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ABSTRA CT

High-endcomputing (HEC) systemsareenablingscientists and engineersto tackle

grand challengeproblemsin their respective domainsand make signi�cant contribu-

tions to their �elds. Examples of such problems include astro-physics, earthquake

analysis,weatherprediction, nanosciencemodeling, multiscaleand multiphysicsmod-

eling, biological computations, computational 
uid dynamics, etc. There has been

great emphasison designing,building and deploying ultra scaleHEC systemsto pro-

vide true petascaleperformancefor these grand challenge problems. At the same

time, Clusters built from commodity PCs are being predominantly used as main

stream tools for high-endcomputing owing to their cost-e�ectivenessand easyavail-

abilit y.

Communication subsystemplays a pivotal role in achieving scalableperformance

in clusters. Of late there hasbeena lot of interest in one-sidedcommunication model

and they are seenas a viable option for petascaleapplications. The one-sidedcom-

munication providesgood potential for computation communication overlap. In order

to provide high performanceand scalability, the one-sidedcommunication subsystem

needsto be designedto leveragethe advancedcapabilities of the modern intercon-

nects.
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In this dissertation we study and explore various aspects of one-sidedcommuni-

cation like zero-copy, overlap, reducedremote CPU utilization, latency hiding tech-

niques,andnon-contiguous data transfers in middleware libraries. We improved the

passive synchronization design to use RDMA atomic operations that provides high

overlap capability. Wealsoproposeda hybrid designthat extendsthe aboveapproach

to optimize intra-node communications as well. We have also explored the use of

remotecompletionsemantics for RDMA operationsin In�niBand to improve the per-

formanceof fencesynchronization. To optimize non-contiguous data communication,

we proposednovel zero-copy designsusing In�niBand scatter/gather operationswith

reducedremote CPU utilization. Designsusing RDMA atomic primitiv eshave been

proposedto improve the performanceof read-modify-write operations. Further we

have also proposedlatency hiding techniques that usesnon-blocking semantics and

aggregationmechanisms.
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CHAPTER 1

INTR ODUCTION

High-endcomputing (HEC) systemsareenablingscientists and engineersto tackle

grand challengeproblemsin their respective domainsand make signi�cant contribu-

tions to their �elds. Examples of such problems include astro-physics, earthquake

analysis,weatherprediction, nanosciencemodeling, multiscaleand multiphysicsmod-

eling, biological computations, computational 
uid dynamics, etc. There has been

great emphasison designing,building and deploying ultra scaleHEC systemsto pro-

vide true petascaleperformancefor these grand challenge problems. At the same

time, Clusters built from commodity PCs are being predominantly used as main

stream tools for high-endcomputing owing to their cost-e�ectivenessand easyavail-

abilit y. In fact, the top 500 list of supercomputers[61] feature large scaleclusters

delivering TFlops of computational power. The easy availabilit y of low cost com-

modity PC's together with scalableand high performanceinterconnectionnetworks

is making Compute Clusters more a�ordable and cost e�ective. With the advent

of multi-core architecture, each of the nodesare being equipped with multiple cores

allowing for ultra-scale cluster sizesup to hundreds of thousandsand even millions

of coresby the next decade.
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However, the performancethat applications can achieve on such large-scalesys-

tems dependsheavily on their abilit y to avoid synchronization with other processes,

thus minimizing idlenesscausedby processskew. Towards this goal, scienti�c ap-

plications can use two models for minimizing such synchronization requirements|

clique-basedcommunication and implicit data movement usingone-sidedoperations.

Clique-basedcommunication refers to the abilit y of applications to form small

sub-groupsof processeswith a majorit y of the communication happening within the

groups. Nearestneighbor (e.g., PDE solvers, molecular dynamics simulations) and

cartesiangrids (e.g.,FFT solvers)arepopular examplesof such communication [5, 23,

8]. While clique-basedcommunication reducesthe number of processeseach process

needsto synchronize with, it doesnot completely avoid synchronization. Similarly,

while the sizeof the clique grows slowly as comparedto the overall systemsize,on

ultra-scalesystems,this can still be a concern. For example,in a 2-D cartesiangrid

communication alonga row of processes,on a million processsystem,each clique can

contain as many as a thousandprocesses.

Implicit data movement using one-sidedoperations supplements the bene�ts of

clique-basedcommunication by allowing data to be moved from oneprocess'memory

to another without requiring any synchronization.

A majorit y of the scienti�c and engineeringapplication codes use MPI as the

programming model. MPI provides an easyand portable abstraction for exchang-

ing data betweenprocesses.It provides for a plethora of communication operations

with varying semantics and usage. The MPI-1 [30] standard provides communica-

tion semantics for two-sidedoperations (send and receive). It has support for both

point-to-p oint and collective communications. The MPI-2 standard [43] added new
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one-sidedcommunication semantics with various operations (Put,Get) and synchro-

nization semantics.

Most modern as well as legacy parallel programming models (e.g., MPI [31],

UPC [2], Global Arrays [4]) are increasinglyproviding constructs for such one-sided

communication also known as RMA (remote memory access),where a processcan

read/write data from anotherprocesswithout necessarilyrequiring participation from

the remote process.

The one-sidedcommunication model can ideally minimize the needfor synchro-

nization. Sincethe remoteprocessneednot be involved in the data movement, it can

perform its computation while the data transfer is happening. Thus this can lead to

good potential for computation/communication overlap for the application.

However, in spite of thesepotential bene�ts, the adoption of theseone-sidedse-

mantics in scienti�c applications has beenslow. This has beenprimarily due to two

reasons:(i) most legacyapplications have beenwritten using two-sidedMPI seman-

tics and many times, writing these applications in one-sidedsemantics may need

changesto the algorithm and (ii) the one-sideddesignsare often implemented on top

of two-sidedsemantics leading to poor performance.

Of late there has beena lot of interest in one-sidedcommunication models and

with modern interconnectsproviding better hardware support for RMA capabilities,

they are seenas a viable option for petascaleapplications.

Recently In�niBand Architecture (IBA)[35], a new industry proposedstandard is

making headway in the high performancenetworking domain. In addition to deliv-

ering low latenciesand high bandwidth, it provides a rich set of network primitiv es

like RemoteDirect Memory Operations (RDMA), RemoteAtomics, Scatter/Gather,
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hardware-level Multicast and Send/Shared-Receive Queuecapabilities. Also, the IBA

standard allows for four conduits of of messagetransport, ReliableConnection(RC),

Unreliable Connection,ReliableDatagram (RD) and Unreliable Datagram (UD) over

which thesenetwork primitiv escanbe layered. The RDMA capabilitiesof In�niBand

provides a good match to the one-sidedRMA semantics.

The main objective of this dissertation is to designa High Performanceand Scal-

able One sidedCommunication subsystemin MPI for the next-generationHEC sys-

tems. Such a system would exhibit good performancescaling while e�ectively har-

nessingthe primitiv esexposedby the underlying high performanceinterconnect. In

particular, we aim to addressthe following questionsin the dissertation:

� How can we leveragethe mechanisms of modern interconnectsto build scal-

ableand high performanceone-sidedcommunication and synchronization prim-

itiv es?

� How can communication and synchronization mechanismsbe redesignedto en-

able high overlap of computation and communication?

� What are the challengesassociated in optimizing non-contiguous data commu-

nication and can the designsbene�t from In�niBand hardware support?

� Can we improve the performanceof one-sidedcommunication by designingnon-

blocking semantics and using techniqueslike re-orderingand aggregation?

� As the number of coreswithin a node increases,what kind of intra-node opti-

mizations can one-sidedcommunication bene�t from?
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The objectivesdescribedaboveall involvemultiple challengesin termsof performance,

scalability and easeof use. In this dissertation we study and investigate all these

challengesto design an e�cien t and scalableone-sidedcommunication subsystem

that can provide bene�ts to applications.

The rest of this dissertation is organized as follows: In Chapter 2 we discuss

existing technologieswhich provide background for our work including In�niBand,

multicore architecture, MPI, and details of one-sidedcommunication middleware.

Chapter 3 describes in detail the problems that are addressedin this dissertation.

Chapters 4-10 discussthe detailed approaches and results for theseproblems. The

signi�canceand impact of the work in termsof open-sourcesoftwaredevelopedaspart

of this dissertation is described in Chapter 11. Chapter 12 provides the conclusion

and possiblefuture research directions
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CHAPTER 2

BA CK GR OUND

In this section we provide an overview of the In�niBand Architecture and its

features. Speci�cally, we explain the di�erent communication semantics provided by

IBA and the associated transports on which these are basedon. Then we give a

brief overview of multi-core architecture. Further, we also explain brie
y the design

overview of MVAPICH2 which is a popular MPI over In�niBand and a brief overview

of ARMCI which is another one-sidedcommunication library.

2.1 In�niBand Arc hitecture Overview

In�niBand Architecture (IBA) [35] is an industry standard that de�nes a System

Area Network (SAN) to designclusterso�ering low latency and high bandwidth. As

shown in Figure 2.1, a typical IBA cluster consistsof switched serial links for inter-

connectingprocessingnodesand the I/O nodes. The processingnodesare connected

to the fabric by Host Channel Adapters(HCA). HCA's semantic interface to to the

consumersis speci�ed in the form of IB Verbs. The interface presented by Channel

Adapters to consumersbelongsto the transport layer. A queue-pairbasedmodel is

usedin this interface. Each QueuePair is a communication endpoint. This can be

seenin Figure 2.2. A QueuePair consistsof a sendqueueand a receive queue.Two
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Figure 2.1: In�niBand Architecture (Courtesy IBTA)

QPs on di�erent nodescanbe connectedto each other to form a logical bi-directional

communication channel. An application can have multiple QPs. Communication

requestsare initiated by posting descriptors (WQRs) to these queues. In�niBand

supports di�erent classesof transport services.Theseare explained in the following

section.

2.1.1 Send/Recv and RDMA

IBA supports two typesof communication primitiv es: Send/Recv with Channel

Semantics and RDMA with Memory Semantics. In Channel semantics, each send

requesthas a corresponding receive requestat the remote end. Thus there is a one-

to-onecorrespondencebetweenevery sendand receive operation. Receive operations

require bu�ers posted on each of the communicating QP, which amount to a large

number. In order to allow sharing of communication bu�ers, IBA allows the useof
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Figure 2.2: In�niBand Protocol Stack (Courtesy IBTA)

SharedReceive Queues(SRQ). SRQs allow multiple QPs to have a commonReceive

Queue. In memory semantics, Remote Direct Memory Access(RDMA) operations

are used. These operations do not require a receive descriptor at the remote end

and are transparent to it. For RDMA, the send request itself contains the virtual

addressesfor both the local transmit bu�er and the receive bu�er on the remote

end. The RDMA operations are available with the RC Transport. These RDMA

operations are a good match for one-sidedoperations sincethe receiver side can be

transparent to the operation.

Figure 2.3 shows the basicworking of both the RDMA and the Send/Recvmod-

els. The main stepsinvolved are labeledwith sequencenumbers. The main di�erence

betweenthe two is the requirement of posting a receive descriptor for the send/recv
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model. In addition to these, In�niBand also provides RDMA Write with Immedi-

ate operations which o�ers the 
exibilit y of providing noti�cation that the data has

reached the memory in addition to directly placing the data in the remotememory.
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Figure 2.3: In�niBand Transport Models: (a) Send/Recv Model and (b) RDMA
Model

2.1.2 In�niBand Scatter/Gather Capabilities

In�niBand also provides Scatter/Gather capabilities to certain extent. In chan-

nel semantics, the sendercan gather data from multiple locations in one operation.

Similarly, the receiver can receive data into multiple locations. In memorysemantics,

non-contiguit y is allowed only in one side. In�niBand provides RDMA Read with

Gather and RDMA Write with Scatter feature. RDMA Write can gather multiple

data segments togetherand write all data into a contiguous bu�er on the remotenode

in onesingleoperation. RDMA Readcanscatter data into multiple local bu�ers from

a contiguous bu�er on the remote node.
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2.1.3 Hardw are Remote A tomics in In�niBand

One of the notable featuresprovided by the In�niBand Architecture is hardware

atomic support. In�niBand provides two network level remote atomic operations,

namely, fetch and add and compare and swap. The network interface card (NIC) on

the remote node guaranteesthe atomicity of theseoperations. Theseoperations act

on 64-bit values. In the atomic fetch and add operation, the issuingprocessspeci�es

the value that needsto be added and the remote addressof the 64-bit location to

which this value is to be added. On the other hand, in an atomic compare and swap

operation, the issuingprocessspeci�es a `comparevalue' and a `newvalue'. The value

at the remote location is atomically comparedwith the `comparevalue' speci�ed by

the issuingprocess.If both the valuesare equal, the original remotevalue is swapped

with the new value which is alsoprovided by the issuingprocess.If thesevaluesare

not the same,swapping doesnot take place. In both the cases,the original value is

returned to the issuing process. It is to be noted that theseoperations are atomic

only with respect to other In�niBand atomic operations.

2.2 Multicore architecture

Emerging trends in processortechnology has led to Multicore Processors(also

known asChip-level Multipro cessingor CMP) which provideslargenumber of coreson

a singlenodethus increasingthe processingcapabilitiesof current generationsystems.

Dual-core (two coresper die) and Quad-core(four coresper die) architectures are

widely available from various industry leadersincluding Intel, AMD, Sun (up to 8

cores)and IBM. the negligible cost associated with placing an extra processingcore

on the samedie has allowed these architectures to increasethe capabilities of the
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applications signi�cantly. Recently, Intel has announcedthat it will be introducing

an 80-coredie [6] within the next few years. Other industries are expectedto follow

this trend. Most HPC platforms are multi-core basedin order to provide peta scale

level computing. This brings an interesting trend that lots of communication cannow

happen within a node.

2.3 MPI Overview

MessagePassingInterface(MPI) [55] wasproposedasa standard communication

interface for parallel applications. It speci�es an API and its mapping to di�erent

programming languagessuch as Fortran, C and C++. Sinceits introduction, MPI

has beenimplemented in many di�erent systemsand has becomethe de facto stan-

dard for writing parallel applications. The main communication paradigm de�ned

in MPI is messagepassing. However, MPI is also implemented in systemsthat sup-

ports sharedmemory [29, 34]. Therefore,parallel applications written with MPI are

highly portable. They can be used in di�erent systemsas long as there are MPI

implementations available.

2.3.1 MPI Poin t-to-p oin t Comm unication

In an MPI program, two processescan communicate using MPI point-to-p oint

communication functions. Oneprocessinitiates the communication by usingMPI Send

function. The other processreceivesthis messageby issuingMPI Recvfunction. Des-

tination processesneedto bespeci�ed in both functions. In addition, both sidesspec-

ify a tag. A sendfunction and a receive function match only if they have compatible

tags.
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MPI Sendand MPI Recv are the most frequently usedMPI point-to-p oint func-

tions. However, they have many variations. MPI point-to-p oint communication

supports di�erent modes for send and receive. The mode used in MPI Send and

MPI Recvis calledstandard mode. There areother MPI functions that support other

modessuch assynchronous,bu�ered and ready modes. Communication bu�ers spec-

i�ed in MPI Sendand MPI Recv must be contiguous. However, there are also vari-

ations of MPI Sendand MPI Recv functions that supports non-contiguous bu�ers.

Finally, any sendor receive functions in MPI can be divided into two parts: one to

initiate the operation and the other one to �nish the operation. Thesefunctions are

called non-blocking MPI functions. For example,MPI Sendfunction can be replaced

with two functions: MPI Isend and MPI Wait. By using MPI non-blocking func-

tions, MPI programmerscan potentially overlap communication with computation,

and thereforeincreaseperformanceof MPI applications.

2.3.2 MPI One-sided Comm unication

The MPI one-sidedcommunication model is also known as the RemoteMemory

Access(RMA). In this model, a processde�nes a memorywindow in its local address

spaceasthe target for remotememoryoperationsby other processeswithin the same

MPI communicator. In one-sidedcommunication, the origin process(the process

that issuesthe RMA operation) can accessa target process'remote addressspace

alsoreferredto as the window directly. In this model, the origin processprovides all

the parametersneededfor accessingthe memory areaon the target process.

Data transfer happens through the one-sidedoperations: put, get and/or accu-

mulate. In a put operation, the origin processwrites data into the target's memory
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window. In a get operation, the origin processreadsdata from the target's memory

window to its local bu�er. In an accumulate operation, the origin processcan update

atomically remote locations by combining the content of the local bu�er with the

remote memory bu�er. Any of the prede�ned reduction operations like MPI SUM,

MPI MAX, MPI MIN, MPI PROD, MPI XOR, etc. can be performed. This one-

sidedoperation combinescommunication and computation in a single interface.

To synchronizebetweenthe target (who providesthe memoryregion) and the ori-

gin (who issuesthe data transfers)processes,MPI one-sidedmodel de�nes both active

and passivesynchronization. Active synchronization involvesboth the origin and tar-

get processesand has either point-to-p oint semantics (post/start wait/complete) or

collective semantics (fence). The post/start wait/complete mechanism allows only a

subsetof processesto synchronize. The fencehascollectivesemantics that requiresthe

participation of all processesin the group. Passive synchronization provides shared

or exclusive lock semantics on the entire remotememorywindow and needsto involve

only the origin processand the target processis uninvolved.

2.3.3 MPI Non-con tiguous Data Comm unication

One of the important featuresprovided by MPI is derived datatypes. MPI pro-

vides derived datatypes to enableusersto describe noncontiguous memory layouts

compactly and to usethis compact representation in MPI communication functions.

