sided communication, both the local and

remote locations are specified on the sender or origin side. The approaches described

in the previous section can also be used for one-sided communication. This work was

done in the context of ARMCI which is a one-sided communication library described

in section 2.5. We use a helper thread based design which involves limited remote

host involvement to provide this support. We intend to extend this design for MPI-2

one-sided communication.

In the following sections we describe a basic approach and our proposed zero-copy

approach to handle non-contiguous data transfer in ARMCI library.

8.3.1 Host-Based Buffered Approach

A simple way of performing non-contiguous transfers is to maintain a contiguous

buffer on both the local and the remote side and move data using this contiguous

buffer. This approach requires heavy involvement on both the local and remote sides

in moving the data between the buffer and the noncontiguous source or destination.

An enhancement to this approach is to divide the data into chunks and pipeline the

memory copy and nonblocking communication so that they overlap. Based on the

message size, the message transmission/reception can be broken into smaller requests.

A copy of one part of the request can be overlapped with the transmission of another

piece. Fig. 8.15 shows the steps involved in a host-based buffered protocol.

113

Another approach that can be used here is to do multiple contiguous transfers

for each contiguous chunk. We refer to this approach as Multiple Zero Copy ap-

proach. This approach is zero-copy but may require the initiator of the request to

spend some time in processing the multiple contiguous requests it has to initiate

for every noncontiguous request. In addition, handling flow control issues like the

number of outstanding requests allowed might adversely affect performance. We in-

troduced a host-assisted zero-copy method to address the problems inherent in both

the approaches described above.

Figure 8.15: Host Based Buffered Approach

8.3.2 Host-Assisted Zero-Copy RMA

To leverage the advantages of the host-assisted zero-copy approach in Mellanox

VAPI, memory on both sides must be registered. The user is not expected to either

explicitly register memory or keep track of this information. Instead we maintain and

parse a high-granularity global memory information table to determine if the memory

114

on both sides is registered. The host-assisted approach requires partial involvement

of a remote host to complete operations. We refer to the representative on the re-

mote side that assists in the completion of the operation as a ”helper” thread. The

helper thread initiates an operation and hence requires minimal remote-side CPU

involvement. This is very similar to the ARMCI data server thread [47, 49] and

the dispatcher thread in the IBM LAPI [53]. The significant difference is that the

helper thread does not copy any data and does not wait on an operation it issued to

complete. With this helper thread as an assistant to complete the operation on the

remote side, we describe the implementation details of contiguous and noncontiguous

one-sided Get and Put operations. We demonstrate the benefits of this approach by

contrasting its performance with the traditional host-based/buffered approach and

by showing the performance of these protocols on a few application benchmarks in

Section 8.4.

Implementation of Get Operation for Noncontiguous Data

Because a noncontiguous data transfer would involve transfer of multiple segments

of data, our strategy is to use the scatter/gather message passing feature provided by

IBA to achieve the zero-copy transfer. Using that feature, we can send /receive mul-

tiple data segments as a single message by posting a single scatter/gather descriptor.

The two types of scatter/gather message-passing operations defined in IBA VAPI are

1) Gather-Send (which requires the noncontiguous data being sent to be represented

as a Gather-Send descriptor) and 2) Scatter-Receive (which requires the noncontigu-

ous destination for the receive to be specified in a Scatter-Receive descriptor format).

In a host-assisted zero-copy Put, the source sends a request to the remote side. The

helper thread processes the request, converts the vector/stride information in the

115

request into a VAPI Receive-Scatter descriptor, posts the descriptor, and sends an

acknowledgment to the requesting process, indicating that it has posted the neces-

sary receive descriptor. On receiving this acknowledgment, the source process posts

a Gather-Send from the VAPI Gather-Send descriptor it created while waiting for

an acknowledgment from the helper thread. This directly delivers the data to the

destination memory without the overhead of any intermediate copies. Although the

explicit acknowledgment might seem like an overhead for large messages, when the

copying cost starts to dominate, this approach performs better. It should be enabled

only for multidimensional Put operations when the first stride or the size of each

contiguous segment is large. For a host-assisted zero-copy Get shown in Fig. 8.16,

the source node posts a Scatter-Receive descriptor to receive the vector/strided data

and then sends a request to the remote host with the remote stride/vector informa-

tion. The helper thread on the remote host receives the request and then posts a

corresponding VAPI Gather-Send by converting the stride/vector information in the

request message into a VAPI Gather-Send descriptor. The implementation of this

protocol prompted us to address a number of design issues.

Limit on Scatter/Gather Entries per Descriptor

The strided put/get operations can be used to transfer sections of multidimen-

sional arrays. Each dimension of the array can support any number of data segments.

However, the IBA implementation puts an upper limit of 60 on the number of scat-

ter/gather entries that can be allowed per Scatter-Receive or Gather-Send descriptor.

Hence, for large messages, the maximum scatter/gather entry limit requires us to

extend the above approach. Because we can have only 60 scatter/gather entries in a

descriptor, our solution is to break our message into chunks of up to 60 data segments

116

and post a gather send/scatter receive for each one of them. Posting a send/receive

is a nonblocking operation in IBA and takes only a very short time (a microsecond on

Itanium 1GHz), so the overhead in posting multiple gather descriptors is not signif-

icant. In the case of Strided Get, the client posts multiple scatter receives and then

sends the request. At the remote side, the helper thread processes the request and

posts multiple gather sends. A similar approach has been followed for implementing

the noncontiguous puts.

Resource Allocation

At the client level, memory needs to be allocated and maintained to create a

scatter/gather descriptor from a strided/vector request. Unlike VIA, VAPI copies the

posted descriptor on to the NIC and hence does not require us to keep the descriptor

until the request has been completed. At the NIC level, the number of scatter/gather

entries must be decided at the initialization phase. The larger the scatter gather list,

the larger the amount of memory allocated per descriptor on the NIC. To investigate

the effect of this on the performance of the operation, we conducted experiments

to measure the change in latency with increasing number of scatter/gather entries.

We determined that the overhead for having 60 scatter gather entries in a descriptor

instead of 1 is not significant (less than 1 micro sec) and hence we could afford to set

the scatter/gather limit to the maximum allowed value of 60.

8.4 Performance Evaluation

We compared the performance of the different methods described above not just

to contrast the host-assisted zero copy with the other implementations but also to

117

Figure 8.16: Host Assisted Zero-copy Approach

show the importance of using multiple protocols in achieving a sustained good per-

formance. Fig. 8.17 shows the performance of noncontiguous ARMCI operations. It

compares the performance of host-based/buffered get and host-assisted zero-copy get

operations.Zero-Copy 2D get in Fig. 8.17 and Fig. 8.18 represents the approach dis-

cussed earlier in this section where a noncontiguous Get operation is implemented on

top of multiple contiguous RDMA Get operations, one for each contiguous segment.

For this test, ARMCI 2D data is represented using the strided data format. It is clear

that the host-assisted zero copy implementation performs much better and more sig-

nificantly so when the first dimension is large. An advantage of using host-assisted

zero copy can be determined by measuring the effect on protocol performance when

the remote side is doing a CPU-intensive operation. Unlike the zero-copy approach,

host-assisted zero-copy requires some host involvement in initiating data transfer.

This is more representative of the impact these protocols may have on an application

118

Figure 8.17: Bandwidth Comparison with Remote Side Idle

than mere measurement of communication bandwidth/latency. Fig 8.18 shows the

performance difference between the buffered and host-assisted zero-copy protocols

when the remote side is doing a CPU-intensive operation. In comparison to Fig. 8.17,

it is very clear that the performance of the host-assisted zero-copy protocol has not

been affected at all by the CPU-intensive operation on the other side while the per-

formance of the buffered Get protocol dropped very significantly. This clearly shows

the very low overhead this protocol imposes on the remote-side CPU.

Overlap Measurements

Another significant advantage of this protocol is the amount of overlap it can

provide in nonblocking operations. Because the implementation does not involve any

data movement in call initiation or call completion, the amount of overlap possible is

much higher than that for the other protocols. This can be clearly seen in Fig 8.19,

119

Figure 8.18: Bandwidth Comaprison with Remote Side Busy

which compares the amount of overlap attainable with host-based/buffered and host-

assisted protocols for a noncontiguous data transfer for various square noncontiguous

chunks of data.

Matrix Multiplication

The bare microbenchmark performance numbers for RMA operations often do not

give the actual impact of the protocol used to implement the one-sided operation on an

application. A significant issue that comes to light in actual application performance

in the case of one-sided operations is the ability of the operation to make progress with

minimal to no remote host involvement. SUMMA is a highly efficient, scalable imple-

mentation of common matrix multiplication algorithm proposed by van de Geijn and

Watts [27]. For the RMA version, we used the algorithm implemented using ARMCI

RMA in Global Arrays. The matrix in the Global Arrays implementation of ARMCI

120

Figure 8.19: Overlap Percentage

Figure 8.20: Performance of Matrix Multiplication for Square Matrices

121

Figure 8.21: Performance of Matrix Multiplication for Rectangular Matrices

is decomposed into blocks and distributed among processors with a two-dimensional

block distribution. Each submatrix is divided into chunks. Overlapping is achieved

by issuing a call to get a chunk of data while computing the previously received chunk.

The minimum chunk size was 128 for all runs, which was determined empirically. The

maximum chunk size was determined dynamically, depending on memory availabil-

ity and the number of processors. Experiments with matrix multiplication were run

by varying the matrix size and the number of processors. The three lines labeled

in both the graphs in Fig. 8.20 represent three different approaches to implement

multi-dimensional RMA in ARMCI. The host-assisted zero-copy approach was intro-

duced in Section 8.3.2. The host-based/buffered approach and zero-copy approaches

were discussed at the beginning of Section 8.3.1. The host-based/buffered approach

involves two copies, one on each side; the zero-copy approach involves multiple con-

tiguous sends for each noncontiguous message. The computations were done on four

nodes with two processes each. Fig. 8.20 shows the result for square matrices with

122

sizes varying from 128 to 2000. Fig. 8.21 is for a rectangular matrix where the second

dimension is set to 512 and the first dimension varies from 128 to 2000. Our proposed

host assisted approach outperformed the other schemes for microbenchmarks as well

as application kernels like SUMMA matrix multiplication.

This work described how non-contiguous one-sided communication can be imple-

mented efficiently through the novel host-assisted approach to support the zero-copy

communication. In addition, a high degree of overlapping computations and commu-

nication was demonstrated. The benchmarks used in the study showed effectiveness of

the RMA implementation on InfiniBand and the importance of zero-copy nonblocking

protocols for hiding latency in the interprocessor communication.

8.5 Related Work

Many researchers have been working on improving MPI datatype communication.

Research in datatype processing system includes [32, 52]. Research in optimizing

packing and unpacking procedures includes [18, 32]. The closest work to ours is the

work [67] to take advantage of network features to improve noncontiguous data com-

munication. In [67], Wu et al. have systematically studied two main types of approach

for MPI datatype communication (Pack/Unpack-based approaches and Copy-Reduced

approaches) over InfiniBand. The Multi-W scheme has been proposed to achieve

zero-copy datatype communication.

123

CHAPTER 9

NON-BLOCKING ONE-SIDED PRIMITIVES

As described in earlier sections, a one-sided communication library should pro-

vide low latency one-sided operations and good scope for overlap potential. Non-

blocking operations are very important to achieve latency hiding and good computa-

tion/communication overlap. Nonblocking operations initiate a communication call

and then return control to the application. The application writer/user can try to

hide the latency of the communication operation by overlapping communication with

computation.

There are two important aspects to this issue. The first is the availability of

the non-blocking API that can be exposed to the application writers. Secondly, the

underlying implementation needs to be non-blocking to achieve this. In this work,

shown in the highlighted part of Figure 9.1 of the proposed research framework, we

explore techniques and designs to implement these non-blocking primitives in the

context of ARMCI which is a one-sided communication library.

124

Interconnects
Modern

Middleware

Scatter/Gather Send/Recv

Advanced InfiniBand Primitives

One−sided

Remote Atomics RDMA

(put,get,accumulate),datatypes

One−sided API

SCIENTIFIC APPLICATIONS AND BENCHMARKS

Enabling Overlap

Non−blocking

Passive sync

Optimizations
Non−contiguous

data transfer

Re−ordering &

Intra−Node

Migrating Locks

Designs and Optimizations

Optimized

capability

(active,collective,passive)
Data transfer Synchronization

Write
Read−Modify

Petascale
Applications

Fence sync scheduling

Figure 9.1: Overview

9.1 Efficient Non-blocking Design

Nonblocking operations initiate a communication call and then return control to

the application. The user who wishes to exploit nonblocking communication as a tech-

nique for latency hiding by overlapping communication with computation implicitly

assumes that progress in communication can be made in a purely computational phase

of the program execution when no communication calls are made. Unfortunately, that

assumption is often not satisfied in practice, the availability of nonblocking API does

not guarantee that overlapping communication with computation is always possible

[65].

125

Since the RMA or one-sided model is simpler than two-sided message passing

model (e.g., does not involve message tag matching or dealing with early arrival of

messages), in principle more opportunities for overlapping communication with com-

putation are available. However, these opportunities are not automatically exploited

by deriving implementations of nonblocking APIs from their blocking counterparts.

For example, the communication protocols used to optimize blocking transfers of data

from non-registered memory by pipelined copy and network communication through

a set of registered memory buffers [49] can achieve very good performance by tuning

the message fragmentation in the pipeline [64]. However, the memory copy requires

the active host CPU involvement and therefore reduces the potential for effective

overlapping communication with computation. To increase the overlap, we expanded

the use of direct(zero-copy) protocols on networks that require memory registration,

such as Myrinet.

In ARMCI, a return from a nonblocking operation call indicates a mere initiation

of the data transfer process, and the operation can be completed locally by making

a call to the wait routine. Waiting on a nonblocking put or an accumulate operation

ensures that data was injected into the network and the user buffer can be now

be reused. Completing a get operation ensures that data has arrived into the user

memory and is ready for use. A wait operation ensures only local completion. The

library imposes a limit on the number of outstanding requests allowed (if necessary,

it can transparently complete an old request and free up the resources for a new

request). For performance reasons [12], ARMCI supports only a weak consistency

for operations targeting remote memory. Unlike their blocking counterparts, the

nonblocking operations are not ordered with respect to the destination. Performance

126

is one reason; the other is that by ensuring ordering, we incur additional and possibly

unnecessary overhead on applications that do not require ordered operations. When

necessary, ordering can be done by calling a fence operation. The fence operation is

provided to the user to confirm remote completion if needed.

Figure 9.2: Non-blocking transfer with implicit handle

Request Handle

The request handle structure is central to the APIs associated with the latency

hiding mechanisms in ARMCI. This opaque object is stored in the application memory

and is used to 1) assign a unique identity to a nonblocking RMA operation, 2) facilitate

aggregation of multiple operations, and 3) optionally store certain control information.

Before the handle is used, it must be initialized with the ARMCI INIT HANDLE

macro and can be reused after the associated nonblocking operation completes. The

127

user passes a reference to a request handle structure. As a convenience to the user, a

NULL value for the handle address can be specified. The library keeps track of these

so-called “implicit handle requests” and assigns a handle to them from an internal pool

of handles. This type of requests can be completed using either the wait operation

associated with a particular remote processor (see Fig. 9.2) or another wait operation

to complete all pending implicit handle requests.

9.2 Implicit and Explicit Aggregation

Aggregation of requests is another mechanism for improving latency tolerance.

Multiple nonblocking data transfer (put/get) requests can be aggregated into a single

data transfer operation in order to improve the data transfer rate. Especially if there

are multiple data transfer requests of small message sizes, aggregating those requests

into a single large request reduces the latency, thus improving performance. This

technique is unique in its ability to sustain high bandwidth utilization and enables

high throughput. Each of these requests can be of a different size and independent

of data type. The aggregate data transfer operation is independent also of the type

of put/get operation; that is, it can be a combination of regular, strided, or vector

put/get operations. There are two types of aggregation available: 1) explicit ag-

gregation, where the multiple requests are combined by the user through the use of

the strided or generalized I/O vector data descriptor, and 2) implicit aggregation,

where the combining of individual requests is performed by ARMCI. The implicit

aggregation involves the nonblocking request handle that is marked as “aggregate

handle” using the ARMCI SET AGGREGATE HANDLE macro. Users can rely on

a single aggregate handle to represent multiple requests. Any number of operations

128

to/from the same processor can use the same aggregate handle. A wait on such a

handle completes all the aggregated requests. For multiple small sends, aggregating

is usually much faster and gives better performance. Fig. 9.3 illustrates the aggregate

data transfer. It shows that the descriptors of multiple put requests are stored in an

aggregate buffer and, once the wait call is issued, the data transfer is completed.