Deriveddatatypesalsoenablean MPI implementation to optimize the transfer of non-

contiguous data. The MPI standard supports derived datatypes for both one-sided

as well as two sidedcommunication primitiv es.
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2.4 MV APICH2 Overview

We now provide a high-level design overview of Point-to-Point and One-sided

Communication support in the MVAPICH2 stack. MVAPICH2 [46] is a popular MPI

over In�niBand used worldwide. MVAPICH2 is an ADI3 level implementation on

top of the MPICH2 stack. As a successorof MPICH, MPICH2 [9] supports MPI-1 as

well asMPI-2 extensionsincluding one-sidedcommunication. In addition MVAPICH2

supports RDMA-based active one-sidedcommunication by extending the CH3 layer

as shown in Figure 2.4.

2.4.1 Poin t-to-p oin t MPI Op erations in MV APICH2:

The two main protocolsusedfor MPI point-to-p oint primitiv esare the eagerand

rendezvousprotocols. In the eagerprotocol, the messageis copiedinto communication

bu�ers at the senderand destination processbeforeit is copied into the user bu�er.

Thesecopiesare not present if rendezvous protocol is used. However, in this casean

extra handshake is required to exchangeuser bu�er information for zero-copy of the
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message.For intra-node communication, a separatesharedmemory channel is used

for communication.

2.4.2 Poin t-to-p oin t Based One-sided operations:

In MVAPICH2, all the one-sidedoperations discussedabove in Section2.3.2 are

implemented over Point-to-Point operations. They arenot optimal, but they arevery

portable. However whenhardware support is available it is desirableto have a design

that giveshigh performanceand true one-sidedcommunication.

2.4.3 Direct One-sided Op erations:

As discussedabove, one-sidedoperations implemented directly over the IBA can

lead to signi�cant performancegains. In fact, the basic get and put operations and

active synchronization mechanismsare already implemented using RDMA Readand

RDMA Write operations. The focusof this dissertation is to leveragemechanismsof

RDMA , atomic operationsand scattergathersupport to provide optimized one-sided

communication support in MVAPICH2.

2.5 ARMCI Overview

In addition to MPI, there are a few other libraries which provide one-sidedpro-

gramming model. Aggregate Remote Memory Copy Interface (ARMCI) [47] is a

portable RMA communication library compatiblewith message-passinglibraries such

as MPI or PVM. It has beenusedfor implementing distributed array libraries such

as Global Arrays [50], other communication libraries such as GeneralizedPortable

SHMEM [1] or the portable Co-Array Fortran compiler[19]at RiceUniversity. ARMCI

o�ers the following set of functionality in the area of RMA communication: 1) data
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transfer operations; 2) atomic operations; 3) memory management and synchroniza-

tion operations; and 4) locks. In scienti�c computing, applications often require

transfers of noncontiguous data that corresponds to fragments of multidimensional

arrays, sparsematrices, or other more complexdata structures. With remote mem-

ory communication APIs that support only contiguous data transfers, it is necessary

to transfer noncontiguous data using multiple communication operations. This often

leadsto ine�cien t network utilization and involvesincreasedoverhead.ARMCI o�ers

explicit noncontiguous data interfaces:strided and generalizedI/O vector that allow

description of the data layout so that it could, in principle, be transferred in a single

message.
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CHAPTER 3

PR OBLEM STATEMENT AND METHODOLOGY

There has beena lot of interest and research being done in the �eld of one-sided

communication models recently. The main advantage of using this kind of model is

that it supports asynchronous communication. There is no need to synchronize in

terms of matching send/recvfor every communication. In a one-sidedcommunication

model ideally only oneprocessis involved in the communication and candirectly read

or write from the addressspaceof the target process.The remote or target process

neednot be involved in this communication and canperform computation simultane-

ously. This can potentially lead to better computation/communication overlap. The

MPI-2 standard providesone-sidedcommunication or remoteaccessmemory (RMA)

semantics in addition to two-sidedsemantics. However the one-sidedprimitiv es are

often implemented on top of two-sidedprimitiv esthus resulting in poor performance.

Also someof the semantics are restrictive for an application writer to take advantage

of theseoperations. This hasresultedin slow adoption of thesesemantics in scienti�c

applications. At the sametime, several applications like PS-DNS [3], ENZO [25],
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AWM-Olsen [68], mpiBlast [20] have communication characteristics that can poten-

tially bene�t from one-sidedcommunication model. Modern Interconnectslike In�ni-

Band provide a lot of network featuresthat are a closematch for theseone-sidedor

RMA operations.

The main objective of this dissertation is to \Design a High Performance and

ScalableOne-sided Communication Subsystemleveragingdirectly the di�er ent network

primitives of modern Interconnects for next-generation HPC systems".

Speci�cally, the dissertation aims to addressthe following challenges:

� Synchronization: Can we designtruly one-sidedpassive synchronization using

In�niBand's hardware atomic operations to maximize overlap potential? How

much of theseoverlap bene�ts canbe translated to actual performanceimprove-

ment in one-sidedapplications? Can existing designfor collective synchroniza-

tion like Fencebe enhancedto improve scope for overlap as well as reduceany

bottlenecks and hotspots in the network?

In Chapter 4, we designsupport for passive synchronization using In�niBand

atomic operations. We also enhancethe one-sidedcommunication progressto

provide scope for better overlap. In Chapter 6, we evaluate the di�erent de-

sign options for implementing fencemechanism and proposea novel fencesyn-

chronization mechanismwhich usesIn�niBand's RDMA Write with Immediate

capability to notify remote completions.

� Intra-node Optimizations for Multi-Core Architectures: Can we use the fast

atomic locks provided by processorarchitecturesfor e�cien t intra-nodelocking?
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What are the challengesto designsupport for fast CPU locks for intra-node

operations and network basedlocks for remote operations?

In Chapter 5 we study the bene�ts of using fast CPU basedlocks for intra-

node operations. We comeup with a hybrid designthat can migrate between

CPU basedlocks and network locks depending on the migration policies. We

demonstratethe bene�ts of this designfor di�erent communication patterns.

� Read-Modify-Write Mechanisms: Read-Modify-Write operationsare important

for one-sidedapplications. The MPI one-sidedsemantics does not explicitly

provide this interface. How can one-sidedapplications be written using exist-

ing one-sidedinterface for read-modify-write functionality? Can In�niBand's

features such as atomic operations be used to achieve high performanceand

scalability for read-modify-write operations? What kind of hardware/network

mechanismsare neededto further optimize theseoperations?

In Chapter 7, we study the HPCC RandomAccessbenchmark which primarily

usesread-modify-write operations. We evaluate di�erent approaches of e�-

ciently implementing these operations using MPI-2 one-sidedcommunication

semantics. We also proposean implementation of MPI Accumulate that can

make use of In�niBand hardware fetch and add operations that yields good

performance.

� Non-Contiguous operations: In several applications the data communication

are often non-contiguous. The genericapproach to handle non-contiguit y is to

perform packing and unpacking of data into contiguous bu�ers. This requires

heavy CPU involvement on the origin and target side to copy the data into
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contiguous bu�er and copying the data out of contiguous bu�ers. Can the scat-

ter/gather capabilities be utilized to achieve zero copy cost as well as reduced

remote CPU involvement for non-contiguous data transfers for both point-to-

point and two-sideddata transfers?What are the trade-o�s involved and what

kind of application bene�ts can be achieved?

In Chapter 8, we discussthe various challengesin designing non-contiguous

data communication for both two-sided as well as one-sidedcommunication.

The main overheadfor non-contiguous communication is the overheadof data

copieson both the senderand receiver sides.We proposenewzero-copy designs

for implementing non-contiguous data movement using In�niBand's hardware

basedscatter/gather capability.

� Non-Blocking primitiv es: In order to obtain good computation communication

overlap, the RMA one-sideddesignshould support e�cien t non-blocking oper-

ations. How can we implement e�cien t non-blocking primitiv es that provides

good scope for computation communication overlap? What are the challenges

and what are the associated bene�ts of providing non-blocking primitiv es?

In Chapter 9 we discussthe design issuesin implementing non-blocking one-

sided operations. We also demonstrate the performancebene�ts of a non-

blocking designover a blocking design.

� Re-orderingand scheduling: MPI-2 standard allows the actual communication

for RMA operationshappenat synchronization time and alsoallows re-ordering
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of operationswithin an accessepoch. Can we designschemesthat take advan-

tage of this 
exibilit y to achieve latency and better network bandwidth utiliza-

tion? Can theseschemesshow performancebene�ts for somecommunication

patterns?

In Chapter 10 we proposedesignsthat can take advantageof the re-orderingse-

mantics to interleave, prioritize and aggregatethe operations. We demonstrate

the performancebene�ts of theseapproaches for di�erent communication sce-

narios.
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Figure 3.1: Broad Overview
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Figure 4.1 provides an overview of all the above mentioned components. The

components that we focus in this dissertation are lightly shaded. We describe the

detailed designand the results of the various components of this dissertation in the

following sections.

22



CHAPTER 4

PASSIVE SYNCHR ONIZA TION MECHANISM

The one-sidedcommunication model decouplesdata transfer and synchronization

operations. The synchronization operations ensurethat the issuedoperations are

completeand appropriate semantics are maintained. Depending on the type of syn-

chronization, localand remotecompletionsneedto beensured.Thesesynchronization

operationsare very important in one-sidedcommunication and it is very essential to

provide e�cien t and low overheadsynchronization mechanisms.

The MPI one-sidedmodel provides two modesof synchronization.

� Active synchronization: whereboth the origin and target node are involved in

the synchronization. It hasboth point-to-p oint semantics (post/start,w ait/complete)

as well as collective semantics (fence). The post/start wait/complete mecha-

nism allows only a subsetof processesto synchronize. The fencehas collective

semantics that requiresthe participation of all processesin the group.

� Passive synchronization: only the origin processis involved in the synchroniza-

tion. In MPI-2 passive one-sidedcommunication, the target processdoesnot

make any MPI calls to cooperate with the origin processfor communication or

synchronization. The synchronization is donethrough lock and unlock calls by

the origin processon the window located on the target node.
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The passive synchronization o�ers true one-sidedbene�ts. However most existing

implementations do not provide thesebene�ts becauseof limitations of current de-

signs. In this chapter, we explain how the H/W atomic primitiv escan be leveraged

for providing e�cien t and truly one-sidedpassive synchronzation mechanism which

provides good overlap capability. Speci�cally we work on the highlighted part in

Figure 4.1 of our proposedresearch framework.

4.1 Passive synchronization Design using In�niBand Remote
A tomics

In this section we discussthe issuesand design challengesin implementing an

e�cien t MPI-2 passive one-sidedcommunications. Locks are usedto protect accesses
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to the protected target window a�ected by RMA calls issuedbetween lock and un-

lock calls and to protect local load/store accessesto a locked local window executed

betweenthe lock and unlock call. MPI-2 passive synchronization supports locking in

two modes: (i) exclusive mode and (ii) sharedmode. Accessesthat are protected by

exclusive locks will not be concurrent at the window site with other accessesto the

samewindow that are lock protected, i.e, only oneprocesscan have exclusive access

to a window at a time. Sharedlock mode allows multiple processes(readers/writers)

to accessthe target window simultaneously. Accessesthat are protected by a shared

lock will not be concurrent at the window site with accessesprotected by exclusive

lock to the samewindow.

There are several di�erent approachesfor implementing passive synchronization.

The passive synchronization could be implemented on top of two-sided communi-

cation. Another approach to implement passive synchronization when the memory

window is not directly accessibleby all the origin processesis by the useof an asyn-

chronousagent at the target. This agent can causeprogressto occur. One approach

is to usea thread that periodically wakes up and checks for any pending one-sided

requests.If there is underlying hardware support, then it can be exploited to provide

truly one-sidedpassive synchronization.

Thereareseveral optimizations that areapplicableto two-sidedbasedapproaches[60].

WMPI explored thread based one-sidedcommunication and synchronization [44].

Previous work in MVAPICH2 used In�niBand atomic operations to implement ex-

clusive locks [37]. This designhas somelimitations that it considersonly locking in

the exclusive mode. In addition, this designdoesnot guarantee immediate progress

of the one-sidedoperationswhich are deferredto the unlock phase.This canhurt the
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overlap potential. Our new designtakesa step further and aims to addressthe above

limitations while taking a similar approach of usinghardware atomic operations. We

useMVAPICH2 [46]asthe framework for our design. In the current versionof MVA-

PICH2, the passive synchronization support is basedon two-sided communication

primitiv es.

In this context we describe the two main aspectsof our design: (i) e�cien t passive

synchronization with support for locking in both exclusive and sharedmodesand (ii)

enhancement of the scope for providing good overlap that the one-sidedapplications

can potentially leverage.The following sectionslook at the designin further detail.

E�cien t passive synchronization support can be designedusing In�niBand's re-

mote atomic operations. Locking in exclusive mode can be implemented using In-

�niBand's atomic compareand swap operations. This approach doesnot involve the

remote process,and henceis a truly one-sidedmechanism for passive synchroniza-

tion. However, sinceMPI-2 allows for both sharedand exclusive modes of locking

for passive synchronization, it is imperative that our designallows for sharedmode

locking to co-existaswell. The current MVAPICH2 designprovides two-sidedbased

sharedmode locking and this can be extendedto work coherently with our design

basedon remote atomic operations for exclusive mode locking.

For every window on a target processwe maintain a 64-bit global lock state that

is registeredwith the NIC to support remoteatomic operations. This 64-bit variable

can be accessedusing RDMA atomic operations. This global lock state variable can

be in one of 3 states: (i) unlocked, (ii) locked in exclusive mode and (iii) locked in

sharedmode.
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Figure 4.2: Locking Mechanisms:(a)HandlingExclusive Lock and (b)Handling Shared
and Exclusive Lock

This variable is by default initialized to the unlockedstateduring window creation.

MPI Comm size is usedto indicate this unlocked state. To obtain an exclusive lock

asseenin Figure 4.2(a), a network basedatomic compare-and-swapoperation is done

on this variable. If the compare-and-swapis successful,then the lock is obtained and

the global state variable is set to the processrank of the origin processindicating

that it is the current holder of the lock. During the unlock operation, this value is set

back to the default value. Other processestrying to obtain a lock at the sametime

would fail and would keep trying till they obtain the lock oncethe holding process

relinquishesthe lock.

In the caseof a sharedlock, we use the existing two-sidedapproach in which a

messageis sent to an agent on the remote node. The agent queuesup the requests
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and performsthe issuingof lock and unlock operationslocally. However, this can lead

to con
icts with the exclusive mode locking and additional mechanismsare needed

to handle this case.

To allow both sharedand exclusive mode locking we usethe following coordina-

tion mechanism. When a sharedlock requestis received by the remote agent it also

performsan atomic compare-and-swapoperation with the global lock state variable.

If it can obtain the lock, that meansthere are no exclusive locks on this window, it

setsthe variable to a prede�ned value(MPI Comm size+ 1) indicating that the lock

is currently issuedin sharedmode and thereforeall exclusive lock operations will be

stalled. This agent alsokeepsa counter for the number of sharedlock requests.When

unlock operationsarecalled, it decreasesthe counter variable. Oncethe counter vari-

able reacheszero, it performsa compare-and-swapoperation on global state variable

resetting the global state value to the default no lock state. Figure 4.2(b) shows the

basicprotocol for sharedmode locking. The dotted arrows in the �gure indicates the

operations that could be deferredto actually occur in the unlock phasewhen using

the two-sidedmechanism for obtaining sharedlocks.

The hardware basedremote atomic operations have good scalability, but they

might have the problem of 
o oding the network when the contention for locks is

very high. However, mechanisms like exponential back o� can be used to improve

performancein such scenarios[37]. Sincethis is an orthogonal issuefrom the focus

in this work, we have not incorporated this in our current design. We would like to

incorporate this in the future.
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4.2 Impro ve Overlap Scope for MPI-2 One-Sided Op erations

Another aspect we aim to highlight by using the truly one-sidedpassive syn-

chronization is to improve the overlap potential of the application. When two-sided

approaches are used, the communication operations are often delayed to the syn-

chronization phaseand in somecasescombined with an unlock synchronization call.

In order to improve the progress,which leadsto better overlap, we make sure that

the one-sidedoperations within the passive epoch are issuedimmediately using the

RDMA Write and RDMA ReadIn�niBand operations. The completionof theseoper-

ations arehandledin the unlock operation. In�niBand haslimitations on the number

of outstanding RDMA readand write operations. Henceto handlethis in our design,

additional requestsbeyond this limit are queuedup internally and issuedas soon as

possible.

4.3 Overlap Analysis

In this section we analyze the di�erent designsto understand the potential for

overlap while using passive synchronization. In a passive synchronization mode over-

lap can be achieved at the senderside as well as the receiver side. In the sender

sidecase,overlap can be moreeasilyunderstood. Within the passive synchronization

accessepoch we could have computation and one-sidedcommunication operations. If

the one-sidedroutines are non blocking and can be initiated, then potentially we can

perform computation while the initiated communication occurs in the background.

More explicitly, we can do computation betweenMPI Get or MPI Put and the en-

suing MPI Win unlock operation as long as this computation is independent or does

not needthe data from the one-sidedoperation. We refer to this as the senderside
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Figure 4.3: Computation and Communication Overlap: (a) SenderSideOverlap and
(b) Receiver SideOverlap

overlap asshown in Figure 4.3(a). In addition to the sendersideoverlap in a passive

synchronization mode we can have computation on the target node while communi-

cations are occurring in its target window. This could be thought of as receiver side

overlap as seenin Figure 4.3(b). An MPI-2 one-sidedlibrary gearedtowards maxi-

mizing overlap should provide both thesekinds of overlap bene�ts to the application

to the extent possible.

In this context, we try to analyzethe two described approachesfrom the overlap

perspective. In the current two-sidedapproach there is a remote agent or receiver

(in the MPI library) that handlesall the one-sidedcommunication/synchronization

requestsincluding lock, unlock, get, put. On the senderside(origin process)the lock

is a local operation that is queued.The data transfersare alsoqueuedand it is only

in the unlock phasethat the entire lock/data transfer and unlock occurs. This kind
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of implementation is good when there is a requirement for lower overheadsynchro-

nization operations. Further, in this casethe data transfer and the synchronization

messagescan be combined thus reducing the number of required network operations

leading to bene�ts in certain scenarios.However, this results in extremely poor over-

lap capability for an application. Though lowering the overheador latency of the

synchronization is important, it should not comeat the cost of reducing the overlap

potential. Sincethe data transfer occursin the unlock phase,any computation in the

passive epoch cannot be overlapped at all. Also the two-sidedapproach requiresthe

target node to be involved in both the computation as well as the synchronization

calls. Hencethis a�ects the on-goingcomputation on the target nodethus resulting in

lower receiver overlap too. Whereasin the direct passiveapproach, the synchroniza-

tions aswell asthe communication operationsare issuedasearly aspossible.Further

all theseoperations are truly one-sidedbecausethey usethe underlying RDMA op-

erations. Hencewe expect better computation and communication overlap on both

the senderand receiver side for the direct passiveapproach.

4.4 Performance Evaluation

In this sectionwe present the experimental evaluation of our direct passiveimple-

mentation. We analyzethe overlap scope with the two-sidedbasedand direct passive

implementations. It is to be noted that we uselocks in exclusive mode for our eval-

uation. We then describe the results for the modi�ed MPI-2 versionof the SPLASH

LU benchmark [54]. This version was obtained by modifying a shmem version of

SPLASH LU benchmark to useMPI-2 one-sidedcalls with passive synchronization.
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Figure 4.4: Basic Passive Performanceof (a) Put and (b) Get operations

Figure 4.5: Overlap Bene�ts of Basic One-sidedoperations: (a) Put and (b) Get

Figure 4.6: Overlap Bene�ts with IncreasingNumber of Operations: (a) Put and (b)
Get
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We further pro�le the resultsof this SPLASH benchmark to analyzethe performance

in greater detail.

Our experimental testbed is a 64 node Intel cluster. Each node of our testbed

is a dual processor(2.33 GHz quad-core) system with 4 GB main memory. The

CPUs support the EM64T technology and run in 64 bit mode. The nodessupport

8x PCI Expressinterfacesand are equipped with MT25208 HCAs with PCI Express

interfaces. A Silverstorm 144 port switch is used to connect all the nodes. The

operating systemusedis RedHat Linux AS4.

4.4.1 Microb enchmarks

In this sectionwe compareour new passive designwith the existing designusing

microbenchmarks that measurelatency and overlap capabilities.

Overall Latency using Passive Synchronization

First we comparethe basicperformanceof the two approaches: not just the cost

of synchronization, but from the perspective of data communication using passive

synchronization. This is often more representativ e of application behavior. We mea-

sure the time taken or latency for a lock operation followed by put and an unlock

operation for various messagesizes.This benchmark shows the overall latency of the

two approaches.

The resultsare shown in Figure 4.4. As seenin the �gure, the two-sidedapproach

performsbetter than the direct passiveschemefor small messages.This is becausefor

small messagesthe synchronization overheadis a signi�cant ratio of the total time.

i.e. the direct passiveschemeneedstwo RDMA atomic compareand swap operations

for synchronization in addition to RDMA read/write communication operation. The
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overheadis lower in the two-sidedapproach sinceit can combine the communication

and synchronization in a single message. For larger messages,the direct passive

scheme performs better or equally well, as the cost of data transfer is dominant.

However aswe have discussedin earlier sections,latency aloneis not the main metric.

The amount of the overlap capability the implementation can provide is critical to

the performanceof a one-sidedapplication. Hencewe study the designsfrom the

overlap perspective in depth in the following section.

Overlap Poten tial

In this sectionwe comeup with a set of micro-benchmarks that can evaluate the

overlap potential both at the origin aswell as the target process.

Sender Side Overlap: In this benchmark we evaluate the senderside overlap.

The following is a brief description of the benchmark. Process0 (origin process)

does a lock/put/unlo ck on the window located on the remote target process. The

test estimatesthe time for the lock/put/unlo ck sequence.Between the get call and

unlock synchronization call, increasingamounts of computation as a percentage of

the estimated time are introduced. As long as the overall execution time does not

change, it implies that the computation time is being absorbed or overlapped with

the issuedcommunication call. The results for this are shown in Figure 4.5(a). The

direct passiveimplementation shows very good overlap for large messageswhereasin

the two-sidedapproach virtually no overlap is possiblebecauseall the data transfer

operations occur in the unlock phase. Pleasenote that for the sake of visibilit y

in the graph, we have shown a small value for the two-sided approach which can

essentially be ignored. Similar results are seenfor lock/get/unlo ck sequenceshown

in Figure 4.5(b).
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SenderSide Overlap with Varying #operations in Epoch: This benchmark is an

extension of the previous benchmark where we vary the number of get/put calls

betweenthe lock and unlock operations. The messagesizeusedis 32K. This test tries

to mimic application scenarioswhere multiple get and put calls are issuedbetween

the synchronization operations in order to amortize the overheadof synchronization.

As in the previous test increasingamounts of computation is introduced. Figure 4.6

shows the results of this benchmark. Onceagain the direct passiveapproach is able

to provide much higher overlap asopposedto no-overlapfor the two-sidedapproach.

Receiver Side Overlap: This benchmark tries to measurethe impact of target

involvement in passive modecommunication on the ongoingcomputation. In this test

there is oneorigin processand onetarget process.The test performsa �xed amount

of computation on the target node. The executiontime of this benchmark is the time

taken by the target node to perform the �xed amount of computation. At the same

time the origin processtries to accessthe memorywindow usingMPI Get operations

within a lock/unlo ck passive epoch. This test in e�ect tries to measurereceiver

(target) overlap, i.e, it tries to measurehow much of the computation on the target

node can be overlapped with the ongoing communication operations.Figure 4.7(a)

shows the normalized execution time of this benchmark. As comparedto execution

time with the direct passivescheme(which is normalized to 1), we observe that the

two-sidedapproach leadsto considerablyhigher executiontimes. This indicates the

overheadof the target involvement for the two-sidedapproach or in other words this

shows the reducedoverlap (or lack thereof) on the target node.

Receiver Side Overlap with Multiple Origin Processes: We further extend the

receiver overlap benchmark to multiple processesemulating one-sidedapplication
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patterns. In this benchmark the overlap capability is observed in the presenceof

increasedaccessesto the target window. The messagesizeusedis 32K. Figure 4.7(b)

shows the results in terms of normalizedexecutiontime. We seethat for 64processes,

the deterioration in the executiontime is about 4.5 times worsefor the two-sidedcase

ascomparedto direct passive. This is largely becauseof the increasedcommunication

overheadson the target nodefor the two-sidedapproach which delays the computation

adverselya�ecting the overall executiontime.

4.4.2 Application evaluation with SPLASH LU benchmark

In this sectionwe usea modi�ed versionof the SPLASHLU benchmark to demon-

strate the bene�ts of overlap for an one-sidedapplication. The SPLASH LU bench-

mark does denseLU factorization. The densen x n matrix is divided into an N x

N array of B x B blocks, such that n=NB. The blocks of the matrix are assignedto

processorsusinga 2D scatter decomposition. The communication in LU occurswhen

a diagonalblock is usedby all the processorsthat require it to update the perimeter

blocks they own and whenthe perimeterblocks areusedby all processorsthat require

them to update their interior blocks. We modi�ed a shmemversionof SPLASH LU

benchmark to use MPI-2 one-sidedoperations. We use MPI Get calls to fetch the

block of data and we use MPI Win Lock/MPI Win unlock passive synchronization

calls. The MPI Win lock calls are used in exclusive mode. The problem size gives

the sizeof the overall matrix and we can vary the block size. We show the results

for this benchmark for varying problem sizesand a block sizeof 128. This block size

gave the best results.
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Figure 4.7: Receiver overlap capability with (a) two processand (b) multiple processes

Figure 4.8 shows the performanceof the MPI-2 SPLASH LU benchmark for the

two approaches. We observe that the direct passiveapproach always outperformsthe

two-sidedapproach. This is becausethe direct passiveapproach providesbetter over-

lap with reducedremoteCPU involvement. In Figure 4.8(a) weshow the performance

of SPLASHLU with a problemsize2048.Weobserve that the direct passiveapproach

performsabout 25%- 81%better than the two-sidedapproach. Figure 4.8(b) shows

the performancefor a larger problem sizeof 3000. In this casewe observe higher gain

ranging from 58%- 87%for the direct passivecaseascomparedto the two-sidedcase.

In order to further understand these results, we pro�le the application run. In

this we measurethe averagetime spent by the application in each of the MPI library

calls. In particular, the only relevant MPI calls used in the SPLASH LU code are

MPI Win lock, MPI Win unlock, MPI Get and MPI Barrier. The remaining time

is classi�ed as computation time. In Figure 4.9(a) we show the timing break up of

these operations for problem size 2048 for 8-64 processes.The results for problem

size 3000are shown in Figure 4.9(b). The legendswith T stand for the two-sided

basedapproach, and with O stand for the one-sideddirect passive approach. As
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Figure 4.8: MPI-2 SPLASH LU benchmark: (a) Problem Size2048and (b) Problem
Size3000

Figure 4.9: Timing Breakup of MPI-2 SPLASH LU: (a) Problem Size2048and (b)
Problem Size3000
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discussedin Section4.3 for the two-sidedapproach, we observe that the lock and get

operationsfor the two-sidedapproach take negligibletime, sincetheseoperationsare

queuedlocally. The actual progressof theseoperations occurs in the unlock phase,

i.e, the operations are initiated during the unlock operation. We seethat the unlock

operations in this casetake a large amount of time asexpected. On the target node,

the progressfor theseoperationsis delayed and triggeredonly during the MPI barrier

calls. This is dueto the fact that passivesynchronization do not haveexplicit progress

calls for the target node.

On the other hand, the direct passiveschemeacquiresthe lock and initiates the

one-sidedRDMA data transfers immediately and the progressof these operations

are transparent to the target node. Sincethis doesnot needthe remote processto

intervene,the remoteprocessmakesfasterprogresson its own tasks. In addition, since

the MPI Get operations do not needto wait for the target node to trigger progress,

theseoperationsmove aheadfaster reducingthe overall application time. This aspect

is clear from the numbers in Figure 4.9 wherethe two-sidedapproach spendsa much

larger time in the MPI Barrier time in performing the remote get requestswhich

delays the computation. Consequently we also observe that the unlock time taken

for the two-sidedcasesis signi�cantly higher (832msfor problem size 3000and 64

processes)as comparedto the direct passive (421ms for problem size 3000 and 64

processes).

To improve the performanceof MPI-2 one-sidedcommunication, in this work,

we focussedon the following important aspects: (i) direct passive synchronization

support using In�niBand atomic operations and (ii) enhancement of one-sidedcom-

munication progressto provide scope for better overlap that one-sidedapplications
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can leverage. In addition we performedan in-depth study to characterizethe sender

sideand receiver sideoverlap capabilities of our direct passivedesign.

Our evaluation shows signi�cant improvement in the overlap potential for the

direct passivedesignthat can be leveragedby a one-sidedapplication. Our micro-

benchmarksshow that the overlap on both the senderand receiver sideis signi�cantly

enhancedusingour approaches. In addition to the micro-benchmarkswe alsodemon-

strate a signi�cant improvement ranging between58%- 87%in the performanceof an

MPI-2 one-sidedversionof the SPLASH LU benchmark ascomparedto the existing

design.Our detailed analysisshows that the potential bene�ts in this casecomefrom

the reducedremote side involvement that is achievable by our design.

4.5 Related Work

There are several studies regarding implementing one-sidedcommunication in

MPI-2. Someof the MPI-2 implementations that support one-sidedcommunication

are: MPICH2 [9], WMPI [44], NEC [63] and SUN-MPI [16]. BesidesMPI, there

are other programming models that use one-sidedcommunication. ARMCI [47],

GASNET [15] and BSP [28] are someexamplesof this model.

Researchers in [21] have proposeddistributed queuebasedDLM using RDMA

operations. Though this work exploits the bene�ts of RDMA operations for locking

services,their designcanonly support exclusive modelocking. Further, prior research

in [45] extensively utilizes In�niBand's remote atomic operations for sharedand ex-

clusive mode locking, however, the main focus in their work is not in the context

of MPI-2 one-sidedsynchronization but rather as a system-widedistributed locking
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servicetypically usedin data-centers. In the context of MPI, previouswork in MVA-

PICH2 have studied the bene�ts of RDMA atomic operationsto e�cien tly implement

locks in exclusive mode [37]. However their designdoes not take shared locks into

account. OpenMPI [12] is another open sourceMPI implementation that supports

MPI-2 standards. In OpenMPI, the library is singlethreadedby default and usesthe

two-sidedapproach for passive synchronization currently and dependson the target

processmaking MPI calls to make progress. Our new designgoesa step further to

addressthe limitations of these approaches. It provides exclusive lock mode using

atomic operations and sharedmode locking support by extending the existing two-

sidedbasedsharedlocking in the MPI library and alsotries to maximize the overlap

potential.
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CHAPTER 5

MIGRA TING LOCKS FOR MUL TI-CORES AND
HIGH-SPEED NETW ORKS

Most processorarchitecturesprovide fast atomic locks basedon few CPU instruc-

tions. Thesecan be used to implement locks e�cien tly acrossprocesseswithin the

samenode. As described in previous chapter, networks such as IB provide network

atomic operations that can be used to implement locks acrossnodes in an e�cien t

and truly one-sidedfashion. However, thesetwo forms of locks are not interoperable.

Speci�cally, network-basedatomic operations achieve their atomicity through serial-

ization at the network adapter. That is, the network adapter ordersaccessesto the

atomic variable in the order in which it receivesrequests,thus guaranteeing that the

variable is always in a consistent state. CPU-basedatomic operations, on the other

hand, do not passthrough the network adapter at all, and are handled fully in the

processorcache.

If both the CPU and the network try to work on the samelock, it is possiblethat

the CPU fetches the variable to cache to perform an operation on it. At the same

time, the network can trigger a cache 
ush through the chipset, forcing the variable

to be in an inconsistent state.
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In short, the CPU and the network need to work on di�erent locks leading to

several challengesin achieving lock coherencein a one-sidedmanner, that we will

addressin this work.

While using IB network atomic operations for one-sidedcommunication allows

for truly one-sidedpassive synchronization, this approach might not be the best in

light of the increasingnumber of multi-core systemsand the number of coreson each

system. Speci�cally, using network operationsto synchronizeeven betweenprocesses

on the samenodecanhaveperformanceimplications (sinceall the data hasto traverse

down to the network adapter and back) as well as network contention issues(since

the network adapter is shared between all the cores). Thus, in this chapter, we

proposea new hybrid migrating locks designshown in highlighted part of Figure 5.1

of our proposedresearch framework that utilizes CPU-basedatomic operations in

conjunction with network atomic operations to take advantage of both.

5.1 Prop osed Hybrid Design

Simultaneously utilizing both CPU-basedatomic operations as well as network

atomic operations is not trivial becauseof interoperability issuesbetweenthesetwo

operations as discussedabove. Thus, there has to be a coordination mechanism

between the network basedlocks and the CPU basedlocks. Our proposedsolution

to the problem is to migrate betweenthe two locking mechanisms(network locks and

CPU locks) when required. Sincethe locking is per-window based,di�erent windows

on the sameprocesscould be in a di�erent locking mode dependingupon the nature

of the lock requestsfor that window.
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Figure 5.1: Overview

Every node maintains the following state variables: (i) locking mode (network or

CPU based), (ii) CPU lock and (iii) 64 bit global network lock. The locking mode

variable and CPU lock variable are placedin sharedmemory so that other processes

on that nodecanaccessit. The network lock canhave the following values: (i) a value

of 0 to (MPI Comm size- 1) indicatesthat the lock is in network modeand the actual

valuedenotesthe processthat holds the network lock, (ii) a valueof MPI Comm size

indicates that it is unlocked, and (iii) a value of MPI Comm size + 1 indicates that

the lock is in CPU mode.

In the network lock mode described in Figure 5.2, all the locks use IB atomic

operationsto obtain the network lock. In the CPU lock modedescribed in Figure 5.3,

the intra-nodelocks usefast CPU basedlocks and the inter-nodelocks usea two-sided
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approach of sendingthe lock requestto the lock manager(step 1) which then obtains

the CPU lock on its behalf (step 2) and respondswith lock granted (step 3).

By default, the lock is preset to one of the above two-modes, for exampleCPU

basedmode. When the mode needsto be migrated, a two-sidedmessageis sent to

the lock managerwhich acquiresboth the network aswell asCPU lock, modi�es the

locking modeto 'network', and then grants the lock. Any further locking now happens

through IB atomic operations in a completelyone-sidedmanner. The lock migration

from a CPU mode to network mode is illustrated in Figure 5.4. When a remote

processwants to acquire a lock, it performs a compareand swap with the network

lock state (step 1). If the remoteprocessdiscovers that the lock is in CPU mode, and

it wants to migrate the lock to network mode, it sendsa two-sidedmessageto the lock

managerrequestingmigration to network mode (step 2). The lock manageracquires

both the network lock and the CPU lock (step 3), modi�es the lock mechanism to

CPU mode (step 4), and sendsthe lock granted packet to the remote process(step

5). A similar approach is doneto resetthe lock to CPU based.In this way, the locks

can be migrated from onemechanism to other.