Figure 9.3: Implicit Aggregate Data Transfer

Design and Implementation Approach

Designing a portable RMA communication layer involves addressing multiple is-

sues: 1) the functionality must be implementable across a wide variety of platforms; 2)

performance advantages of the native communication protocols must be exploited; 3)

opportunities for overlapping communication and computations should be provided;

129

and 4) as much of the code as possible must be shared to minimize the mainte-

nance efforts across different platforms. On networks like the IBM SP interconnect

and Quadrics, the underlying RMA layer provides most of the required capabilities.

Hence, on these systems, most of the nonblocking calls can be implemented as thin

wrappers to the native protocols. We are referring to these protocols as direct. In

the case of some networks, direct protocols are zero-copy (GM, VIA, Quadrics Elan),

but others where the native communication interface involves copying the data (IBM

LAPI) internally are not. Some networks like GM, VIA, and Infiniband require data

to be transmitted from/to special memory. This can be accomplished either by 1)

copying the data into a set of special registered/pinned buffers for transmission; 2)

allocating registered memory for the user; or 3) by on-demand registration of the

user’s memory. ARMCI uses all three schemes, depending on the platform, operation

type, or size of the data transfer. Protocols that use memory copy scheme are referred

to as buffered. Although the goal is to generalize most of the design, doing so should

not adversely affect the performance in cases where an underling network provides

direct support.

Multiple requirements can be satisfied by a buffer management layer. First, on

networks that allow data transfers between registered buffers, the data can be copied

in, sent, received, and copied out from the internal set of buffers allocated in registered

memory. In this manner, data can be transferred between nonregistered memory

locations. Note that on-demand memory registration of user buffers might not always

be available or can be very costly (e.g. GM) [49, 14]. Second, buffers are useful

for packing/unpacking noncontiguous data transfers when the underlying network

has support only for contiguous data transfers (for example, GM) [49]. One of the

130

design goals is to make most of the handle management code and buffer management

code platform-independent, thus making the architecture portable while avoid the

unnecessary overhead. This is accomplished by switching to a direct protocol when

possible at the very beginning of the request processing. Interaction between the

platform-independent layer and platform/network-specific layer is only to either inject

the data into the network or check for the completion of an operation.

Handle Management

Every nonblocking call is associated with a nonblocking request handle. For ex-

plicit handle nonblocking calls and aggregate handle nonblocking calls, this handle is

passed by the user as a parameter. An implicit handle call is associated with a han-

dle from a static list of handles, maintained internally. The handle provided by the

user is internally mapped to a data structure that in turn carries all the information

required to identify and complete, or test completion of a nonblocking operation. Be-

cause a common handle is used to represent a request on all platforms, for portability

reasons it stores only the most generic information, including unique identifier of the

request, the type of operation, and the remote processor number. Other fields include

completion information required by the underlying network for request completion.

Communication Buffers

The communication buffer is represented by a data structure that stores informa-

tion about the associated request. In nonblocking operations, it also carries a unique

request identifier for the request.For the buffered implementation of the get opera-

tion, it stores the destination address for the data. For strided and vector operations,

the destination information is represented by a more complex descriptor of variable

131

size. The buffer data structure has a fixed space allocated to store destination data

descriptors. For a larger descriptor, extra memory is allocated, and the corresponding

address is stored in the buffer. That memory is freed when the operation associated

with this buffer is completed. The “protocol” field in the buffer structure carries

more detailed information. For example, the “protocol” field in the buffer manage-

ment phase carries the value “sdescr in p”, which indicates that this buffer is being

used for a strided data transfer and the destination data descriptor is in place (sde-

scr in p) inside the buffer data structure. This information is needed to complete a

request. ARMCI does not impose a limit on the number of outstanding operations.

Hence, when the buffer management layer runs out of buffers, it completes an old

request associated with a buffer currently in use to free a buffer. Because a request

can be using more than one buffer, freeing a buffer might complete only a part of the

request. A communication buffer is also freed as a part of the wait operation on the

request using that buffer.

Waiting on a Request

The wait on a request handle completes the request. Whether the request used

buffers or not can be determined by looking at the value stored in the bufid field of

the request handle. For the direct protocol, the platform-specific layer verifies request

completion based on the information it stored in the “Req completion info” field. If

buffers were used for the request (buffered protocol or for storing a data descriptor),

then the buffer management layer checks to see if the buffers used for this request

were completed already as a part of freeing resources. If they have not yet been

completed, then the data from the buffer is copied into the appropriate destination

based on the destination descriptor information stored in the buffer. To be able to

132

verify if the data has already arrived in the buffer, the buffer management layer may

check for data arrival via the platform-specific layer.

Aggregation

The implicit aggregation of data transfers is implemented using the generalized

I/O vector operations available in ARMCI [47]. This interface enables the represen-

tation of a data transfer as a combination of multiple sets of equally sized contiguous

data segments. When the first call involving aggregate nonblocking handle is exe-

cuted, the library starts building a vector descriptor stored in one of the preallocated

internal buffers. The actual data transfer takes place when the user calls wait opera-

tion or the buffer storing the vector descriptor fills up.

Optimizing Overhead and Overlap

The overhead introduced due to the additional processing and resource manage-

ment incurred by a nonblocking call should be minimized. In our implementation,

this goal is achieved in multiple ways: Before returning, all nonblocking operations

always initiate data transfer so that the network interface card (NIC) can process

a request while the host CPU is available to carry out the computations. When a

nonblocking GET operation returns, either the buffered or direct protocols ensure

that all the requested data will be received without explicit involvement of the host

CPU. In the buffered protocol, the request is broken into pieces that fit the available

buffer space. For very large buffered requests, some initial portion of the data might

be received before the nonblocking operation returns. The direct protocol is switched

to when possible, as described earlier. The platform-specific protocols that involve

extensive blocking time are avoided.

133

9.3 Performance Evaluation

The experiments were run on a Linux cluster with dual 2.4GHz Pentium-4 nodes

and Myrinet-2000 (M3F-PCI64C-2 Myrinet interface). Experiments discussed in the

current section have been conducted for the nonblocking get operation since they

explicitly demonstrate the overhead and overlap factors.

9.3.1 Overhead Test

The first experiment demonstrates the efficiency of the implementation as com-

pared with a base case GM implementation. For this purpose, a nonblocking op-

eration is simulated at the GM level in the following fashion. The client issues a

gm send with callback (with the details of the required data) and then polls on a flag

set when the data reaches this node. On the other end, the server does a GM receive,

processes the request, and issues the RDMA put operation with the data using the

gm directed send with callback function. The ARMCI layer is actually built on this

basic scheme to implement the nonblocking get. This experiment tries to evaluate

the efficiency of the implementation. Fig. 9.4 shows the latency at the base GM and

ARMCI levels. The timings have been averaged over 1000 iterations. They show that

the ARMCI layer adds very little overhead to the base level and thus provides a very

efficient interface to the applications.

9.3.2 Overlap Test

The second experiment deals with overlapping communication with computation,

and it was performed in the context of ARMCI and MPICH-GM. In the ARMCI

134

version, the computation is incorporated in the program in the form of a delay. In-

creasing computation is gradually inserted between the initiating nonblocking get call

and the wait completion call. As we keep increasing the computation, at some point

the sum of the nonblocking call issue overhead and computation would exceed the

idle CPU time, so the total benchmark running time would increase. This point gives

us the maximum possible overlap. We performed this experiment on two nodes, with

one node issuing the nonblocking get for data located on the other and then waiting

for the transfer to be completed in the ARMCI Wait call. The timings were averaged

over 1000 iterations. We have developed versions of this microbenchmark for direct

and buffered protocols. We also implemented an MPI version of the above bench-

mark because our motivation was to compare the overlap in ARMCI and in the MPI

nonblocking send/receive operations. In MPI, if the node needs a portion of data

from another node, it sends a request and waits on a nonblocking receive for the re-

sponse. We can overlap the time duration between these two calls with computation.

We measured the computation overlap for both the ARMCI and MPI versions of the

benchmark, and results are plotted in Fig. 9.5. The percentage overlap is measured

as the amount of time of a nonblocking (data transfer) call that can be overlapped

with useful computation without increasing the overall benchmark time.

We observe that ARMCI offers a higher level of overlap than MPICH-GM. The

buffered protocol is able to achieve about 90% overlap. For large messages, this

percentage drops because of time involved in copying to the destination buffer. In the

direct protocol, we are able to overlap almost the entire time (greater than 99%). The

exception (1%) was the time involved in issuing the nonblocking get. The MPICH-

GM version does reasonably well up to message size 16kb. At 16kb and beyond, the

135

Figure 9.4: Latency of ARMCI Get vs GM Get

MPICH-GM implementation switches to the rendezvous protocol. This has a serious

impact on the computation overlap because the handshake involved in the protocol

occurs in MPI Wait. Consequently, the only part that can be overlapped is till the

receipt of ‘request to send’ and not until the actual data transfer is completed.

9.3.3 NAS benchmarks

The Numerical Aerodynamic Simulation (NAS) parallel benchmarks (NPB) are a

set of programs designed at NASA. Our starting point was NPB 2.3 [11] implemen-

tation written in MPI and distributed by NASA. We modified two of the five NAS

kernels, MultiGrid (MG) and Conjugate Gradient (CG), to replace point-to-point

blocking and nonblocking message-passing communication calls with first blocking

and then nonblocking RMA communication. This is just a mere replacement of the

point-to-point message passing communications part of the current message-passing

136

Figure 9.5: Percentage of Computation Overlap

Figure 9.6: Performance Improvement in NAS MG for Class B

137

Figure 9.7: Performance Improvement in NAS CG for Class B

version of CG and MG NAS kernels using ARMCI RMA blocking and nonblocking

operations [62].

We show the results for NAS MG for class A and B. For Class A, a smaller

problem size with the fewest iterations, the ARMCI blocking code outperforms the

reference MPI implementation by 7% to 30%. ARMCI nonblocking version achieves

an additional improvement of 10% to 23% over the ARMCI blocking implementation

and a 28% to 46% improvement over the MPICH-GM implementation. Most of the

improvement achieved over the blocking implementation is just by mere issue of the

update in the next dimension while working on the current one. For Class B, with the

same problem size as class A but more iterations, ARMCI blocking implementation

outperforms MPI by 10% to 37% (see Fig. 9.6). The ARMCI nonblocking implemen-

tation achieves an additional improvement of 5% to 20% over the blocking version

and shows a 30% to 45% improvement over the MPICH-GM implementation. Due

to the synchronous nature of data transfers in the CG algorithm, the performance

138

improvement over MPICH-GM, although consistent is rather limited (see Fig. 9.7).

However, the nonblocking RMA offers an additional performance improvement. For

example, for 128 processors, it exceeds 10% over MPICH-GM.

139

CHAPTER 10

SCHEDULING ONE-SIDED OPERATIONS

The MPI-2 semantics does not impose any restrictions on when and in what

order the RMA operations should occur within an access epoch. However both the

current implementations (Point to Point Based and Direct One Sided) for active

synchronization always maintain the order of the RMA operations. This might not

always lead to the best or optimum usage of the underlying network capability. In

this work, shown in the highlighted part of Figure 10.1 of the proposed research

framework, we want to exploit this flexibility to explore different ways to reorder

these RMA operations based on the communication pattern to improve the latency,

bandwidth and throughput.

Message aggregation can reduce the latency for small RMA opearations because

it can potentially reduce the number of messages. The Point to Point Based im-

plementation can give this ability because of its two sided nature. With the Point

to Point Based implementation several RMA operations can be reordered and com-

bined/aggregated into a single message and the remote side can receive this combined

message and scatter them. Aggregation of a RMA communication operation and a

synchronization message is also feasible. Thus the Point to Point Based implementa-

tion can be leveraged to improve the performance of small messages.

140

Interconnects
Modern

Middleware

Scatter/Gather Send/Recv

Advanced InfiniBand Primitives

One−sided

Remote Atomics RDMA

(put,get,accumulate),datatypes

One−sided API

SCIENTIFIC APPLICATIONS AND BENCHMARKS

Enabling Overlap

Non−blocking

Passive sync

Optimizations
Non−contiguous

data transfer

Re−ordering &

Intra−Node

Migrating Locks

Designs and Optimizations

Optimized

capability

(active,collective,passive)
Data transfer Synchronization

Write
Read−Modify

Petascale
Applications

Fence sync scheduling

Figure 10.1: Overview

As described above, the MPI-2 semantics potentially allow the implementation to

reorder the actual completion of the RMA operations, such as MPI Put and MPI Get,

issued during a window access epoch. Our main motivation is to utilize this flexibility

to schedule these operations so that we can achieve better communication overlap,

reduced latency and improved throughput on our InfiniBand implementation.

We propose two possible approaches for scheduling the RMA operations. The

reordering approach focuses on reorganizing the MPI Put and MPI Get operations

issued during a window access epoch to allow more efficient usage of network band-

width. The aggregation approach tries to combine RMA operations to give better

throughput.

141

10.1 Reordering approach

Since MPI-2 standard allows the actual communication for RMA operations to

happen at synchronization time, we can hold all the RMA operations issued during a

window access epoch until synchronization time. At this stage, we will have enough

information of the communication pattern during this access period. Based on this

information, we may re-order the issuing of these RMA operations to utilize the

underlying InfiniBand network more efficiently.

10.1.1 Interleaving

The bidirectional bandwidth is always higher than the unidirectional bandwidth.

This is because of the full usage of the link bandwidth of both directions. For exam-

ple, with MVAPICH2 point to point communication, we are able to achieve 874MB/s

peak unidirectional bandwidth while we can achieve 934MB/s in bidirectional band-

width test. (The unit of bandwidth MB/s refers to Million bytes/sec). This trend

is more obvious on PCI-Express systems because the bus contention is no longer

the bottleneck in this scenario. The peak bandwidth number for unidirectional and

bidirectional tests are 964MB/s and 1905MB/s on the PCI-Express system.

However, in a typical one-sided communication scenario, only one direction of the

link bandwidth is fully used, since the target side is not explicitly involved in the

communication. But this does not mean that we can only stick with the highest

possible unidirectional bandwidth provided by the link. For MPI Put operations, we

issue RDMA write operations at VAPI level to push the data out. The actual data

flow is from the origin process to the target. But for MPI Get operation, we issue

RDMA read operation at VAPI level to fetch data from the remote side. So the actual

142

data flow, especially for large size operations, is from the target process to the origin

process.

During Synchronization Stage
VAPI Level Communication PatternOrigin Process

MPI_Win_start()

MPI_Get()

MPI_Get()

MPI_Put()

MPI_Put()

MPI_Win_complete()

RDMA Write

RDMA Read

RDMA Read

RDMA Write

Target Process

MPI_Win_post

MPI_Win_wait

Figure 10.2: Sequential Issue of MPI Get and MPI Put

During Synchronization Stage
VAPI Level Communication Pattern Target Process

RDMA Write

RDMA Read

RDMA Write

RDMA ReadMPI_Get()

MPI_Put()

MPI_Get()

MPI_Put()

MPI_Win_start()

Origin Process

MPI_Win_complete()

MPI_Win_post

MPI_Win_wait

Figure 10.3: Interleaved Issue of MPI Get and MPI Put

Let us consider the following one-sided communication patterns. In Fig. 10.2, the

origin process issues several MPI Get operations and then several MPI Put operations

143

during a RMA access epoch. In Fig. 10.3, the origin process issues the same number

of MPI Get and MPI Put operations, but in an interleaved way. As we can observe,

the second communication pattern in Fig. 10.3 can use the link bandwidth in a much

more efficient way than the first communication pattern.