Thus, in summary, intra-node locks are completelyone-sidedaslong asthe lock is

in CPU-mode and inter-node locks are completely one-sidedas long as the lock is in

network mode. If the lock is not in the appropriatemode,a two-sidedsynchronization

is neededto migrate the lock to the appropriate mode. Henceforth we will refer to

this approach as `Hybrid'.
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Figure 5.2: Locking Mechanisms: Network Lock

Figure 5.3: Locking Mechanisms: CPU Lock
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Figure 5.4: Locking Mechanisms: Lock Migration

5.2 Migration Policies

Migration of locks could be basedon various criteria. It could be basedon: (i)

communication pattern, (ii) history, (iii) priorit y, (iv) native hardware capabilities

and so on. The criteria usedto migrate the locks is not the focus in this thesis,and

could be part of follow up work. In all the evaluations in this paper, the lock is preset

to CPU mode for simplicity. Any remotenode processlock requestmigratesthe lock

to network mode and any future intra-node lock requestmigrates the lock to CPU

mode.
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5.3 Exp erimen tal Results and Analysis

In this sectionwe evaluate the performanceof our migrating locks based`hybrid'

designwith the purely `two-sided'basedand the network based̀ one-sided'approaches

described in Section4.1. We evaluate the performancefor a wide rangeof scenarios.

First, we evaluate and analyze the performancewhen the lock/unlo ck operations

occur within the samenode (intra-node) among the di�erent cores. Then we show

the performancewhen the operations are purely inter-node. Then, we evaluate the

performancefor a combination of inter-node and intra-node operations. We also

measurethe overheadinvolved when the locks are migrated. Finally we evaluate the

performancefor SPLASH LU benchmark.

Exp erimen tal Testb ed

Each node of our testbed has16 AMD Opteron 1.95GHz processorswith 512KB

L2 cache. Each node also has 16 Gigabyte memory and PCI-Expressbus. They are

equipped with MT25418 HCAs with PCI-Ex interfaces. A 24-port Mellanox switch

is used to connect all the nodes. The operating system used is RedHat Enterprise

Linux Server 5.

5.3.1 In tra-no de Performance

In this section, we �rst evaluate the performanceof our new design for intra-

node operations on a singlenode. Figure 5.5 shows the performanceof lock/unlo ck

operation comparing the three approaches. As expected our new hybrid designper-

forms the best, sincethe lock/unlo ck operationswithin a node are basically few CPU

instructions. In the two-sided approach, a lock request packet is sent to the lock
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managerof the target process. The lock managerresponds with the lock granted

packet. Theselock requestsand lock granted packets go over sharedmemory since

the target is on the samenode. In the one-sidedbasedapproach, the lock operation

is achieved through an IB loop-back atomic fetch and add operation. Sincethe loop-

back operation is expensive, it has the lowest performancefor a single lock/unlo ck

operation.

Figure 5.5: Lock/Unlo ck Performance

In tra-no de Performance with Remote Computation

Next we evaluate the performanceof the three approaches in the presenceof

computation on remote/target process.Minimal remote/target processinvolvement

is important for one-sidedpassive synchronization callssothat the target canproceed

with its computation. In this benchmark, the origin processacquiresthe lock and

unlock operation on target processwhile computation is performed on the target
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process. The computation is a dummy loop that is executedon the remote/target

process. In this experiment the performanceof the three schemesis measuredfor

varied amounts of dummy loop computation. The results are shown in Figure 5.6.

Here the one-sidedapproaches (network based,one-sidedand hybrid approach) are

not a�ected with increasingamounts of computation on the target process,sincethey

arenot dependent on the target processto progress.Whereas,the performanceof the

two-sidedschemedegradeswith increasingamount of computation. This is expected

becausethe two-sidedapproach requirestarget processinvolvement. In the presence

of computation, it takeslonger to respond to the lock/unlo ck requests.

Figure 5.6: Lock/Unlo ck Performancewith RemoteComputation

5.3.2 Concurrency and Con ten tion

Next weevaluatethe performanceof the di�erent approacheswhenseveral lock/unlo ck

operations occur concurrently. Theseexperiments are conductedon a singlenode.
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Net work Con ten tion

In the �rst micro-benchmark, each processlocks its neighboring process(rank+1)

on the samenode. Thus in this benchmark, there areasmany lock/unlo ck operations

happening concurrently as the number of coresfor which the benchmark is run. We

measurethe averagelatency of lock/unlo ck operation in this scenario. The results

are shown in Figure 5.7. We observe that the two-sidedperformanceis not degraded

sincethe lock/unlo ck requestsmessagesare sent over sharedmemory and there is no

network contention. However the one-sidedschemeusing loop-back su�ers degrada-

tion due to network contention sinceall the lock/unlo ck operationsresult in network

transactions. In this scenarioalso, the hybrid scheme performs the best since the

CPU basedlocks do not result in network contention.

Figure 5.7: Lock/Unlo ck Performancewith Network Contention
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Lo ck Con ten tion

The next benchmark shows the performanceof the three approacheswhenseveral

processesare contending for a lock on the samewindow. The results are shown in

Fig. 5.8. The hybrid scheme performs the best for up to three lock contentions.

Beyond four contentions, the two-sided approach performs better than the hybrid

scheme. The one-sidedapproach performs the least. This is expected since there

would be lots of network transactions in the presenceof contention.

Figure 5.8: Lock/Unlo ck Performancewith Lock Contention

5.3.3 In ter-no de Performance

In this section, we comparethe performanceof the three approaches when the

operations are purely inter-node. We use a micro-benchmark to demonstrate the

bene�ts of one-sidedapproachesin the presenceof computation and skew. We used

Testbed B for this experiment, sincewe had more number of nodes to understand
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the inter-node performance. The experimental testbed (Testbed B) used for this

benchmark is a 64 node Intel cluster. Each node of the testbed is a dual processor

(2.33 GHz quad-core)systemwith 4GB main memory.

The benchmark simulatesa ring typeof communication whereineach processlocks

the window of its successor,puts somedata in the target window and updatesa tag

indicating completion of the data transfer to that window. The target processthen

makessurethat the data is available in its window, then performsthe sameoperation

on its successor.The communication terminateswhen the messagetraversesthrough

the completering. Simultaneously all the nodesare also performing computation in

the form of a dummy loop. For the sake of simplicity, a �xed amount of computa-

tion is being performedby all the nodes. This benchmark evaluatesthe capability to

overlap computation and communication. The results are shown in Figure 5.9. The

one-sidedand the hybrid approach outperformsthe two-sidedapproach. This is due

to the abilit y of the one-sidedand hybrid approach to perform the lock/unlo ck oper-

ations in a truly one-sidedfashion, whereasthe two-sidedapproach requiresremote

host involvement to make progress. This results in delay for the target processin

responding to lock requests.Sincethis benchmark is a ring type of communication,

this could manifest itself as skew for the other processesfurther in the ring resulting

in a cascadinge�ect. In this scenario, the hybrid scheme remains in the network

locking mode exclusively and henceits performanceis similar to that of the one-sided

approach.
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Figure 5.9: Inter-node Performance

5.3.4 Lo ck Migration

In this section,wetry to evaluate the overheadincurred dueto lock migration. The

benchmark measuresthe averagetime taken for an intra-node lock/unlo ck operation

and an inter-node lock/unlo ck operation in the presenceof migration of the lock

mechanism from network mode to CPU mode and vice-versa. The experiment is a

two node experiment in which a processP1 acquiresa lock/unlo ck on a processP0

on the samenode 1000times. During this duration, a processP2 on the secondnode

tries to obtain the lock on P0 for x times triggering a migration each time.

The intra-node line in Figure 5.10shows the latency of the lock/unlo ck operation

happening on the samenode with increasingpercentage of migrations. We observe

that for small percentage of migrations, the overheadis not very high as compared

to casewhen no migrations occur. The inter-node line similarly shows the latency

of the lock/unlo ck operation happening acrossnodes with increasingpercentage of
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migrations. For smaller number of migrations, the overhead incurred is quite less.

Large number of migrations lead to someoverhead. However it is to be noted that,

the biggest bene�t achieved by this approach is to be able to maintain the truly

one-sidednature of the locks oncethe migration hasbeenachieved and thus provide

greaterpotential for asynchronouscommunication aswell ashighercomputation com-

munication overlap. Also the migration policy described in Section5.2 can be used

appropriately to minimize the number of migrations.

Figure 5.10: Lock Migration Overhead

5.3.5 Hierarc hical Task Sharing Comm unication Pattern Micro-
benchmark

In this section,we evaluate the performancefor a combination of inter-node and

intra-node operationswith lock migrations by simulating a benchmark that performs

task sharing and redistribution. The details of the benchmark is described below.
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The experiment is run on 4 nodeswith 16 coreson each node for a maximum total of

64 cores.A hierarchy of leadersis createdwith oneleaderprocessdesignatedon each

node. First, the leaderon every node performs1000Lock-Put-Unlock on every other

local processon the samenode. Then, the leader performs 1000 Lock-Put-Unlock

on the leader of every other node. Finally, the leader on every node performs 1000

Lock-Put-Unlock on every local processagain. The benchmark tries to simulate a

scenarioin which a leaderprocesstries to get data/work from closeneighbors, then

gets data from remote neighbors in a cycle. The resulting communication pattern

is a clique-basedcommunication described in earlier sections.The results are shown

in Figure 5.11. The communication pattern described above has lot more intra-node

operationsthan inter-node operations. The hybrid schemeperformsthe best because

it usesthe fast CPU locks for the intra-node operations, and when the operations

are inter node, it migrates to network mode. Thus it provides the best performance

for such a communication scenarioand we also observe that the performancegap is

sustainedfor increasingnumber of processes.

5.3.6 Evaluation with SPLASH LU benchmark

In this sectionwe evaluate the performanceof the the three schemesusinga mod-

i�ed versionof SPLASH LU benchmark. The SPLASH LU benchmark wasmodi�ed

to useMPI-2 one-sidedcommunication. It usesMPI Win lock/MPI Win unlock pas-

sive synchronization operations and usesMPI Get operations to fetch the block of

data. The MPI Win lock calls are usedin exclusive mode.

The results are shown in Figure 5.12. The x axis gives the number of processes

(a*b indicates a - number of nodes,b - number of coresper node) and y axis shows
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Figure 5.11: Hierarchical Task Sharing Communication Pattern

the time taken in milli secondsfor problem size 2048. Here we observe that the

hybrid schemeperformsthe best when all the processesrun on onenode. For all the

other casesthe two-sided approach performs the best and the hybrid scheme fares

badly. To understandthis better, wepro�led the number of inter-nodeand intra-node

operations as well as the number of migrations occurring for the hybrid approach

during the benchmark run. Theseresults are shown in Table 5.1 and Table 5.2.

For the onenodecase,all the operationsareintra-nodeoperations. In this casethe

hybrid schemeusesthe fast CPU locks and there is no migration at all during the run.

Hencein this casethe hybrid approach gives the best performance. The one-sided

caseperformsthe worst asexpected. For the other cases(2*8, 4*8 and 8*8), we have

both inter-node and intra-node operations. Also with more nodes,the percentage of

inter-nodeoperationsin the SPLASHLU benchmark becomemoresigni�cant, around

90% in caseof 8*8 con�guration. At the sametime we also observe that the total
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number of lock migrations for the hybrid schemeincreasewith increasingnumber of

nodes.

The poor performanceof the one-sideddesigncould be attributed to the overhead

of the loop-back operations for intra-node operations as well as network contention.

For the hybrid approach, the number of migrations seemsto signi�cantly a�ect the

performanceof the hybrid design. During migration, both the network lock and the

CPU lock needsto be acquiredbeforethe mode can be switched. If several local lock

requestsoccur concurrently, it is possiblethat it takesa longer time to acquireboth

the network and CPU locks in order to modify the lock mode. This could result in

poor performance.In such situations it would be better for the lock managerto keep

track of the incoming lock request pattern and yield the lock. The current design

doesnot keeptrack of such information. Also the existing migration policy leadsto

frequent migrations.

One possibleenhancement is for the migration policies to take into account the

arrival pattern of the lock requestsand grant the requestsmore intelligently.

Numprocs Intra-Node Locks Inter-Node Locks
1*8 57744 0
2*8 36144 59840
4*8 14560 114704
8*8 14560 192080

Table 5.1: Inter-node vs Intra-node locks
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Figure 5.12: SPLASH LU Benchmark

5.3.7 Discussion

As seenfrom the above results, the performanceof the hybrid approach is depen-

dent on the pattern of the communication operations. Basedon the results from the

SPLASH benchmark result, a naive migration policy of migrating for every request

is not a good choice. Further the lock managerneedsto be enhancedto keeptrack of

the state of the di�erent incoming requestsaswell asthe history of incoming requests

sothat it canmake decisionsmoreintelligently. Also di�erent migration policiesneed

to be implemented and evaluated.

Another aspect that is important is how can the application writers/users take

advantage of the migration policies. If the usersare aware that there are going to be

very few inter-node operations, or in the casewhere the hardware doesnot support
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Numprocs Migrations
1*8 0
2*8 9346
4*8 10180
8*8 16400

Table 5.2: Num of Migrations

network locks, then the lock mechanism can always be set to the CPU mode and the

inter-node locks can usetwo-sidedbasedapproach. The user can also specify to the

library that the lock should be switched only after a certain number of network lock

/ CPU lock requestsoccur back to back so that the lock migrations do not occur

frequently. Another approach is to passcommunication pattern information as well

asother guidelineinformation to the MPI library in the form of hints. MPI standard

supports the interface for providing hints to the library. This can be used to give

priorit y to a particular lock operation for instance.

5.4 Related Work

There are several studies regarding implementing one-sidedcommunication in

MPI-2. Most of the related work has beendescribed in Section4.5 of the previous

chapter.

Further researchers in [17] have studied e�cien t implementation of locks using

NIC basedatomic operationson Myrinet.
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CHAPTER 6

FENCE SYNCHR ONIZA TION

In scienti�c applications, often the communication occursamonga subsetof pro-

cesseslike near-neighbourcommunication, ghost cell updatesetc. For such scenarios

a collective synchronization is semantically more easierto useas well more e�cien t

to implement in the library. In this work, shown in the highlighted part of Figure 6.1

of the proposedresearch framework, we look at the various methods and algorithms

to implement fencesynchronization and provide an improved designand study the

trade-o�s.

Fenceis an active synchronization method which is collective over the communica-

tor associated with the window object. Fig. 6.2 shows a typical fenceusagescenario.

The �rst fencecall makessure that the window on the remoteprocessis ready to be

accessed.A processmay issueone-sidedoperationsafter the �rst call to fencereturns.

The next call to fenceor the secondfencecompletesthe one-sidedoperations issued

by this processas well as the operations targeted at this processby other processes.

An implementation of fencesynchronization must support the following semantics:

A one-sidedoperation cannot accessa process'swindow until that processhascalled

fence,and the secondfenceon a processcannot return until all processesneedingto
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Figure 6.1: Overview

accessthat process'swindow have completeddoing so. In addition the secondfence

alsoneedsto start the next accessepoch as seenin Fig. 6.2.

6.1 Design Alternativ es

In this sectionwe discussthe designchoicesfor implementing fencemechanisms,

identify the limitations and proposeour optimizations.

In the MPI implementations derived from MPICH2 [9, 46, 60], there are two

options for implementing fence: i) Deferredand ii) Immediate. In the Deferredap-

proach, all the operationsand synchronizationsare deferredtill the subsequent fence.

In the Immediatemethod, the synchronization and communication operationshappen

as they are issued.We explore the designissuesinvolved in both theseapproaches.
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Figure 6.2: FenceUsage

As described in the previous section,a fencecall needsto provide two function-

alities: (i) it completesthe previousepoch i.e it ensuresthat all the precedingRMA

operations have completedand (ii) it beginsthe next exposureepoch.

Next we describe the designfor implementing fenceusing the DeferredApproach.

6.2 Deferred Metho d using two-sided comm unication (Fence-
Def )

In this design,the �rst fencecall doesnothing and returns immediately. All the

ensuingonesidedoperationsarequeuedup locally. All the work is donein the second

fence,whereeach processgoesthrough its list of queuedoperations to determine its

target processes. This information is stored in an array and in the secondfence

operation a MPI Reducescatter operation is performed to let every other process

know if it is the target of RMA operationsfrom this process.The remoteprocesscan

then wait for the RMA operations from thesenodes. The last RMA operation from

each processis conveyed to the remoteprocessby setting a 
ag in that RMA message.
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Sincethe deferredapproach is basedon two-sided,the remote processis involved in

receivingthe RMA messageand by looking at the 
ag, it ensuresthat it hasreceived

all the messagesfrom that process.Sinceall the RMA messagesarequeuedand issued

during the fence,certain optimizations can be done that can improve the latency of

the messagesas well as reducethe overheadof the fenceoperations. However, there

is no scope for providing overlap using this approach. In this designthere is a notion

of a remote agent that can handle incoming one-sidedand synchronization messages

and we refer to this two sidedbaseddesignas Fence-Def.

6.3 Immediate Metho d using RDMA Semantics

Next we discussfenceimplementations that usesimmediateapproach and RDMA

semantics of the interconnectsfor communication operations. This is the main focus

of our work sincewe are interestedin fenceimplementation on networks that support

RDMA semantics.

One of the main challengesin designingfencefor RDMA operations is the detec-

tion of remote completion of the Put operations.

One approach to handle remote completion is to wait for local completionsand

then issuea Barrier operation. This seemsperfectly plausibleas the Barrier is called

after all the Puts are issuedand completed. However this doesnot completely guar-

antee correctnessas shown in Fig. 6.3. There is scope for the Barrier messagesto

overtake the Put messagesissuedto process3 as the Barrier can be implemented in

a hierarchical fashion and can completeearlier than the Put. If there is a hardware

implementation of Barrier and the underlying hardware guaranteesthat the messages

are not overtaken, only then this is a valid solution but not otherwise.
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Figure 6.3: Barrier Messagesovertaking Put

Another method of handling remote completion is by sendingcompletion or �n-

ish noti�cation messagesthat indicate that all messageson this channel have been

received. There are somelimitations of this approach with increasingscale.