Though we know that the link bandwidth will be used more efficiently if the issu-

ing of MPI Put and MPI Get is interleaved, we can not require the MPI programmer

to understand this and always write the optimized program. But since the RMA

operation can actually start during synchronization time, we can schedule the opera-

tions so that the corresponding VAPI level RDMA read and RDMA write operations

are issued in a interleaved manner.

10.1.2 Prioritizing

One of the conclusions of our previous research is that the Direct One Sided

implementation offers better latency than Point to Point Based implementation for

large RMA operations. But it is still possible to further optimize the Direct One

Sided implementation.

During the synchronization stage of direct one-sided implementation, the origin

process will issue a RDMA write to set a flag at the target process to indicate the

end of the access epoch. Before that, if a MPI Get operation was issued prior to the

synchronization call, we need to wait for local completion of Get to ensure that the

data has actually been fetched and ready for use by the end of synchronization phase.

During the access epoch, if the origin process calls several MPI Put and MPI Get

operations, we want to give priority to MPI Get operations in order to reduce the time

involved in waiting for the local completion. Therefore we give priority to MPI Get

144

operations over MPI Put operations. We first issue RDMA read required by MPI Get

and then issue RDMA write required by MPI Put. Fig. 10.4 illustrates the potential

benefits of our prioritizing scheme. It is to be noted that this prioritizing scheme

does not necessarily contradict with the interleaving scheme we proposed in the last

section. We can still interleave the operations but we can issue RDMA read operations

first.

VAPI level Communication pattern
During Synchronization stage

Without scheduling

Synchronization

RDMA Read

RDMA Write

Priority to Get operations

RDMA Write

RDMA Read

Synchronization

MPI_Win_start()
Origin Process:

MPI_Win_wait()

MPI_Win_post()
Target Process

MPI_Win_complete()

MPI Program

MPI_Put()
MPI_Get()

Figure 10.4: Potential Benefit by Giving Priority to MPI Get

10.2 Aggregation

As described earlier, our goal here is to better utilize the network bandwidth. If we

have multiple small RMA messages within an access epoch, the network utilization

would be suboptimal. Because, for small messages, the overhead associated with

initiation and completion of RMA operations is relatively high. Hence a natural and

obvious choice would be to try and see if we can aggregate several of these messages

145

VAPI level Communication pattern
During Synchronization stage

MPI Program

Without Aggregation With Aggregation

RDMA Write 1

RDMA Write 2

MPI_Win_wait()

MPI_Win_post()

Target Process

MPI_Win_complete()

MPI_Put(Large) 2

MPI_Put(Small) 1

MPI_Win_start()

Origin Process:

RDMA Write 2

Synchronization

RDMA Write 1
+ Synchronization

ÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÛÚÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜÛÜ ÝÛÝÛÝÛÝÛÝÛÝÛÝÛÝÝÛÝÛÝÛÝÛÝÛÝÛÝÛÝÝÛÝÛÝÛÝÛÝÛÝÛÝÛÝÝÛÝÛÝÛÝÛÝÛÝÛÝÛÝÝÛÝÛÝÛÝÛÝÛÝÛÝÛÝÞÛÞÛÞÛÞÛÞÛÞÛÞÛÞÞÛÞÛÞÛÞÛÞÛÞÛÞÛÞÞÛÞÛÞÛÞÛÞÛÞÛÞÛÞÞÛÞÛÞÛÞÛÞÛÞÛÞÛÞÞÛÞÛÞÛÞÛÞÛÞÛÞÛÞ

Figure 10.5: Aggregation of RMA Operation and Synchronization

VAPI level Communication pattern
During Synchronization stage

MPI Program

Origin Process:

Synchronization

Aggregated Write

RDMA Write

Synchronization

MPI_Win_wait()

MPI_Win_post()
Target Process

MPI_Win_start()

MPI_Win_complete()

Without Aggregation With Aggregation

MPI_Put(Small) 1

MPI_Put(Small) 1MPI_Put(Small) 1
MPI_Put(Large) 2
MPI_Put(Small) 3

MPI_Put(Small) 4

RDMA Write 1

RDMA Write 2

RDMA Write 3

RDMA Write 4

 2

 1+3+4

ßÛßÛßÛßÛßÛßÛßÛßßÛßÛßÛßÛßÛßÛßÛßßÛßÛßÛßÛßÛßÛßÛßßÛßÛßÛßÛßÛßÛßÛßßÛßÛßÛßÛßÛßÛßÛßàÛàÛàÛàÛàÛàÛàÛààÛàÛàÛàÛàÛàÛàÛààÛàÛàÛàÛàÛàÛàÛààÛàÛàÛàÛàÛàÛàÛààÛàÛàÛàÛàÛàÛàÛà áÛáÛáÛáÛáÛáÛáÛáÛááÛáÛáÛáÛáÛáÛáÛáÛááÛáÛáÛáÛáÛáÛáÛáÛááÛáÛáÛáÛáÛáÛáÛáÛááÛáÛáÛáÛáÛáÛáÛáÛá
âÛâÛâÛâÛâÛâÛâÛââÛâÛâÛâÛâÛâÛâÛââÛâÛâÛâÛâÛâÛâÛââÛâÛâÛâÛâÛâÛâÛââÛâÛâÛâÛâÛâÛâÛâ

ãÛãÛãÛãÛãÛãÛãÛãÛããÛãÛãÛãÛãÛãÛãÛãÛããÛãÛãÛãÛãÛãÛãÛãÛããÛãÛãÛãÛãÛãÛãÛãÛããÛãÛãÛãÛãÛãÛãÛãÛãäÛäÛäÛäÛäÛäÛäÛääÛäÛäÛäÛäÛäÛäÛääÛäÛäÛäÛäÛäÛäÛääÛäÛäÛäÛäÛäÛäÛääÛäÛäÛäÛäÛäÛäÛä

Figure 10.6: Aggregation of Multiple Small Size RMA Operations

146

together. The users can use MPI user defined datatypes to aggregate several one-

sided and two sided operations to improve network utilization. However, our aim is to

provide optimizations inside the MPI library so that we can deliver good performance

even if there is no optimization at the user level. Also, as described in Section 10, no

order needs to be guaranteed among the MPI Put/MPI Get operations between two

synchronization calls. So we are not violating any MPI-2 semantics by aggregating

some of these operations, as long as all the data finally reaches the target side. We

can consider the following two aggregation schemes:

• Aggregation between an RMA operation and a synchronization operation

• Aggregation between multiple RMA operations

These schemes are illustrated in Figs. 10.5 and 10.6. By utilizing Point to Point

Based approach, we can aggregate multiple RMA operations or an RMA operation

and a synchronization operation. In contrast, Direct One Sided approach cannot

provide aggregation because the target is not involved in communication and hence

cannot scatter aggregated messages into target buffers. To maximize aggregation, we

defer small RMA messages until we have sufficiently large number of them. Then we

can trigger deferred RMA messages as an aggregated operation and send it by Point

to Point Based approach. Meanwhile, large size RMA operations are still issued by

Direct One Sided approach. We can also hold back one small RMA operation and

combine it with the synchronization operation. In this work, we mainly focus on the

aggregation between a RMA operation and a synchronization operation.

147

10.3 Performance Evaluation

In this section, we use several micro benchmarks to evaluate the performance of

our different schemes.

Due to the lack of publicly available applications using MPI-2 one-sided calls,

we came up with our own benchmarks to evaluate our scheduling schemes. We use

some specific throughput and latency tests to measure the impact of our re-ordering

scheme. In addition to this, we use ping-pong latency tests for MPI Put and MPI Get

to show the benefit of the aggregation scheme.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M

Ba
nd

wi
dt

h
(M

B/
s)

Message Size (Bytes)

(a) EM64T with PCI-Express

no scheduling
scheduling

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M

Ba
nd

wi
dt

h
(M

B/
s)

Message Size (Bytes)

(b) IA32 with PCI-X

no scheduling
scheduling

Figure 10.7: Impact of scheduling on throughput on EM64T and IA32

Experimental Testbed

We evaluated our schemes on two different testbeds. The first testbed is equipped

with PCI-X interface and the second is equipped with PCI-Express interface.

Our PCI-X testbed cluster consists of 8 SuperMicro SUPER X5DL8-GG nodes

with ServerWorks GC LE chipsets, Intel Xeon 3.0 GHz processors based on IA32

architecture, and PCI-X 64-bit 133 MHz bus. The PCI-Express node of our testbed

148

has a 3.4 GHz Intel Xeon processor based on EM64T architecture and runs in 64 bit

mode with 8x PCI-Express interfaces. They are equipped with MT25208 HCAs with

PCI-Express interfaces. On both platforms InfiniScale MTS2400 switch is used to

connect all the nodes. The versions of InfiniBand SDK and firmware are 3.2 RC17

and 4.5.2 RC4-BUILD-001 respectively. The operating system used is RedHat Linux.

Impact of Re-ordering Scheme on different Communication Patterns

We created two communication patterns at microbenchmark level to study the

impact of the re-ordering scheme we proposed in the previous section.

Communication Pattern 1

We created a throughput test which involves two processes. The first process

starts a window access epoch and then issues 16 MPI Put and 16 MPI Get oper-

ations of the same size. The second process just starts an exposure epoch. The

same sequence of operations are repeated for several iterations and we measure the

maximum throughput we can achieve (in terms of MillionBytes/sec).

We compared the performance of re-ordering scheme and the original Direct One

Sided implementation. On PCI-Express systems, as we can see from Fig. 10.7(a), with

re-ordering scheme we are able to attain maximum throughput of 1788MB/s, which

is much closer to the peak bidirectional bandwidth. We observe an improvement in

throughput up to 76% compared with the original design. This trend is also there

on IA32 systems where the maximum improvement of throughput is about 8%, as

shown in Fig. 10.7(b). However, we do not get as much improvement as on EM64T

testbed because on IA32 system, the PCI-X bus becomes the bottleneck.

149

Communication Pattern 2

The test consists of multiple iterations involving two processes. In each iteration,

the first process calls MPI Win start to start a window access epoch, issues one

MPI Put and one MPI Get, and then calls MPI Win complete to end the epoch.

After that it starts and ends a window exposure epoch by calling MPI Win post and

MPI Win wait. The second process does the same job, but in a reversed order, first

it starts the exposure epoch then the access epoch. We measure the average latency

for each iteration.

Our Scheduling scheme switches the order of these two operations when it is

actually issuing the corresponding RDMA read or RDMA write during the access

epoch. We can see that especially for large messages, we can show significant benefits

by scheduling the operations internally. We can reduce the latency up to 40% on

EM64T testbed and 20% on IA32 testbed, as shown in Fig. 10.8.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

4k 16k 64k 256k 1M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

(a) EM64T with PCI-Express

no scheduling
scheduling

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

4k 16k 64k 256k 1M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

(b) IA32 with PCI-X

no scheduling
scheduling

Figure 10.8: Impact of scheduling on latency on EM64T and IA32

150

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 16 64 256 1k 4k 16k

La
te

nc
y

(u
s)

Message Size (Bytes)

(a) EM64T with PCI-Express

Direct One Sided
Aggregation

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 4 16 64 256 1k 4k 16k

La
te

nc
y

(u
s)

Message Size (Bytes)

(b) IA32 with PCI-X

Direct One Sided
Aggregation

Figure 10.9: One sided MPI Put latency on EM64T and IA32

 0

 10

 20

 30

 40

 50

 60

 1 4 16 64 256 1k 4k 16k

La
te

nc
y

(u
s)

Message Size (Bytes)

(a) EM64T with PCI-Express

Direct One Sided
Aggregation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 4 16 64 256 1k 4k 16k

La
te

nc
y

(u
s)

Message Size (Bytes)

(b) IA32 with PCI-X

Direct One Sided
Aggregation

Figure 10.10: One sided MPI Get latency on EM64T and IA32

Impact of Aggregation Scheme on Latency

In this section we measure the impact of our aggregation scheme on MPI Put and

MPI Get latency. The test consists of multiple iterations involving two processes.

In each iteration, the first process starts a window access, issues a RMA operation

(MPI Put or MPI Get) and then ends the epoch. Then it starts and ends a window

exposure epoch. The second process does the same job, but in a reversed order.

151

We measure the time needed for each iteration and define half of its value as the

ping-pong latency for the RMA operation.

Fig. 10.9(a) compares the ping-pong latency for MPI Put operation and Fig. 10.10(a)

compares the ping-pong latency for MPI Get operations on EM64T testbed. The

aggregation scheme did noticeably better than our original Direct One Sided imple-

mentation for small size RMA operation. We see an improvement of up to 44% for

MPI Put latency and 42% for MPI Get latency. For larger sizes, the aggregation

scheme actually falls back to Direct One Sided implementation so that these two

schemes delivers the same latency. We can observe the similar trends on IA32 plat-

form, as shown in Fig. 10.9(b) and Fig. 10.10(b). The maximum improvement is

around 38% and 42% for MPI Put and MPI Get latency respectively.

10.4 Related Work

Although we are aware of MPICH2 performing aggregation between the last one

sided operation with a synchronization, to the best of our knowledge, there is no

literature study on scheduling RMA operations to improve the performance of one

sided implementation.

One distinguishing feature of MPI as compared to these is that MPI supports

both one sided and two sided communications, which we use to our advantage in

implementing our schemes. It is to be noted that ARMCI performs aggregation [48].

152

CHAPTER 11

SIGNIFICANCE AND IMPACT

In this thesis we have designed and developed a high performance and scalable

one-sided middleware that would be beneficial to a wide range of scientific commu-

nity. Specifically, we have demonstrated how we can use the features of modern

interconnects to improve the performance of one-sided middleware for current and

next generation High End Computing systems.

The expected contributions of the research are as follows:

• Our research demonstrates the feasibility of developing high performance and

scalable one-sided communication subsystems based on the capability of modern

interconnects based on the capability of modern interconnects.

• Specifically, we have demonstrated how we can leverage the advanced features

like different communication semantics, remote atomic operations, completion

and event mechanisms, scatter-gather support to improve performance, scala-

bility and overlap capability for one-sided communication.

153

• Although we mainly concentrate on MPI one-sided communication in this work,

many of our research contributions are also directly applicable to communica-

tion subsystem design in other areas such as PGAS programming models and

languages.

Many of these proposed designs are being used in MVAPICH2 software which

is used by more than 900 organizations worldwide and are also incorporated into a

number of different vendor distributions. The MVAPICH2 software is also distributed

in the OpenFabrics Enterprise Distribution (OFED). The re-ordering designs that

uses prioritizing and interleaving has been integrated into MVAPICH2. The passive

synchronization designs and optimizations are being integrated and will be released

in the future.

154

CHAPTER 12

CONCLUSIONS AND FUTURE WORK

In this thesis, we have addressed the problem of providing a Scalable and High

Performance Communication Middleware for one-sided communication over modern

interconnects. As clusters increase in size, the performance and scalability of the com-

munication subsystem becomes the key requirement for achieving overall scalability

of the system. In this context, the efficiency of one-sided operations is especially

important as they are the widely used communication operations in different pro-

gramming models like MPI-2, UPC, etc. and have to be designed while harnessing

the capabilities and features exposed by the underlying networks. Modern inter-

connects like InfiniBand provide RDMA capabilities for read/write, remote atomics,

etc. These mechanisms provide good match for one-sided communication. The main

issues addressed are improving computation/communication overlap, reduce remote

process involvement, latency hiding mechanisms, zero-copy communication protocols,

intra-node optimizations, efficient non-contiguous communication, efficient protocols

for read-modify-write operations. The designs proposed in this thesis leverage the

hardware primitives of modern interconnects like InfiniBand to provide good perfor-

mance and scalability. The summary of the research contributions is explained in the

following sections of the chapter.

155

12.1 Summary of Research Contributions

Improving Overlap: We investigated the designs for passive synchronization. The

two-sided approaches leads to poor overlap capability. We came up with a new

design using InfiniBand RDMA atomic operations to perform lock/unlock operations

needed for passive synchronization. We also improved the capability of the one-

sided operations to achieve faster communication progress. This work is described in

Chapter 4.