6.3.1 Basic Design for Fence (Fence-Imm-Naiv e)

The MVAPICH2 library takes advantage of RDMA Read and Write operations

to improve the performanceof contiguous Get and Put operations. Theseone-sided

operations are issued immediately. The one-sidedbased implementation provides

higher bandwidth for large put and get messagesthan the two sided baseddesign

(Deferred method) and also provides greater potential for overlap of computation

and communication. The current fenceimplementation is basedon this designand is

shown in Fig. 6.4. In order to completelyimplement the fenceusagesemantics shown

earlier in Fig. 6.2, we need to support the following two functionalities: i) ensure
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local and remote completion of operations in the current epoch and ii) indicate the

beginningof the next accessepoch.

P0 P1 P2 P3

PUT
PUT

PUT

Finish message

REDUCE SCATTER

epoch 1
starting

completing
epoch 0

epoch 0

finish mesg
completion

completion
local 

Fence begin

Fence end

Figure 6.4: Fence-Imm-Naive

In this approach, polling for local completions are done to make sure that the

issued one-sidedoperations are completed locally. For Get operations which are

implemented on top of RDMA Read,local completionis su�cien t to indicate that the

Get operations are complete. The Put operations which are basedon RDMA Write

needremote completions. To handle this, a �nish messageis sent on each channel

on which a put operation is issuedto indicate that it has sent all the messageson

that channel. Sincethe RDMA write operations on the samechannel are ordered,

whenthe �nish messageis received, all the RMA operationsissuedpreviously to that

node are assuredto be completed. Polling for local completionsis doneto make sure
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that all the messagessent have completedlocally. A Reducescatter operation is used

to let a processknow if it is the target of RMA operations. The target node then

waits for �nish messagesfrom all thesenodes. At this point, the fencehas �nished

completion of messagesfor that epoch. The next part is to indicate to all the other

processesthat the next epoch can begin and it is safe to accessthe window. The

current designposts a 
ag to every other processto indicate that the window can

now be safelyaccessedfor the next epoch.This results in all pair-wisesynchronization

of the processes. This is a naive approach and leads to 
o od of messagesin the

network. We will refer to this approach as Fence-Imm-Naive.

This designhasseveral drawbacks that needto beaddressed.From the description

of the design in the previous section, we can seethat there could be two potential


o ods of messagesduring the fence. The �rst is a 
o od of �nish messagesto handle

remote completion if the processis communicating with several peers. The second


o od is the 
o od of messagesto post a 
ag to indicate that the window can be

accessedfor the next epoch.

6.3.2 Fence Immediate with Optimization (Fence-Imm-Opt)

As an optimization to this approach, we use a barrier instead of the pair-wise

synchronization to indicate the beginning of the next epoch. This alleviates the

second
o od of messagesdescribed above. Figure 6.5 describes this approach and is

a more scalablesolution sinceit usesO(logn) communication steps. We refer to this

approach as Fence-Imm-Opt.

These approaches described above still have the issue of completion messages

being sent on all the channels. As the number of processesscaleto large number,
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Figure 6.5: Optimized Design(Fence-Imm-Opt)

this could becomea bottleneck. We propose a new design that usesthe remote

noti�cation provided by the In�niBand networks to designa novel and scalablefence

implementation.

6.3.3 New Scalable Fence Design With Remote Noti�cation
(Fence-Imm-RI)

In this sectionwe describe our new schemewhich is also an Immediate method,

but o�ers greaterscalability. The newfenceimplementation is shown in Fig. 6.6. The

main designand implementations issuesare as follows:

Remote noti�cation of one-sided operations

As described earlier, one approach to handle remote noti�cations is by 
ushing

all the channels using a �nish message.However, this approach is not scalableas

68



P0 P1 P2 P3

PUT

BARRIER

ALL REDUCE

(RDMA write with imm)

complete

Start Epoch 1

Epoch 0

Epoch 0

local 
completion

RDMA Immediate
Remote 

completion

Fence begin

Fence end

(RDMA write with imm) (RDMA write with imm)

PUT PUT

Figure 6.6: New design(Fence-Imm-RI)

it could lead to a 
o od of messages.In this design,we use the RDMA Write with

Immediateoperationsto issuePut operationswhich createsa completionentry on the

remote node. After polling for local completions,the remote node is informed of the

number of such operationsfrom all the processesthrough an MPI AllReducecall. The

remotenode then polls till it receivescompletion noti�cations for that many number

of RDMA write with Immediate operations. The completion of the Get operations

is handled by waiting for local completions for the RDMA Read operations. This

eliminates the �rst 
o od of messages.

Noti�cation of beginning of next epoch

The next part is to indicate the beginning of the next epoch, i.e, to make sure

that it is safeto accessthe window for the next epoch. It is to be noted that MPI
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calls provide assertionsthat can be used to give hints if there are no precedingor

succeedingone-sidedoperations and in that casethe fencecan be optimized. Here

we do not handle the assertions,but look at the generalcase.In our design,we usea

MPI Barrier call to indicate the beginning of the next epoch. As mentioned earlier,

typical Barrier implementation useslog(n) communication stepsleadingto a scalable

solution. One trade-o� of using this approach is that it forceseveryone in the group

to synchronize and we might loseout on some�ner grain synchronization betweena

subsetof members of the fencegroup.

Prep osting Receiv e Descriptors

One issuewith using RDMA Write with immediate functionality is the needto

prepost receiver descriptors. We currently handle this issueby preposting a �xed

number of receive descriptorsinitially and repost additional descriptorsin the fence

synchronization call. We post additional receiveson receivingRDMA write comple-

tions. However, in caseswherethe fencesynchronization is not calledoften and there

are extremely large number of Put operations, there is a scenarioin which we might

run out of receive descriptors. One solution to this approach is to usethe In�niBand

SharedReceive Queue(SRQ) mechanism [57] which allowse�cien t sharingof receive

bu�ers acrossmany connections.When the number of available bu�ers in the shared

queuedrops below a low watermark threshold, an interrupt can be generatedand

additional bu�ers are posted. Another approach is to use an asynchronous thread

that can post the receives.

Henceforthwe will refer to this approach asFence-Imm-RI. In this work we have

focusedon In�niBand Architecture. However, similar designscan be proposedfor
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other interconnectsthat can provide remote completion mechanismsfor RDMA op-

erations.

6.4 Exp erimen tal Results

In this sectionwepresent the experimental evaluation of the di�erent fencedesigns.

We characterize the performanceof the proposeddesignswith the di�erent micro-

benchmarks representing various communication patterns.

Exp erimen tal testb ed

Our experimental testbed is a 64 node (512-core)Intel cluster. Each node of our

testbed is a dual processor(2.33 GHz quad-core)systemwith 4 GB main memory.

The CPUssupport the EM64T technologyand run in 64bit mode. The nodessupport

8x PCI Expressinterfacesand are equipped with MT25208 HCAs with PCI Express

interfaces. A Silverstorm 144 port switch is used to connect all the nodes. The

operating systemusedis RedHat Linux AS4. All the experiments are run with one

processper node con�guration.

Metho dology

In this sectionwe describe the methodology for our evaluation. First we demon-

strate the overlap capabilitiesof onesidedbasedimplementations ascomparedto one

sided communication over two sided basedimplementations. Next, we focus on the

synchronization overheadof our new Fence-Imm-RIdesigncomparing it with imple-

mentations through a set of micro benchmarks and �nally we comparethe di�erent

designsfor a Halo communcation pattern benchmark.
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6.4.1 Overlap

In this sectionwe demonstratethe overlap potential for our one-sidedimmediate

approaches comparedwith the two sided implementation. Each processissuesPut

calls to its neighbor between two fencesynchronization calls. Increasingamount of

computation is insertedafter the Put call andbeforethe secondfencecall. The overlap

is measuredasthe amount of computation that can be insertedwithout a�ecting the

overall latency. The experiment was run for varying messagesizes. The results are

shown in Fig. 6.7. We observe that the two sided Deferred implementation shows

virtually no overlap. This is expected becauseall the Put operations are deferred

and issuedinside the secondfenceand hencethere is no scope for overlap. Whereas

for all the Immediate approachesusing one sided implementation good overlap can

be achieved for messagesizesbeyond 16K and close to 90% overlap for message

sizeslarger than 64k. In the following sectionswe concentrate on comparing the

synchronization overheadof our newfencedesign(Fence-Imm-RI)ascomparedto all

the other approaches.

6.4.2 Basic Collectiv es Performance

Sincethe fencedesignsusesomeof the collectives in its implementation in order

to exchangethe number of remote operations as well as to synchronize for the next

epoch, we show the baselineperformanceof the collective operations: Barrier,All-

Reduceand Reducescatter �rst in this section. This would help us in understanding

the performanceof various fencedesigns. Table 6.1 shows the results for up to 64

processes,for these collectives. The All-Reduce and Reducescatter numbers are
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Figure 6.7: Overlap performance

shown for 256bytes messagesize. Thesecollectivesshow good scalability with 40-50

usecslatencieson 64 processes.

Numprocs Barrier Allreduce ReduceScatter
2 3.66 7.75 6.84
4 10.79 13.78 11.27
8 18.65 20.9 16.26
16 27.21 30.34 21.99
32 37.89 43.15 29.19
64 44.13 51.9 33.18

Table 6.1: Basic CollectivesPerformance(usecs)

6.4.3 Fence Synchronization Performance

In this section we evaluate the performanceof the fencealone without any one-

sided communication operations. This measuresthe overhead involved in a fence
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Figure 6.8: FencePerformancefor Zero Put

synchronization. The results are shown in Fig. 6.8. Sincethere are no data transfer

operations, there is no overheadof the data messagesin terms of local and remote

completionsfor one-sidedoperations. We still needto use the collectives to inform

the other processesthat the fencecan completeand also that the next fenceepoch

can begin. The Fence-Imm-Naive performs the worst, becauseof the all pair-wise

synchronization happening to indicate the end of the epoch. The Fence-Imm-Opt

and Fence-Imm-RI perform close to each other since both of them use Barrier to

indicate the start of next epoch. The Fence-Imm-Opt performs slightly better than

the Fence-Imm-RI, the reasonfor this is becausethe Fence-Imm-Opt usesReduce

Scatter collective as opposedto the AllReduce collective usedby the Fence-Imm-RI

scheme. From Table 6.1, we can seethat the ReduceScatter collective has a lower

latency than that of AllReduce. We seethat the Fence-Defwhich usesthe two sided

approach performs the best, since it does not need to use additional collective to

indicate the start of an epoch.
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Figure 6.9: FencePerformancefor SinglePut

6.4.4 Fence Synchronization with Comm unication Performance

In the previous section, we evaluated the di�erent schemesfor just the fence

synchronization overhead. In this sectionwe evaluate the scalability of our fenceim-

plementations with communication operations which is more re
ectiv e of usagein a

one-sidedapplication. First we evaluate the performanceof fencewith a singlePut of

16 bytes messagesizeissuedby all the processes.The results are shown in Fig. 6.9.

For this pattern, we observe that Fence-Imm-Naive performsvery badly. However it

is interesting to comparethe performanceof Fence-Imm-Optand Fence-Imm-RI.We

now seethat the Fence-Imm-RIoutperformsthe Fence-Imm-Optscheme. The reason

for this is the Fence-Imm-RI relies on the hardware RDMA-Write with immediate

for remote completions, whereasthe Fence-Imm-Opt has to issuecompletion mes-

sageswhich increasesthe overhead. This di�erence is magni�ed further in the next

experiment where each processissuesPuts to 8 neighbors and hencethe number of

completion messagesincreasesfurther for the Fence-Imm-Opt. The results for this
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Figure 6.10: FencePerformancefor Multiple Puts

experiment is shown in Fig. 6.10. The two-sidedapproach still performsthe best be-

causeit haslower overheadfor small messagesand cancombine the data transfer and

synchronization message.But it needsto be noted that it haspoor overlap capability.

6.4.5 Halo Exchange Comm unication Pattern

Scienti�c applications often communicate in a regular pattern. Halo exchangeof

messagesis a very popular model in which each nodecommunicateswith a �xed num-

ber (4, 8, 26, etc) of neighbors. Theseusually correspond to the parallel processing

of multi-dimensional data in which each computeprocesshandlesa certain sectionof

this data set. The neighbors exchangemessagesto handle border conditions. This

communication pattern is more representativ e of real world applications. We simu-

late this halo exchangepattern for 4 and 8 neighbors and evaluate the two schemes.

Every processinitiates the one-sidedoperation with its neighbor and simultaneously

performsa �xed amount of computation.
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Figure 6.11: Fence performancewith Halo Exchange: (a) 4 neighbors and (b) 8
neighbors

The results for 4 and 8 neighbors are shown in Fig. 6.11(a) and Fig. 6.11(b),

respectively. Here we observe that our new Fence-Imm-RI scheme outperforms all

the other schemes. All the immediate approacheshave good computation/ commu-

nication overlap, whereasthe two-sideddeferredapproach has very poor computa-

tion/communication overlap. The Fence-Imm-RIhasreasonablylow synchronization

overheadand very good computation/communication overlap and henceshows the

best performance.
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6.5 Related Work

Someof the MPI-2 implementations that support one-sidedcommunication are

MPICH2 [9, 33], OpenMPI [12],WMPI [44], NEC [63], SUN-MPI [16]. The NEC

implementation [63] usesAllreduce and Barrier to implement fencesynchronization.

However they do not use RDMA Write with Immediate mechanism for remote no-

ti�cations. The RDMA Write with Immediate feature has been explored in [42]

for designingMPI Alltoall over In�niBand. In our work we are using it to designa

scalablefencesynchronization.
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CHAPTER 7

READ MODIFY WRITE MECHANISMS

One of the important operations in a one-sidedmodel is read-modify-write. Applica-

tions like Hydra[51]which is basedon MPI-2 one-sided,predominantly usethis oper-

ation. One-sidedapplications can either usetheseinterface if they are provided, else

they needto build on top of existing primitiv es. MPI-2 semantics provide MPI Put,

MPI Get and MPI Accumulate operations that can be usedto implement the read-

modify-write operations. In this work, shown in the highlighted part of Figure 7.1

of the proposedresearch framework, we study the di�erent mechansimsfor providing

this capability and further explore how the remote atomic operations provided by

In�niBand can be leveragedto provide better support for theseoperations.

7.1 HPCC Benchmark

HPCC Benchmark suite is a set of tests that examinethe performanceof HPC

architectures that stress di�erent aspects of HPC systemsinvolving memory and

network in addition to computation [56]. HPCC RandomAccessbenchmark is oneof

the benchmarks in this suite which measuresthe rate of random updates to remote

memory locations. Currently this benchmark is implemented basedon MPI two-

sided semantics. In this work we design di�erent MPI-2 versionsof the Random
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Figure 7.1: Overview

Accessbenchmark using the MPI-2 one-sidedalternatives. We use the one-sided

versions of the Random Accessbenchmark as a casestudy for studying di�erent

implementations of the read-modify-write operations and provide optimizations to

improve the performance.

The HPC Challenge(HPCC) benchmark suite has been funded by the DARPA

High Productivit y Computing Systems(HPCS) program to help de�ne the perfor-

manceboundariesof future Petascalecomputing systems[22]. HPCC is a suite of

teststhat examinethe performanceof high-endarchitecturesusingkernelswith mem-

ory accesspatterns more challengingthan thoseof the High PerformanceLINPACK

(HPL) benchmark usedin the Top500list. The RandomAccessbenchmark measures
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the rate of integer updates to random memory locations (GUPs). It usesxor opera-

tion to perform the updateson the remotenode. The veri�cation procedureallows1%

incorrect or skipped updateswhich allows looseconcurrent memoryupdate semantics

on sharedmemory architecture. It allows optimization in terms of aggregatingup to

1024updates to improve the performance. There has beenearlier work to improve

the performanceof this benchmark for blue-geneclusters[26].

7.2 One sided HPCC Random Access Benchmark: Design
Alternativ es

In this section we describe the di�erent approaches taken to implement the one

sided version of the HPCC Random Accessbenchmark. As described earlier, the

random accessbenchmark measuresthe GUPs rating. The term randomly means

that there is little relationship betweenoneaddressto be updated and the next. An

update is a read-modify-write operation on a table of 64-bit words. An addressis

generated,the valueat that addressread from memory, modi�ed by an xor operation

with a literal valueand that newvalue is written back to memory. Currently the MPI

version of the benchmark is basedon two sidedversion. In this version the random

addressand value is generatedand is sent to the remote node. The remote node

receivesthis data and appropriately updatesthe memory location.

Design Issues

In this sectionwe �rst describe the semantics and mechanismso�ered by MPI-2

for designingone-sidedapplications. In a one-sidedmodel, the sendercan accessthe

remoteaddressspacedirectly without an explicit receive postedby the remotenode.

The memory area on the target processthat can be accessedby the origin process
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is called a Window. In this model we have the communication operations MPI Put,

MPI Get and MPI Accumulate and the synchronization calls to make sure that the

issuedone sided operations are complete. There are two types of synchronization:

a) active in which the remote node is involved and b) passive in which the remote

node is not involved in the synchronization. The active synchronization calls are

collective on the entire group in caseof MPI Fenceor a smaller group in caseof

Start Completeand Post Wait model. This could lead to somelimitations when the

number of synchronizations neededper processare di�erent for di�erent nodes. In

passive synchronization the origin processissuesMPI Lock and MPI Unlock call to

indicate the beginning and end of the accessepoch. Next we describe our approach

taken in designingthe one-sidedversionsof the HPCC Random Accessbenchmark.

We map the table memory to the Window so that the one-sidedversionscan read

and write directly to this memory.