Intra-node Optimizations: In this work, we designed passive synchronization

mechanism for Intra-node operations using the native fast CPU based locks. We

developed a hybrid design that can migrate between CPU based locks and network

based locks (based on InfiniBand atomic operations). We demonstrated the bene-

fits of the hybrid designs with various micro-benchmarks. This work is described in

Chapter 5.

Synchronization optimizations: In this work, we evaluated different design alter-

natives for implementing fence synchronization on RDMA capable interconnects. We

proposed a novel fence mechanism that uses RDMA based Immediate capability of

InfiniBand to notify remote completions. This approach provides low synchronization

overhead as well as good overlap capability as described in Chapter 6.

Read Modify Write Mechanisms: In this work, we studied the HPCC Random

Access benchmark which predominantly uses read modify write operations. We de-

veloped one-sided versions of the random access benchmark to evaluate the read

modify write capability of the MPI one-sided operations. Different optimizations like

Software Aggregation and Hardware Based Accumulate were proposed to improve the

GUPs rating of the HPCC benchmark. This work is described in detail in Chapter 7.

156

Zero-copy non-contiguous data transfer: Non-contiguous data communication

poses additional challenges since it involves overhead of additional copies on the

sender and receiver side. In this work, we designed zero-copy protocols using the

InfiniBand hardware scatter/gather capabilities. The zero copy designs showed bet-

ter performance in terms of latency and bandwidth, as well as reduced host CPU

utilization. This work is described in Chapter 8.

Non-blocking Semantics: Non-blocking operations are very important to achieve

latency hiding and good computation/communication overlap. In this work, we stud-

ied the issues in designing non-blocking one-sided operations in the context of ARMCI

one-sided communication library. Further optimizations like capabilities for implicit

and explicit aggregations were developed and the benefits of these approaches were

demonstrated in Chapter 9.

Re-ordering one-sided operations: The MPI one-sided semantics allow re-ordering

of the one-sided operations within an access epoch. Maintaining the order of opera-

tions does not always lead to the best or optimum usage of the underlying network

capability. In this work we exploited this flexibility to explore different techniques

like interleaving, prioritizing and aggregation to reorder these RMA operations based

on the communication pattern to improve the latency, bandwidth and throughput.

This work is described in Chapter 10.

157

12.2 Future work

• Intra-Node Optimizations for Reducing Copy Costs: With the advent

of multicore processor technology, a large number of processing cores can reside

within one node, increasing the number of MPI processes inside a node, thus

increasing the volume of communication within the node. Therefore, designing

an one-sided library with optimized intra-node communication support is crucial

to overall performance. The current shared memory approach for inter-node

communication needs two copies. One optimization is to use the kernel (using

approaches like LIMIC [38]) to copy directly into the target window to reduce

the copy overhead. Another approach could be to use IOAT offload engines to

offload the copy operations.

• Application level Evaluation: As part of future work, applications need to

be written with one-sided semantics. Specifically we would like to target some

of the communication patterns of petascale applications like AWM-Olsen [68]

(earthquake simulation) and MPCUGLES [58] (Computational Fluid Dynamics

Code). These applications need support from the middleware in terms of rich

interface to express parallelism, good computation/communication overlap and

dynamic load balancing. Currently these applications are written using two-

sided communication. These applications have the potential to exploit one-sided

communication to attain petascale performance and scalability.

• Propose Extensions to MPI One-sided Semantics: In order to handle

some of the requirements from these petascale applications, additional sup-

port and enhancements might be needed from the communication subsystem or

158

middleware. We have identified some limitations of existing MPI-2 one-sided

semantics. Extensions to one-sided semantics can be proposed to address some

of these issues. Some of these extensions could be aimed at providing improved

and more flexible/(less restrictive) synchronization semantics for both active

and passive synchronization. In case of Passive synchronization, applications

could benefit from finer grain locking semantics. In case of Active synchroniza-

tion, fence synchronization that are targeted towards specific communication

patterns would be beneficial as that can result in lower overheads. Further-

more, non-blocking synchronization primitives can allow applications to exploit

computation and communication overlap. Additional interfaces can also be pro-

vided that can aid dynamic load balancing and fault tolerance which are critical

for applications to scale.

159

BIBLIOGRAPHY

[1] A Generalized Portable SHMEM library.

[2] Berkeley Unified Parallel C (UPC) Project. http://upc.lbl.gov/.

[3] Direct Numerical Simulation (DNS). http://www.cfd-
online.com/Wiki/Direct numerical simulation (DNS).

[4] Global Arrays. http://www.emsl.pnl.gov/docs/global/.

[5] GROMACS. http://www.gromacs.org/.

[6] Intel 80 core Teraflops chip. http://techresearch.intel.com/articles/Tera-

Scale/1449.htm.

[7] Mellanox InifniBand Technologies. http://www.mellanox.com.

[8] PETSc. http://www-unix.mcs.anl.gov/petsc/.

[9] Argonne National Laboratory. MPICH2 Release 0.96p2.

http://www-unix.mcs.anl.gov/mpi/mpich2/, Jan 2004.

[10] Mike Ashworth. A Report on Further Progress in the Development of Codes

for the CS2. In Deliverable D.4.1.b F. Carbonnell (Eds), GPMIMD2 ESPRIT
Project, EU DGIII, Brussels, 1996.

[11] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,

V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel benchmarks.

volume 5, pages 63–73, Fall 1991.

[12] B. W. Barrett, G. M. Shipman, and A. Lumsdaine. Analysis of Implementation

Options for MPI-2 One-Sided. In Proceedings, Euro PVM/MPI, Paris, France,
October 2007.

[13] MPI-2 One-Sided based HPCC Random Access benchmarks.
http://nowlab.cse.ohio-state.edu/projects/hpcc-one-sided/.

160

[14] Christian Bell and Dan Bonachea. A new dma registration strategy for pinning-
based high performance networks. ipdps, 00:198a, 2003.

[15] D. Bonachea. GASNet Specification, v1.1. Technical Report UCB/CSD-02-1207,

Computer Science Division, University of California at Berkeley, October 2002.

[16] S. Booth and F. E. Mourao. Single Sided MPI Implementations for SUN MPI.
In Supercomputing, 2000.

[17] D. Buntinas, D. K. Panda, and W. Gropp. NIC-Based Atomic Remote Memory

Operations in Myrinet/GM. Workshop on Novel Uses of System Area Networks
(SAN-1), February 2002.

[18] Surendra Byna, Xian-He Sun, William Gropp, and Rajeev Thakur. Improv-

ing the Performance of MPI Derived Datatypes by Optimizing Memory-Access
Cost. In Proceedings of the IEEE International Conference on Cluster Comput-

ing, 2003.

[19] Cristian Coarfa, Yuri Dotsenko, and John Mellor-Crummey. Experiences with
sweep3d implementations in co-array fortran. J. Supercomput., 36(2):101–121,

2006.

[20] Aaron E. Darling, Lucas Carey, and Wu chun Feng. The design, implementation,

and evaluation of mpiblast. In Proceedings of ClusterWorld 2003, 2003.

[21] A. Devulapalli and P. Wyckoff. Distributed queue based locking using advanced
network features. In ICPP, 2005.

[22] Jack Dongarra and Piotr Luszczek. overview of the hpc challenge benchmark

suite. SPEC Benchmark Workshop, 2006.

[23] M. Frigo and S.G. Johnson. The Design and Implementation of FFTW3. Pro-
ceedings of the IEEE, 2005.

[24] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Mac-

Neice, R. Rosner, and H. Tufo. FLASH: An Adaptive Mesh Hydrodynamics
Code for Modelling Astro physical Thermonuclear Flashes. Astrophysical Jour-

nal Suppliment, 131:273, 2000.

[25] G. Bryan. Fluid in the universe: Adaptive Mesh Refinement in cosmology. In
Computing in Science and Engineering, volume 1, pages 46–53, March/April

1999.

[26] Rahul Garg and Yogish Sabharwal. Optimizing the HPCC randomaccess bench-
mark on blue Gene/L Supercomputer. ACM SIGMETRICS Performance Eval-

uation Review, June 2006.

161

[27] R. A. Van De Geijn and J. Watts. SUMMA: scalable universal matrix multipli-
cation algorithm. Concurrency: Practice and Experience, 9(4):255–274, 1997.

[28] M. Goudreau, K. Lang, S. B. Rao, T. Suel, and T. Tsantilas. Portable and

Effcient Parallel Computing Using the BSP Model. IEEE Transactions on Com-
puters, pages 670–689, 1999.

[29] W. Gropp and E. Lusk. A High-Performance MPI Implementation on a Shared-

Memory Vector Supercomputer. Parallel Computing, 22(11):1513–1526, January
1997.

[30] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable

Implementation of the MPI Message Passing Interface Standard. Parallel Com-
puting, 22(6):789–828, 1996.

[31] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming

with the Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA,
1999.

[32] William Gropp, Ewing Lusk, and Deborah Swider. Improving the Performance

of MPI Derived Datatypes. In MPIDC, 1999.

[33] William D. Gropp and Rajeev Thakur. An evaluation of implementation options

for mpi one-sided communication. In PVM/MPI, pages 415–424, 2005.

[34] P. Husbands and J. C. Hoe. MPI-StarT: Delivering Network Performance to
Numerical Applications. In Proceedings of the Supercomputing, 1998.

[35] InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.0,

October 24, 2000.

[36] J. L. Träff, H. Ritzdorf and R. Hempel. The Implementation of MPI–2 One-sided
Communication for the NEC SX. In Proceedings of Supercomputing, 2000.

[37] W. Jiang, J.Liu, H. W. Jin, D. K. Panda, D. Buntinas, R.Thakur, and W.Gropp.

Efficient Implementation of MPI-2 Passive One-Sided Communication on Infini-
Band Clusters. EuroPVM/MPI, September 2004.

[38] Hyun-Wook Jin and Dhabaleswar K. Panda. Limic: Support for high-

performance mpi intra-node communication on linux cluster. In ICPP ’05:
Proceedings of the 2005 International Conference on Parallel Processing, pages

184–191, Washington, DC, USA, 2005. IEEE Computer Society.

[39] J.Nieplocha, V.Tipparaju, and E.Apra. An evaluation of two implementation
strategies for optimizing one-sided atomic reduction. International Parallel and

Distributed Processing Symposium, 2005.

162

[40] J. Liu, W. Jiang, Hyun-Wook Jin, D. K. Panda, W. Gropp, and Rajeev Thakur.
High Performance MPI-2 One-Sided Communication over InfiniBand. Interna-

tional Symposium on Cluster Computing and the Grid (CCGrid 04), April 2004.

[41] Qingda Lu, Jiesheng Wu, Dhabaleswar K. Panda, and P. Sadayappan. Employing

MPI Derived Datatypes to the NAS Benchmarks: A Case Study . Technical
Report OSU-CISRC-02/04-TR10, Dept. of Computer and Information Science,

The Ohio State University, Feb. 2004.

[42] A. Mamidala, S. Narravula, A. Vishnu, G. Santhanaraman, and D. K. Panda.

On using Connection-Oriented and Connection-Less transport for Performance
and Scalability of Collective and One-sided operations: Trade-offs and Impact.

In PPoPP, 2007.

[43] Message Passing Interface Forum. MPI-2: A Message Passing Interface Standard.
High Performance Computing Applications, 12(1–2):1–299, 1998.

[44] F. E. Mourao and J. G. Silva. Implementing MPI’s One-Sided Communications
for WMPI. In EuroPVM/MPI, September 1999.

[45] S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan, and D. K. Panda. High
performance distributed lock management services using network-based remote

atomic operations. CCGrid, 2007.

[46] Network-Based Computing Laboratory. MPI over InfiniBand Project.

http://mvapich.cse.ohio-state.edu/.

[47] J. Nieplocha and B. Carpenter. ARMCI: A Portable Remote Memory Copy Li-

brary for Distributed Array Libraries and Compiler Run-Time Systems. Lecture

Notes in Computer Science, 1586, 1999.

[48] Jarek Nieplocha, Vinod Tipparaju, Manoj Krishnan, Gopalakrishnan Santha-

naraman, and Dhabaleswar K. Panda. Optimizing Mechanisms for Latency
Tolerance in Remote Memory Access Communication on Clusters . In Proceed-

ings of the IEEE International Conference on Cluster Computing, 2003.

[49] Jarek Nieplocha, Vinod Tipparaju, Amina Saify, and Dhabaleswar Panda. Pro-

tocols and strategies for optimizing performance of remote memory operations
on clusters. ipdps, 2:0164, 2002.

[50] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global ar-
rays: a portable “shared-memory” programming model for distributed memory

computers. In Supercomputing ’94: Proceedings of the 1994 conference on Super-
computing, pages 340–ff., Los Alamitos, CA, USA, 1994. IEEE Computer Society

Press.

163

[51] R.J.Thacker, G.Pringle, H.M.P Couchman, and S.Booth. Hydra-mpi: An adap-
tive particle-particle, particle-mesh code for conducting cosmological simulations

on mpp architectures. High Performance Computing Systems and Applications,
2003.

[52] Robert Ross, Neill Miller, and William Gropp. Implementing Fast and Reusable
Datatype Processing. In EuroPVM/MPI, Oct. 2003.

[53] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. K. Govindaraju,
K. Gildea, P. DiNicola, and C. Bender. Performance and Experience with LAPI:

A New High Performance Communication Library for the IBM RS/6000 SP. In
Proceedings of International Parallel Processing Symposium, 1998.

[54] J. P. Singh, W. Weber, and A. Gupta. Splash: Stanford parallel applications for

shared-memory. SIGARCH Comput. Archit. News, 20(1):5–44, 1992.

[55] Marc Snir, Steve Otto, Steve Huss-Lederman, David Walker, and Jack Dongarra.

MPI–The Complete Reference. Volume 1 - The MPI-1 Core, 2nd edition. The
MIT Press, 1998.

[56] HPCC Benchmark Suite. http://icl.cs.utk.edu/hpcc.

[57] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Receive Queue based

Scalable MPI Design for InfiniBand Clusters. In International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2006.

[58] Mahidhar Tatineni and Mahidhar Tatineni. SDSC HPC Resources.
https://asc.llnl.gov/alliances/2005 sdsc.pdf.

[59] T.El-Ghazawi, F.Cantonnet, Y.Yao, and J.Vetter. Evaluation of UPC on the

Cray X1. Cray User Group meeting, 2006.

[60] R. Thakur, W. Gropp, and B. Toonen. Minimizing Synchronization Overhead

in the Implementation of MPI One-Sided Communication. In EuroPVM/MPI,
September 2004.

[61] The Top 500 Project. The Top 500. http://www.top500.org/.

[62] Vinod Tipparaju, Manoj Krishnan, Jarek Nieplocha, Gopalakrishnan Santha-

naraman, and Dhabaleswar K. Panda. Exploiting nonblocking remote memory
access communication in scientific benchmarks . In Proceedings of the Interna-

tional Conference on High performance Computing (HiPC 03), 2003.

[63] J. Traff, H. Ritzdorf, and R. Hempel. The Implementation of MPI-2 One-Sided

Communication for the NEC SX. In Proceedings of Supercomputing, 2000.

164

[64] Randolph Wang, Arvind Krishnamurthy, Richard P. Martin, Thomas E. An-
derson, and David E. Culler. Modeling communication pipeline latency. In

Measurement and Modeling of Computer Systems, pages 22–32, 1998.

[65] J. B. White and S. W. Bowa. Where’s the overlap? overlapping communication

and computation in several popular mpi implementations. Proceedings of the
Third MPI Developers and Users conference, 1999.

[66] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. Supporting Efficient
Noncontiguous Access in PVFS over InfiniB and. In Proceedings of the IEEE

International Conference on Cluster Computing, 2003.

[67] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. High Performance Im-

plementation of MPI Datatype Communication over InfiniBand. In International

Parallel and Distributed Processing Symposium (IPDPS ’04), April 2004.

[68] Y. Cui, R. Moore, K. Olsen, A. Chorasia, P. Maechling, B. Minister, S. Day,

Y. Hui, J. Zhu, A. Majumdar and T. Jordan. Enabling very large earthquake
simulations on Parallel Machines. In Lecture Notes in Computer Science, 2007.

165