7.2.1 HPCC Get-Mo dify-Put (HPCC GMP)

In the �rst approach we call MPI Get to get the data, perform the modi�cation,

then use MPI Put to put the updated data to the remote location. As compared

to the two sided versionsthere are no receive calls made on the remote node. Also

the active synchronization model cannot be usedsincewe cannot match the number

of synchronization calls acrossall nodes. This is becausethe number of remote

updatesaswell asthe location of the remoteupdatesfor each nodecanvary randomly.

Henceweusepassivesynchronization MPI Lock and MPI Unlock calls in this scheme.

Further we need one set of Lock and Unlock calls to fetch the data, perform the

modi�cation, then another set of Lock and Unlock operations to put the data. The
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reasonfor this is the 
exibilit y of MPI-2 semantics which allows MPI Get to fetch

the data in Unlock. Also the MPI Get and MPI Put can be reorderedwithin an

accessepoch. We describe this approach in Fig. 7.2a and will henceforth refer to

it as HPCC GMP. This approach leads to a lot of network operations resulting in

lower performance. Further the possibility of incorrect updates increases. This is

due to the coherencyissuesthat might arise becauseof parallel updates occurring

simultaneously. To make sure that there are no incorrect updates,mutual exclusion

(atomicity) has to be implemented on top of the existing approach which could lead

to further degradationin performance.

7.2.2 HPCC Accum ulate (HPCC A CC)

Our next approach usesthe MPI Accumulate operation provided by MPI-2. MPI-

2 semantics provide MPI Accumulate which are basically atomic reductions. This

non collective one-sidedoperation combines communication and computation in a

single interface. It allows the programmer to update atomically remote locations

by combining the content of the local bu�er with the remote memory bu�er. This

implementation calls MPI Accumulate betweenMPI Lock and MPI Unlock synchro-

nization calls. Using this approach shown in Fig. 7.2b, we do not have the issueof

incorrect updates. Also ascomparedto our HPCC GMP, the number of network op-

erations is signi�cantly reduced.Another approach is to useAccumulate with Active

synchronization model using Win Fence. This could be done by calling Win Fence

at the very beginning, performing all the updates using MPI Accumulate and then

call one Win Fenceat the very end. All the processesneed to call two Win Fence
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MPI_Free_Win( )

MPI_Create_Win( )MPI_Create_Win( ) MPI_Create_Win( )

MPI_Type_Create_Struct (datatype) 

MPI_Type_Commit (datatype)

MPI_Lock( )

MPI_Accumulate(datatype )

MPI_Unlock( )

MPI_Type_Free(datatype)

MPI_Free_Win( )

MPI_Lock( )

MPI_Accumulate( )

MPI_Unlock( )

MPI_Free_Win( )

MPI_Lock( )

MPI_Get ( )

MPI_Unlock ()

Modify Operation

MPI_Unlock ()

MPI_Lock( )

LOOP LOOP LOOP

   a) HPCC_GMP                                        b)HPCC_ACC                                                 c)HPCC_ACC_AGG

MPI_Put ( )

Figure 7.2: Code snippets of one-sidedversionsof HPCC RandomAccessbenchmark

calls, one at the beginning and one at the end. However sinceMPI-2 semantics al-

lows the actual data transfer to occur inside the synchronization call that closesthe

exposureepoch, all the accumulates could happen during the secondWin Fencecall.

Many MPI implementations actually make use of this 
exibilit y. This violates the

random benchmark rule that you could store only 1024 updates at the maximum

beforesendingthem. Hencewe did not considerthis approach.

7.3 Optimizations

In this sectionwe describe two optimizations we proposein this paper to improve

the performanceof the one-sidedversionof HPCC Random Accessbenchmark.

7.3.1 Soft ware Aggregation

In this technique we want to aggregateor pack a number of update operations

together so that the overheadof sendingas well as synchronization operations can
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be reduced. Using this approach, we aggregatea bunch of update operations before

sendingthem asa singlecommunication operation. The HPCC randomaccessbench-

mark allows each processorto storeup to 1024updatesbeforesendingthem out. The

MPI-2 semantics provides datatypes feature that can be leveragedto achieve aggre-

gation. For one-sidedoperations both the senderand destination datatypesneedto

be created. We createMPI Type struct senderand receiver datatypesto represent a

bunch of updatesin the following manner. The count holds the number of updatesto

be aggregated,the block lengthsare all one,the displacement array holds the remote

addressor local addressrespectively of each update and the MPI datatype of each

entry is 64 bit unsignedinteger. We then usethe createddatatypesto issuea single

communication call asshown in Fig. 7.2c. Using this approach we expect to improve

the performancesincethe number of network operationsare minimized.

7.3.2 Hardw are based Direct Accum ulate

In�niBand provides hardware atomic fetch and add operation that can be lever-

agedto optimize MPI Accumulate operation for MPI SUM. The Accumulate opera-

tions use the hardware fetch and add operation that can provide good latency and

scalability. Oneof the limitations of this approach is that we canonly do single64 bit

accumulates with each fetch and add operation, i.e. aggregationis not possible. A

bene�t of using this approach is that sinceit is truly one-sidedin nature, it provides

more scope for overlap that can lead to improved performance. It is to be noted

that this optimization is implemented in the underlying MVAPICH2 MPI library as

a prototype and is transparent to the application writer.
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7.4 Performance Evaluation

In this section,we evaluate the performanceof the one-sidedversionof the HPCC

benchmark for the di�erent schemes. We present somemicro-benchmark results to

give the basicperformanceof di�erent one-sidedoperationsand show the potential of

our proposedoptimizations. The experimental testbed is x86 64 node cluster with 32

Opteron nodesand 32 Intel nodes. Each node has 4GB memory and equipped with

PCI-Express interface and In�niBand DDR network adapters (Mellanox In�niHost

I I I Ex HCA).

Basic performance of one-sided operations

In this sectionweshow the performanceof the basicone-sidedoperationsMPI Put,

MPI Get and MPI Accumulate. Fig. 7.3ashows the small messagelatency for these

operations. The latency for 8bytes for put and get are 5.68 and 11.03usecs,respec-

tively, whereasthe accumulate latency is 7.06usecs.Sinceget modify put implemen-

tation needsboth get and put in addition to modify and synchronization operation,

we expect this performanceto be lower comparedto the accumulate basedapproach.

HPCC one-sided benchmark performance with di�eren t schemes

In this section we evaluate the performanceof the two di�erent versionsof the

benchmark HPCC GMP and HPCC ACC. The results are shown in Fig. 7.3b. As

expectedthe HPCC ACC performsbetter than the HPCC GMP becauseof the num-

ber of synchronization and communication operations in HPCC GMP. The overhead

of theseadditional network operations leads to lower performanceof HPCC GMP.
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Figure 7.3: Basic Performance(a) Micro-benchmarks and (b) Basic HPCC GUPs

This performancegap increaseswith increasingnumber of processorssincethe syn-

chronization cost increasesfurther for larger number of nodes. Hence we choose

HPCC ACC as our basecasefor further optimizations and evaluations.

Aggregation Bene�ts

To improve the performanceof the Accumulate operation, we proposedaggrega-

tion using Accumulate with datatype. In this section we evaluate the performance

bene�ts of using datatype at micro-benchmark level. In the basicversionwe do mul-

tiple accumulates corresponding to the number of updates. In the aggregatedversion

we createa datatype corresponding to the number of updates and perform a single

accumulate operation with that datatype. Fig. 7.4a shows the results of our study.

With increasingamounts of aggregation,the Accumulate with datatype outperforms

the multiple accumulate schemes.With aggregationthe costof sendingoverheadand

the synchronization overheadsare limited to the number of aggregatedoperations.

Next we comparethe performanceof HPCC ACC AGG with HPCC ACC for 512

and 1024 aggregations. The results are shown in Fig. 7.4b. We observe a similar
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Figure 7.4: Aggregation Performance Bene�ts (a) Basic Aggregation Micro-
benchmarks and (b) HPCC with Aggregation

trend with the optimized HPCC ACC AGG performing better than the HPCC ACC

scheme. This result demonstratesthe bene�ts that aggregationcan provide.

Hardw are based Direct Accum ulate

In this sectionwe �rst study the bene�ts that could be achieved using the hard-

ware basedfetch and add operation to implement a read modify write operation at

microbenchmark level (DIRECT ACC). We compare its performancewith the the

schemesthat usesGet Modify Put (GMP) approach and MPI Accumulate (ACC)

approach. The MPI implementation allows optimizations that delays the actual lock

and data transfer operation to happen during unlock. In this casemeasuringjust the

lock and unlock cost doesnot provide any additional insight. Hencewe measurethe

latency that includesboth data transfer and lock/unlo ck synchronization operation.

Fig. 7.5 comparesthe basicperformanceof GMP, ACC and DIRECT ACC. We note

that for single updates of 64bit integer, the (DIRECT ACC) scheme provides the
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lowest latency. This is becausethe existing MPI Accumulate implementation is in-

herently two sidedwhereasthe Direct Accumulate implementation makesuseof the

truly one-sidedhardware feature.

Next we try to understand the bene�ts that a hardware basedAccumulate op-

eration can provide to an application. To evaluate this we modify the HPCC ACC

benchmark to usethe MPI SUM operation insteadof the MPI BXOR operation and

call this as HPCC ACC MOD. The veri�cation phaseis correspondingly modi�ed.

We then comparethe HPCC ACC which usesthe existing MPI Accumulate imple-

mentation in the MVAPICH2 library with the modi�ed HPCC ACC MOD which uses

our Direct Accumulate prototype implementation. The results are shown in Fig. 7.6.

We observe that the Direct accumulate performs signi�cantly better than the basic

accumulate. Also the Direct Accumulate seemsto scalevery well with increasing

number of processors.The reasonfor this is two-fold: 1) low software overheadand

2) true one-sidednature of the hardware basedDirect Accumulate.
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Finally we compareour two proposedtechniquesDirect Accumulate and software

aggregation(Accumulate with datatype). The results are shown in Fig. 7.7. The

software aggregationschemebeats the hardware baseddirect accumulate approach

sincecurrently the hardware fetch and add operation doesnot support aggregation.

Also the gap betweenthe two schemesseemto be narrowing with increasingnodes.

This demonstratesthe scalability of the hardware basedoperationsand suggeststhe

bene�ts of having aggregationin hardware as well.

In this work, wedesignedMPI-2 one-sidedversionsof HPCC randomaccessbench-

mark usingget modify put and MPI Accumulate operations. The modi�ed one-sided

HPCC RandomAccessbenchmarks are available on line for reference[13]. We evalu-

ated thesetwo di�erent approacheson a 64nodecluster. To improve the performance

we explored two di�erent techniques: a) software basedaggregationand b) utilizing

hardware atomic operations. We analyzed the bene�ts and trade-o�s of these two
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Figure 7.7: Software Aggregationvs Hardware Direct Accumulate bene�ts

approaches. Our studiesshow that the software basedaggregationperformsthe best.

We alsodemonstratedthe potential and scalability of the hardware basedapproach.

7.4.1 Discussion

Current implementations for HPCC RandomAccessbenchmark arebasedon two-

sided communication primitiv es. While the main objective of this work is not to

comparethe designsbasedon one-sidedand two-sidedsemantics, it is also impor-

tant in this context to note that the current one-sidedimplementations are largely

basedon two-sidedprimitiv es in the MPI libraries and hence,such an evaluation is

not as informative. In�niBand's hardware fetch and add operation provides a de-

sign opportunit y for a Direct Accumulate for MPI Sum operation for a single64 bit

�eld. While we have demonstratedthat both aggregationand direct hardware based

accumulation has bene�ts, an aggregateddirect accumulate is likely to yield much

higher performancebene�t. However it is clearly not possibleto implement such a

designwith current In�niBand's hardware. Also, it is to be noted that the hardware
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fetch and add operation currently only allows the implementation of accumulation of

MPI Sum for 64 bit �elds and other operations needadditional hardware support.

7.5 Related Work

In [40, 37], the authors have usedIn�niBand hardware features to optimize the

performanceof MPI-2 onesidedoperations. Other researchers [39]study the di�erent

approaches for implementing the one sided atomic reduction. The authors in [17]

have lookedat utilizing the hardwareatomic operationsin Myrinet/GM to implement

e�cien t synchronization operations. Recently several researchershavebeenlooking at

providing optimizations to the HPCC benchmark. In [26] the authorshave suggested

techniquesfor optimizing the Random accessbenchmark for Blue Geneclusters. In

[59] the authors have evaluated UPC programming model on Cray machines using

the HPCC benchmark suite.
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CHAPTER 8

NON-CONTIGUOUS DATA-TRANSFERS

Non-contiguous communication patterns are quite commonin scienti�c applications.

several MPI applications such as (de)composition of multi-dimensional data vol-

umes[10,24] and �nite-element codes[18]often needto exchangedata with algorithm-

related layouts betweentwo processes.In the NAS benchmarkssuch asMG, LU, BT,

and SP, non-contiguous data communication hasbeenfound to be dominant [41]. As

oneof its important features,MPI provides datatype as a powerful and generalway

of describingarbitrary collectionsof data in memory in a compact fashion. The MPI

standard also provides run time support to create and managesuch MPI derived

datatypes. MPI derived datatypesare expected to becomea key aid in application

development. In practice, however, the poor performanceof many MPI implementa-

tions with derived datatypes [18, 32] becomesa barrier to using derived datatypes.

This is primarily due to copy overheadassociated with multiple copiesfrom and to

contiguous bu�ers internally.

A programmer often preferspacking and unpacking non contiguous data manu-

ally even with considerablee�ort. Recently, a signi�cant amount of research work

have concentrated on improving datatype communication in MPI implementations,

including 1) Improved datatype processingsystem [32, 52], 2) Optimized packing
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and unpacking procedures[18, 32], and 3) Taking advantage of network featuresto

improve non contiguous data communication [67]. Our previouswork usedmultiple

RDMA writes, henceforthreferred to as Multi-W, as an e�ective solution to achieve

zero-copy datatype communication [67].

Interconnects
Modern

Middleware

Scatter/Gather Send/Recv

Advanced InfiniBand Primitives

One-sided 

Remote Atomics RDMA 

(put,get,accumulate),datatypes

One-sided API

SCIENTIFIC APPLICATIONS AND BENCHMARKS

Enabling Overlap

Non-blocking

Passive sync

Optimizations
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Migrating Locks

Designs and Optimizations

Optimized 

capability

(active,collective,passive)
Data transfer Synchronization
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Read-Modify

Petascale
Applications

Fence sync scheduling

Figure 8.1: Overview

In this work, shown in the highlighted part of Figure 8.1 of the proposedresearch

framework, we focus on improving non-contiguous data communication by taking

advantage of advancedfeaturesof modern interconnects.The drawback of the tradi-

tional pack/unpack basedapproachesfor implementing datatypes is that it involves

memory copieson both senderand receiver sides. Thus, zero copy communication

protocols are of increasedimportance becausethey improve memory performance
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and also have reducedhost CPU involvement in moving data. Hencewe focus on

leveraging the bene�ts of zero copy messagetransfers to implement e�cien t proto-

cols for datatype communication. In this work we explore zero-copy designsusing

In�niBand's hardware scatter/gather operations.

8.1 Non-con tiguous Poin t-to-p oin t Data-transfer

The motivation for proposing our new zero-copy scheme is two-fold. First, we

would like to address/alleviatethe limitations of our previousapproaches. Secondly,

with the emergenceof PCI-Expressbus, the network bandwidth that can be utilized

is greatly enhanced.This further reinforcesthe needto comeup with schemesthat

can directly exploit this enhancedbandwidth to the maximum. Zero copy schemes,

becausethey are not limited by memory bandwidth are more appealing. However

basedon our previouswork, though the Multi-W zerocopy schemedoesbetter than

the copy basedapproaches, it still may result in under utilization of the network in

many scenarios.In�niBand provides the Gather Sendand Scatter Receive capability

through send/receive channelsemantics. Wewould like to explorethis option to come

up with an e�cien t zerocopy scheme. The following experiment below tries to assess

the potential bene�ts of using SendGather and Receive Scatter at the VAPI layer

(low level In�niBand API provided by Mellanox).

Motiv ating Case Study for the Prop osed SGRS Scheme

Considera casestudy involving the transfer of multiple columnsin a two dimen-

sional M � N integer array from one processto another. There are two possible

zero-copy schemes. The �rst approach is to use multiple RDMA writes, one per

row. The secondapproach usesSendGather/Receive Scatter. We comparethesetwo
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schemesover the VAPI layer, which is an In�niBand API provided by Mellanox [7].

The �rst scheme posts a list of RDMA write descriptors. Each descriptor writes

one contiguous block in each row. The secondschemeposts multiple SendGather

descriptorsand Receiver Scatter descriptors. Each descriptor has 50 blocks from 50

di�erent rows (50 is the maximum number of segments supported in onedescriptor in

the current versionof Mellnox SDK). Wewill henceforthrefer to thesetwo schemesas

\Multi-W" and \SGRS" in the plots. In the �rst test, we considera 64� 4096integer

array. The number of columnsbeing sent varies from 8 to 2048. The total message

sizevariesfrom 2 KBytes to 512KBytes accordingly. The bandwidth test is usedfor

evaluation and the bandwidth number is reported in order of Million bytes (MB/s).

As shown in Figure 8.2, the SGRS scheme consistently outperforms the Multi-W

scheme. In the secondtest, the number of blocks variesfrom 4 to 64. Three di�erent
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messagesizeswere studied: 128 KBytes, 256 KBytes, and 512 KBytes. Figure 8.3
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shows the bandwidth results with di�erent number of blocks and di�erent message

sizes.When the number of blocks is small, both Multi-W and SGRSschemesperform

comparably. This is becausethe block size is relatively large. The network utiliza-

tion in the Multi-W is still high. As the number of segments increasewe observe a

signi�cant fall in bandwidth for the Multi-W schemewhereasthe fall in bandwidth is

negligiblefor the SGRSscheme. There are two reasons.First, the network utilization

becomeslower when the block sizedecreases(i.e. the number of blocks increases)in

the Multi-W scheme. However, in the SGRSscheme,the multiple blocks in onesend

or receive descriptor are consideredas one message.Second,the total startup costs

in the Multi-W schemeincreaseswith the increaseof the number of blocks because

each block is treated as an individual messagein the Multi-W scheme and hence

the startup cost is associated with each block. From thesetwo examples,it can be

observed that the SGRS scheme can overcomethe two drawbacks in the Multi-W

by increasingnetwork utilization and reducing startup costs. Thesepotential ben-

e�ts motivate us to design MPI datatype communication using the SGRS scheme

described in detail in Section10.

8.1.1 Prop osed SGRS (Send Gather/Recv Scatter) Approac h

In this section we �rst describe the SGRS scheme. Then we discussthe design

and implementation issuesand �nally look at someoptimizations to this scheme. The

basic idea behind the SGRSscheme is to use the scatter/gather feature associated

with the send receive mechanism to achieve zero-copy communication. With this

feature we can send/receive multiple data blocks as a single messageby posting

a send gather descriptor at sourceand a receive scatter descriptor at destination.
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Figure 8.4: a)Basic Idea of the SGRSSchemeand b) SGRSProtocol.

Figure 8.4a illustrates this approach. In�niBand also provides RDMA Write with

Gather and RDMA Readwith Scatter capability. The SGRSschemecanhandlenon-

contiguit y on both sides.The RDMA Write Gather or RDMA ReadScatter handles

non-contiguit y only on oneside. Hence,to achievezero-copy datatypecommunication

basedon RDMA operations, the Multi-W schemeis needed[67]. Comparedto the

Multi-W scheme,the SGRSschemereducesthe number of descriptorsdramatically.

It also increasesthe network utilization. There are two requirements. First, all the

contiguous blocks needto be registered. Second,the sendershould send its layout

information to the receiver. The cost of sending the layout could be high in some

cases.We describe optimization mechanismslike layout caching later in this section

to alleviate this problem.
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Design and Implemen tation Issues

Wenow discussthe intrinsic issuesrelatedto the MPI implementation of the SGRS

scheme. The communication protocol and design issuessuch as secondaryconnec-

tion, progress,layout exchange,posting descriptors,and user bu�er registration are

addressedhere.

Comm unication Proto col

The SGRSschemeis deployed in Rendezvous protocol to transfer large datatype

messages.For small datatype messages,the Generic scheme is used. As shown in

Figure 8.4b, the sender�rst sendsthe Rendezvousstart messagewith the data layout

information out. Second,the receiver receives the above messageand �gures out

how to match the sender'slayout with its own layout. Then, the receiver sendsthe

layout matching decisionto the sender.After receivingthe reply message,the sender

posts send gather descriptors. It is possiblethat the sendermay break one block

into multiple blocks to meet the layout matching decision. There are several design

issues: Secondaryconnection, Progress,Layout exchange, Posting descriptors and

Registration.

Secondary connection

The SGRSschemeneedsa secondconnectionto transmit the non-contiguousdata.

This needarisesbecauseit is possiblein the existing MVAPICH designto prepost

somereceive descriptorson the main connectionas a part of its 
o w control mecha-

nism. Thesedescriptorscould unwittingly match with the gather-scatterdescriptors

associated with the non-contiguous transfer. One possibleissuewith the extra con-

nection is scalability. In our design, there are no bu�ers/resources for the second
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connection. The HCA usually can support a large number of connections. Hence

the extra connectiondoesnot hurt the scalability. The secondissueis out of order

messages.Having two connectionscan createout of order arrival of messageswhich

have to be handled carefully. However, in our design,sincethe control messagesas

shown in Figure 8.4b still use the primary connection, the out of order situation is

averted and the receiver still receivesthe messagein the sameorder.

Progress and Completion

Another issueis handling of completion of a message.In our designwe associate

a singlecompletion queuewith both connections.This �ts in well with the existing

framework for ensuringprogressof the communication call. The completionis handled

by polling for completionof scatter/gather descriptorson the secondconnection,and

we do not needan extra messageto indicate completion.

Layout exchange

The MPI datatype hasonly local semantics. To enablezero-copy communication,

both sidesshouldhave an agreement on how to sendand receive data. In our design,

the sender�rst sendsits layout information to the receiver in the Rendezvous start

messageas shown in Figure 8.4b. Then the receiver �nds a solution to match these

layouts. This decisioninformation is also sent back to the senderfor posting send

gather descriptors. To reduce the overhead for transferring datatype layout infor-

mation, a layout caching mechanism is desirable[36]. Implementation details of this

cache mechanism in MVAPICH can be found in [67]. In Section 8.2, we evaluate the

e�ectivenessof this cache mechanism.
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Posting Descriptors

There are three issuesin posting descriptors. First, if the number of blocks in

the datatype messageis larger than the maximum allowable gather/scatter limit,

the messagehas to be chopped into multiple gather/scatter descriptors. Second,the

number of postedsenddescriptorsand the number of postedreceive descriptorsmust

be equal. Third, for each pair of matched send and receive descriptors, the data

length must be the same.This basicallyneedsa negotiation phase.Both theseissues

can be handled by taking advantage of the Rendezvous start and reply messagein

the Rendezvous protocol. In our design, the receiver makes the matching decision

taking into account the layouts as well as scatter-gather limit. Both the senderand

the receiver post their descriptorswith the guidanceof the matching decision.

User Bu�er Registration

To senddata from and receive data into userbu�er directly, the userbu�ers need

to be registered. Given a non-contiguous datatype we can register each contiguous

block oneby one. We could alsoregister the wholeregionwhich coversall blocks and

gapsbetweenblocks. Both attempts have their drawbacks [66]. In [66], Optimistic

Group Registration(OGR) hasbeenproposedto make a trade o� betweenthe number

of registration and deregistration operations and the total sizeof registeredspaceto

achieve e�cien t memory registration on datatype messagebu�ers.

8.2 Performance Evaluation

In this sectionweevaluateand comparethe performanceof our SGRSschemewith

the Multi-W zero-copy schemeand the Generic scheme in MVAPICH. We perform
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latency, bandwidth, bi-directional bandwidth and CPU overheadtests using a vector

datatype to demonstratethe e�ectivenessof our scheme. Then we show the potential

bene�ts that can be observed for collective communication such asMPI Alltoall that

are built on top of point-to-p oint communication. Further, we investigatethe impact

of layout caching for our design. Another aspect of our evaluation is the impact

of our zero-copy scheme on di�erent platforms. The evaluation has been done on

two di�erent platforms. one platform basedon PCI-X and the other basedon PCI-

Express.

Exp erimen tal Testb ed

For our experiments we usedtwo clusterswhosedescriptionsare given below.

� PCI-X basedcluster: A cluster of 8 nodes,each with dual Intel Xeon 3.0 GHz

processors,512KB L2 cache, 2GB main memory, PCI-X 64-bit 133 MHz bus,

and connectedto Mellanox In�niHost MT23108DualPort 4x HCAs. The nodes

are connectedusing the Mellanox In�niScale 24 port switch MTS 2400. The

kernelversionusedis Linux 2.4.22smp.The In�niHost SDK versionis 3.0.1and

HCA �rm ware version is 3.0.1. The Front SideBus (FSB) runs at 533MHz.

� PCI-Expressbasedcluster: A cluster of 4 nodes,each with dual Intel Xeon 3.4

GHz processorsand 512MB DDR main memory. The nodessupport 8x PCI-

Expressand connectedto Mellanox In�niHost MT23108 DualPort 4x HCAs.

The nodesare connectedusing an In�niScale switch. The kernel version used

is Linux 2.4.21-15.EL.
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Microb enchmarks

In thesebenchmarks, increasingnumber of columnsin a two dimensionalM*4096

integer array are transferred between two processes.These columns can be repre-

sented by a vector datatype. We set up two casesfor the number of rows (M) in

this array: case1 with 64 rows and case2 with 128 rows. Basically case1 has a

`degreeof non-contiguit y' 64 and case2 has a `degreeof non-contiguit y' 128. The

number of columns is varied from 4 to 2048, the corresponding messagesizevaries

from 2 KBytes to 512KBytes. The latency, bandwidth and bidirectional bandwidth

experiments usethis setup.

Latency

The latency test is a ping-pong latency test with the vector datatype described

above. The PCI-X latency results for cases1 and 2 are shown in Figure 9.4 and

Figure 9.6. For each casewe comparethe two zero-copy schemes(SGRSand Multi-

W) and the Generic copy basedapproach. We also compareit with the latency of

the contiguous transfer which serves as the lower bound. When the messagesize is

small, the Genericschemedoesbetter than the zero-copy schemes.This is because,

for this range,the copy cost is not substantial whereasthe overheadassociated with

posting the descriptorsfor the non-contiguous segments dominate. Beyond a cut-o�

point, 32K in caseof SGRSscheme, the zero-copy schemesstart outperforming the

Genericschemeby a signi�cant margin. Beyond the cut-o� point the SGRSscheme

doesbetter than the Multi-W. This di�erence also increaseswhen the degreeof non-

contiguit y increasesbecauseMulti-W scheme needsto post a descriptor for each

segment individually. We observe that the SGRSschemereducesthe latency by up
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to 61%comparedto that of the Multi-W scheme. On PCI-Expressplatforms almost

similar trend can be observed for latency for the two casesas seenin Figure 9.5 and

Figure 9.7 except that the gap betweenthe SGRSschemeand the Multi-W scheme

widens. SGRS scheme reducesthe latency by up to 69% comparedto that of the

Multi-W scheme. Also on the PCI-Expressplatform the cut o� point beyond which

the zero-copy schemeperformsbetter is lowered.

Bandwidth

The bandwidth experiment usesthe standard bandwidth test except that the

datatype is a vector datatype described above. The PCI-X bandwidth results for

cases1 and 2 are shown in Figure 8.17 and Figure 8.19. The improvement factor

over the Multi-W schemevaries from 1.12to 4.0. It can alsobe observed that when

the degreeof non-contiguit y is large, the improvement of the SGRS scheme over

the Multi-W schemeis higher. This is becausethe improved network utilization in

the SGRSschemeis more signi�cant when there are more non-contiguous blocks of

small size. When the block size(the sizeof non-contiguous segment) is largeenough,

RDMA operations on each block can achieve good network utilization as well and

both schemesperform comparably. For largemessagesour schemeis able to achieve a

bandwidth closeto that of the peakcontiguousbandwidth. This is dueto the fact that

the large sizeof messagesassistedby the zero-copy mechanism is able to completely

saturate the network which is desirable.On PCI-Expressplatforms, Figure 8.18and

Figure 8.20show the bandwidth comparison.The trends seenon PCI-X platform are

further magni�ed in the context of PCI-Express. SGRSschemeperformsconsiderably

better than the Multi-W schemeand this performancegap is moreprominent in PCI-

Expressascomparedto PCI-X. The improvement factor over Multi-W is upto 7.2 on
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PCI-Expressplatforms. Further both the zero-copy approachesshow improvement in

bandwidth on PCI-Expressplatform ascomparedto PCI-X. The Genericcopy based

schemedoesnot show any signi�cant improvement acrossthe two platforms. This can

be attributed to the fact that the memory bandwidth on the PCI-Expressplatform

is similar to that of the PCI-X platform, and sincethe Generic schemeis basedon

copy, and the memorybandwidth is the bottleneck on our PCI-Expressplatform, the

Genericschemeis not able to leveragethe improvement in the network bandwidth.

Bidirectional Bandwidth

The memorybandwidth limitation of copy basedschemescanhave seriousimpact

whenwetakea look at the bidirectional bandwidth. In a bidirectional bandwidth test,

the non-contiguous data 
o w takesplacesimultaneously in both the directions. On a

PCI-X platform the bidirectional bandwidth attains a peakof 941MB/s for contiguous

data. The SGRSschemeand the Multi-W schemeare able to take advantage of this

improvement in the bandwidth whereasthe copy basedGeneric scheme saturates

around 548MB/s becausethe bottleneck is the memory copy. The results are shown

in Figure 8.21and Figure 8.2. Comparedto the Multi-W scheme,the SGRSscheme

does consistently better and is able to achieve a peak bandwidth of 910MB/s for

512K message.This behaviour standsout further on PCI-Expressplatform which can

achieve a peakbidirectional bandwidth of upto 1920MB/s almost double that of uni-

directional bandwidth. The PCI-Expressbidirectional bandwidth results are shown

in Figure 8.2 and Figure 8.2. The zero-copy basedschemescan directly leveragethis

improvement in the network bandwidth and can achieve a bidirectional bandwidth of

1876MB/s closeto that of peak contiguous bidirectional bandwidth whereasthere is

very little improvement for the copy basedscheme. Further comparedto the Multi-W
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scheme,the SGRSperformssigni�cantly better and shows an improvement of up to

3 times.

The new and emergingtrends in memory technology like DDR2, QDR, etc. could

signi�cantly relocate the bottlenecks in the system, presenting new interesting sce-

narios for further investigations.
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Figure 8.5: MPI Level Vector Latency 64 blocks a)PCI-X and b)PCI-Express

Performance of MPI Alltoall

Collective datatype communication can bene�t from high performancepoint-to-

point datatypecommunication provided in our implementation. Wedesigneda test to

evaluate MPI Alltoall performancewith derived datatypes. We usethe samevector

datatype we had usedfor our earlier evaluation.

Figure 8.11ashows the MPI Alltoall latency performanceof the various schemes

on 8 nodesfor the PCI-X platform. We study the Alltoall latency over the message

range4K-512K. Weran theseexperiments for two di�erent numbersof blocks: 64and
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128. Weobserve that the SGRSschemeoutperformsthe Multi-W schemeconsistently.

The gapwidensasthe number of blocks increases.This is becausethe startup costsin

the Multi-W schemeincreasewith the increaseof the number of blocks. In addition,

givena messagesize,the network utilization decreaseswith the increaseof the number

of blocks in the Multi-W scheme.

The MPI Alltoall latency performancefor PCI-Express platform was evaluated

on 4 nodes. The results are shown in Figure 8.11b. The SGRS scheme performs

better than the Multi-W scheme and this performancedi�erence is higher on the

PCI-Expressplatform ascomaparedto PCI-X platform.

CPU overhead evaluation

In addition to the latency and bandwidth, the host CPU usagefor the message

transfer is also a relevant metric, becauseit indirectly gives an estimate of CPU

availabilit y for the application progress.In this sectionwemeasurethe CPU overhead

involved for the two schemes. Thesetests were conductedon the PCI-X platform.

Figures8.12and 8.13comparethe CPU overheadsassociated at the sendersideand

receiver side, respectively. The SGRS scheme has lower CPU involvement on the

sendersideascomparedto Multi-W scheme. However on the receiver sidethe SGRS

schemehasan additional overheadascomparedto practically closeto zerooverhead

in caseof Multi-W scheme.

Impact of Layout Caching

In both the Multi-W and SGRSschemes,the layout hasto be exchangedbetween

the senderand receiver before data communication. In this test, we studied the

overheadof transferring the layout information. We considera synthetic benchmark
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wherethis e�ect might be prominent. In our benchmark, we needto transfer the two

leadingdiagonalsof a squarematrix betweentwo processes.Thesediagonalelements

are actually small blocks rather than singleelements. Hence,the layout information

is complex and we need considerablelayout size to describe it. As the size of the

matrix increases,the number of non-contiguous blocks correspondingly increasesas

well as the layout description.

Figure 8.14shows the percentage of overheadthat is incurred in transferring this

layout information when there is no layout cache ascomparedwith the casethat has

a layout cache. For smaller messagesizes,we can seea bene�t of 10 percent and

this keepsdiminishing as the messagesize increases. Another aspect here is that

even though for small messagesthe layout sizeis comparablewith messagesize,since

the layout is transferred in a contiguous manner, it takesa lesserfraction of time to

transfer this as comparedto the non-contiguous messageof comparablesize. Since
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the cost associated in maintaining this cache is virtually zero, for messagesizesin

this rangewe can bene�t from layout caching.
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8.3 Non-con tiguous One-sided Data-transfer

In this sectionweaddresshow to handlenon-contiguousdata transfer e�cien tly in the

context of one-sidedcommunication. In one-sidedcommunication, both the local and

remote locationsare speci�ed on the senderor origin side. The approachesdescribed

in the previoussectioncan alsobe usedfor one-sidedcommunication. This work was

donein the context of ARMCI which is a one-sidedcommunication library described

in section 2.5. We use a helper thread baseddesignwhich involves limited remote

host involvement to provide this support. We intend to extend this designfor MPI-2

one-sidedcommunication.

In the following sectionswe describe a basicapproach and our proposedzero-copy

approach to handle non-contiguous data transfer in ARMCI library.

8.3.1 Host-Based Bu�ered Approac h

A simple way of performing non-contiguous transfers is to maintain a contiguous

bu�er on both the local and the remote side and move data using this contiguous

bu�er. This approach requiresheavy involvement on both the local and remotesides

in moving the data betweenthe bu�er and the noncontiguous sourceor destination.

An enhancement to this approach is to divide the data into chunks and pipeline the

memory copy and nonblocking communication so that they overlap. Basedon the

messagesize,the messagetransmission/receptioncanbebroken into smallerrequests.

A copy of onepart of the requestcan be overlapped with the transmissionof another

piece. Fig. 8.15shows the stepsinvolved in a host-basedbu�ered protocol.
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Another approach that can be used here is to do multiple contiguous transfers

for each contiguous chunk. We refer to this approach as Multiple Zero Copy ap-

proach. This approach is zero-copy but may require the initiator of the request to

spend some time in processingthe multiple contiguous requestsit has to initiate

for every noncontiguous request. In addition, handling 
o w control issueslike the

number of outstanding requestsallowed might adverselya�ect performance. We in-

troduceda host-assistedzero-copy method to addressthe problemsinherent in both

the approachesdescribed above.

Figure 8.15: Host BasedBu�ered Approach

8.3.2 Host-Assisted Zero-Cop y RMA

To leveragethe advantagesof the host-assistedzero-copy approach in Mellanox

VAPI, memory on both sidesmust be registered. The user is not expected to either

explicitly registermemoryor keeptrack of this information. Insteadwe maintain and

parsea high-granularit y global memoryinformation table to determineif the memory
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on both sidesis registered. The host-assistedapproach requirespartial involvement

of a remote host to completeoperations. We refer to the representativ e on the re-

mote side that assistsin the completion of the operation as a "helper" thread. The

helper thread initiates an operation and hencerequires minimal remote-sideCPU

involvement. This is very similar to the ARMCI data server thread [47, 49] and

the dispatcher thread in the IBM LAPI [53]. The signi�cant di�erence is that the

helper thread doesnot copy any data and doesnot wait on an operation it issuedto

complete. With this helper thread as an assistant to completethe operation on the

remoteside,we describe the implementation details of contiguous and noncontiguous

one-sidedGet and Put operations. We demonstratethe bene�ts of this approach by

contrasting its performancewith the traditional host-based/bu�ered approach and

by showing the performanceof theseprotocols on a few application benchmarks in

Section8.4.

Implemen tation of Get Op eration for Noncon tiguous Data

Becausea noncontiguous data transfer would involve transfer of multiple segments

of data, our strategy is to usethe scatter/gather messagepassingfeatureprovided by

IBA to achieve the zero-copy transfer. Using that feature, we can send/receive mul-

tiple data segments asa singlemessageby posting a singlescatter/gather descriptor.

The two typesof scatter/gather message-passingoperationsde�ned in IBA VAPI are

1) Gather-Send(which requiresthe noncontiguous data being sent to be represented

asa Gather-Senddescriptor) and 2) Scatter-Receive (which requiresthe noncontigu-

ousdestination for the receive to be speci�ed in a Scatter-Receive descriptor format).

In a host-assistedzero-copy Put, the sourcesendsa requestto the remote side. The

helper thread processesthe request, converts the vector/stride information in the
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request into a VAPI Receive-Scatter descriptor, posts the descriptor, and sendsan

acknowledgment to the requestingprocess,indicating that it has posted the neces-

sary receive descriptor. On receiving this acknowledgment, the sourceprocessposts

a Gather-Sendfrom the VAPI Gather-Senddescriptor it created while waiting for

an acknowledgment from the helper thread. This directly delivers the data to the

destination memory without the overheadof any intermediate copies. Although the

explicit acknowledgment might seemlike an overheadfor large messages,when the

copying cost starts to dominate, this approach performsbetter. It shouldbe enabled

only for multidimensional Put operations when the �rst stride or the size of each

contiguous segment is large. For a host-assistedzero-copy Get shown in Fig. 8.16,

the sourcenode postsa Scatter-Receive descriptor to receive the vector/strided data

and then sendsa requestto the remote host with the remote stride/vector informa-

tion. The helper thread on the remote host receives the request and then posts a

corresponding VAPI Gather-Sendby converting the stride/vector information in the

request messageinto a VAPI Gather-Senddescriptor. The implementation of this

protocol prompted us to addressa number of designissues.

Limit on Scatter/Gather Entries per Descriptor

The strided put/get operations can be used to transfer sectionsof multidimen-

sionalarrays. Each dimensionof the array cansupport any number of data segments.

However, the IBA implementation puts an upper limit of 60 on the number of scat-

ter/gather entries that canbe allowed per Scatter-Receive or Gather-Senddescriptor.

Hence, for large messages,the maximum scatter/gather entry limit requires us to

extend the above approach. Becausewe can have only 60 scatter/gather entries in a

descriptor,our solution is to breakour messageinto chunks of up to 60 data segments

116



and post a gather send/scatter receive for each one of them. Posting a send/receive

is a nonblocking operation in IBA and takesonly a very short time (a microsecondon

Itanium 1GHz), so the overheadin posting multiple gather descriptorsis not signif-

icant. In the caseof Strided Get, the client posts multiple scatter receivesand then

sendsthe request. At the remote side, the helper thread processesthe requestand

posts multiple gather sends.A similar approach has beenfollowed for implementing

the noncontiguous puts.

Resource Allo cation

At the client level, memory needsto be allocated and maintained to create a

scatter/gather descriptor from a strided/vector request. Unlike VIA, VAPI copiesthe

posteddescriptor on to the NIC and hencedoesnot require us to keepthe descriptor

until the requesthasbeencompleted. At the NIC level, the number of scatter/gather

entries must be decidedat the initialization phase.The larger the scatter gather list,

the larger the amount of memory allocatedper descriptor on the NIC. To investigate

the e�ect of this on the performanceof the operation, we conducted experiments

to measurethe change in latency with increasingnumber of scatter/gather entries.

We determinedthat the overheadfor having 60 scatter gather entries in a descriptor

insteadof 1 is not signi�cant (lessthan 1 micro sec)and hencewe could a�ord to set

the scatter/gather limit to the maximum allowed value of 60.

8.4 Performance Evaluation

We comparedthe performanceof the di�erent methods described above not just

to contrast the host-assistedzero copy with the other implementations but also to

117



Figure 8.16: Host AssistedZero-copy Approach

show the importance of using multiple protocols in achieving a sustainedgood per-

formance. Fig. 8.17 shows the performanceof noncontiguous ARMCI operations. It

comparesthe performanceof host-based/bu�ered get and host-assistedzero-copy get

operations.Zero-Copy 2D get in Fig. 8.17 and Fig. 8.18 represents the approach dis-

cussedearlier in this sectionwherea noncontiguous Get operation is implemented on

top of multiple contiguous RDMA Get operations, one for each contiguous segment.

For this test, ARMCI 2D data is represented usingthe strided data format. It is clear

that the host-assistedzerocopy implementation performsmuch better and more sig-

ni�can tly so when the �rst dimension is large. An advantage of using host-assisted

zero copy can be determinedby measuringthe e�ect on protocol performancewhen

the remote side is doing a CPU-intensive operation. Unlike the zero-copy approach,

host-assistedzero-copy requires somehost involvement in initiating data transfer.

This is more representativ e of the impact theseprotocolsmay have on an application
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Figure 8.17: Bandwidth Comparisonwith RemoteSide Idle

than mere measurement of communication bandwidth/latency. Fig 8.18 shows the

performancedi�erence between the bu�ered and host-assistedzero-copy protocols

whenthe remotesideis doing a CPU-intensive operation. In comparisonto Fig. 8.17,

it is very clear that the performanceof the host-assistedzero-copy protocol has not

beena�ected at all by the CPU-intensive operation on the other side while the per-

formanceof the bu�ered Get protocol dropped very signi�cantly. This clearly shows

the very low overheadthis protocol imposeson the remote-sideCPU.

Overlap Measuremen ts

Another signi�cant advantage of this protocol is the amount of overlap it can

provide in nonblocking operations. Becausethe implementation doesnot involve any

data movement in call initiation or call completion, the amount of overlap possibleis

much higher than that for the other protocols. This can be clearly seenin Fig 8.19,
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Figure 8.18: Bandwidth Comaprisonwith RemoteSideBusy

which comparesthe amount of overlap attainable with host-based/bu�ered and host-

assistedprotocolsfor a noncontiguous data transfer for varioussquarenoncontiguous

chunks of data.

Matrix Multiplication

The baremicrobenchmark performancenumbersfor RMA operationsoften do not

givethe actual impact of the protocolusedto implement the one-sidedoperation on an

application. A signi�cant issuethat comesto light in actual application performance

in the caseof one-sidedoperationsis the abilit y of the operation to makeprogresswith

minimal to no remotehost involvement. SUMMA is a highly e�cien t, scalableimple-

mentation of commonmatrix multiplication algorithm proposedby van de Geijn and

Watts [27]. For the RMA version,we usedthe algorithm implemented using ARMCI

RMA in Global Arrays. The matrix in the Global Arrays implementation of ARMCI
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Figure 8.19: Overlap Percentage

Figure 8.20: Performanceof Matrix Multiplication for SquareMatrices
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Figure 8.21: Performanceof Matrix Multiplication for RectangularMatrices

is decomposedinto blocks and distributed amongprocessorswith a two-dimensional

block distribution. Each submatrix is divided into chunks. Overlapping is achieved

by issuinga call to get a chunk of data while computing the previouslyreceivedchunk.

The minimum chunk sizewas128for all runs, which wasdeterminedempirically. The

maximum chunk sizewas determined dynamically, depending on memory availabil-

it y and the number of processors.Experiments with matrix multiplication were run

by varying the matrix size and the number of processors. The three lines labeled

in both the graphs in Fig. 8.20 represent three di�erent approaches to implement

multi-dimensional RMA in ARMCI. The host-assistedzero-copy approach was intro-

ducedin Section8.3.2. The host-based/bu�ered approach and zero-copy approaches

were discussedat the beginning of Section8.3.1. The host-based/bu�ered approach

involves two copies,one on each side; the zero-copy approach involvesmultiple con-

tiguous sendsfor each noncontiguous message.The computations were doneon four

nodeswith two processeseach. Fig. 8.20 shows the result for squarematrices with

122



sizesvarying from 128to 2000. Fig. 8.21is for a rectangularmatrix wherethe second

dimensionis set to 512and the �rst dimensionvariesfrom 128to 2000. Our proposed

host assistedapproach outperformedthe other schemesfor microbenchmarks as well

as application kernelslike SUMMA matrix multiplication.

This work described how non-contiguous one-sidedcommunication can be imple-

mented e�cien tly through the novel host-assistedapproach to support the zero-copy

communication. In addition, a high degreeof overlapping computationsand commu-

nication wasdemonstrated.The benchmarksusedin the study showede�ectivenessof

the RMA implementation on In�niBand and the importanceof zero-copy nonblocking

protocols for hiding latency in the interprocessorcommunication.

8.5 Related Work

Many researchershave beenworking on improving MPI datatype communication.

Research in datatype processingsystem includes [32, 52]. Research in optimizing

packing and unpacking proceduresincludes[18, 32]. The closestwork to ours is the

work [67] to take advantage of network featuresto improve noncontiguous data com-

munication. In [67],Wu et al. havesystematicallystudiedtwo main typesof approach

for MPI datatype communication (Pack/Unpack-based approachesand Copy-Reduced

approaches) over In�niBand. The Multi-W scheme has been proposed to achieve

zero-copy datatype communication.
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CHAPTER 9

NON-BLOCKING ONE-SIDED PRIMITIVES

As described in earlier sections,a one-sidedcommunication library should pro-

vide low latency one-sidedoperations and good scope for overlap potential. Non-

blocking operationsare very important to achieve latency hiding and good computa-

tion/communication overlap. Nonblocking operations initiate a communication call

and then return control to the application. The application writer/user can try to

hide the latency of the communication operation by overlapping communication with

computation.

There are two important aspects to this issue. The �rst is the availabilit y of

the non-blocking API that can be exposedto the application writers. Secondly, the

underlying implementation needsto be non-blocking to achieve this. In this work,

shown in the highlighted part of Figure 9.1 of the proposedresearch framework, we

explore techniques and designsto implement these non-blocking primitiv es in the

context of ARMCI which is a one-sidedcommunication library.
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Figure 9.1: Overview

9.1 E�cien t Non-blo cking Design

Nonblocking operations initiate a communication call and then return control to

the application. The userwho wishesto exploit nonblocking communication asa tech-

nique for latency hiding by overlapping communication with computation implicitly

assumesthat progressin communication canbemadein a purely computational phase

of the programexecutionwhenno communication callsaremade. Unfortunately, that

assumptionis often not satis�ed in practice, the availabilit y of nonblocking API does

not guarantee that overlapping communication with computation is always possible

[65].
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Since the RMA or one-sidedmodel is simpler than two-sided messagepassing

model (e.g., does not involve messagetag matching or dealing with early arrival of

messages),in principle more opportunities for overlapping communication with com-

putation are available. However, theseopportunities are not automatically exploited

by deriving implementations of nonblocking APIs from their blocking counterparts.

For example,the communication protocolsusedto optimize blocking transfersof data

from non-registeredmemory by pipelined copy and network communication through

a set of registeredmemory bu�ers [49] can achieve very good performanceby tuning

the messagefragmentation in the pipeline [64]. However, the memory copy requires

the active host CPU involvement and therefore reducesthe potential for e�ective

overlapping communication with computation. To increasethe overlap, we expanded

the useof direct(zero-copy) protocolson networks that require memory registration,

such as Myrinet.

In ARMCI, a return from a nonblocking operation call indicatesa mereinitiation

of the data transfer process,and the operation can be completedlocally by making

a call to the wait routine. Waiting on a nonblocking put or an accumulate operation

ensuresthat data was injected into the network and the user bu�er can be now

be reused. Completing a get operation ensuresthat data has arrived into the user

memory and is ready for use. A wait operation ensuresonly local completion. The

library imposesa limit on the number of outstanding requestsallowed (if necessary,

it can transparently complete an old request and free up the resourcesfor a new

request). For performancereasons[12], ARMCI supports only a weak consistency

for operations targeting remote memory. Unlike their blocking counterparts, the

nonblocking operationsare not orderedwith respect to the destination. Performance
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is onereason;the other is that by ensuringordering, we incur additional and possibly

unnecessaryoverheadon applications that do not require orderedoperations. When

necessary, ordering can be doneby calling a fenceoperation. The fenceoperation is

provided to the user to con�rm remote completion if needed.

Figure 9.2: Non-blocking transfer with implicit handle

Request Handle

The requesthandle structure is central to the APIs associated with the latency

hiding mechanismsin ARMCI. This opaqueobject is storedin the application memory

and is usedto 1) assigna uniqueidentit y to a nonblocking RMA operation, 2) facilitate

aggregationof multiple operations,and3) optionally storecertain control information.

Before the handle is used, it must be initialized with the ARMCI INIT HANDLE

macro and can be reusedafter the associated nonblocking operation completes.The
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userpassesa referenceto a requesthandlestructure. As a convenienceto the user,a

NULL value for the handleaddresscan be speci�ed. The library keepstrack of these

so-called\implicit handlerequests"andassignsa handleto them from an internal pool

of handles. This type of requestscan be completedusing either the wait operation

associated with a particular remoteprocessor(seeFig. 9.2) or another wait operation

to completeall pending implicit handle requests.

9.2 Implicit and Explicit Aggregation

Aggregation of requestsis another mechanism for improving latency tolerance.

Multiple nonblocking data transfer (put/get) requestscanbe aggregatedinto a single

data transfer operation in order to improve the data transfer rate. Especially if there

are multiple data transfer requestsof small messagesizes,aggregatingthoserequests

into a single large request reducesthe latency, thus improving performance. This

technique is unique in its abilit y to sustain high bandwidth utilization and enables

high throughput. Each of theserequestscan be of a di�erent sizeand independent

of data type. The aggregatedata transfer operation is independent also of the type

of put/get operation; that is, it can be a combination of regular, strided, or vector

put/get operations. There are two types of aggregationavailable: 1) explicit ag-

gregation, where the multiple requestsare combined by the user through the useof

the strided or generalizedI/O vector data descriptor, and 2) implicit aggregation,

where the combining of individual requestsis performed by ARMCI. The implicit

aggregationinvolves the nonblocking request handle that is marked as \aggregate

handle" using the ARMCI SET AGGREGATE HANDLE macro. Userscan rely on

a single aggregatehandle to represent multiple requests. Any number of operations
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to/from the sameprocessorcan use the sameaggregatehandle. A wait on such a

handle completesall the aggregatedrequests.For multiple small sends,aggregating

is usually much faster and givesbetter performance.Fig. 9.3 illustrates the aggregate

data transfer. It shows that the descriptorsof multiple put requestsare stored in an

aggregatebu�er and, oncethe wait call is issued,the data transfer is completed.

Figure 9.3: Implicit AggregateData Transfer

Design and Implemen tation Approac h

Designinga portable RMA communication layer involvesaddressingmultiple is-

sues:1) the functionality must beimplementable acrossa wide variety of platforms; 2)

performanceadvantagesof the native communication protocolsmust be exploited; 3)

opportunities for overlapping communication and computations should be provided;
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and 4) as much of the code as possiblemust be shared to minimize the mainte-

nancee�orts acrossdi�erent platforms. On networks like the IBM SP interconnect

and Quadrics, the underlying RMA layer provides most of the required capabilities.

Hence,on thesesystems,most of the nonblocking calls can be implemented as thin

wrappers to the native protocols. We are referring to theseprotocols as direct. In

the caseof somenetworks, direct protocolsare zero-copy (GM, VIA, QuadricsElan),

but otherswherethe native communication interfaceinvolvescopying the data (IBM

LAPI) internally are not. Somenetworks like GM, VIA, and In�niband require data

to be transmitted from/to special memory. This can be accomplishedeither by 1)

copying the data into a set of special registered/pinned bu�ers for transmission;2)

allocating registeredmemory for the user; or 3) by on-demandregistration of the

user'smemory. ARMCI usesall three schemes,dependingon the platform, operation

type, or sizeof the data transfer. Protocolsthat usememorycopy schemearereferred

to asbu�ered. Although the goal is to generalizemost of the design,doing soshould

not adversely a�ect the performancein caseswhere an underling network provides

direct support.

Multiple requirements can be satis�ed by a bu�er management layer. First, on

networks that allow data transfersbetweenregisteredbu�ers, the data can be copied

in, sent, received,and copiedout from the internal setof bu�ers allocatedin registered

memory. In this manner, data can be transferred between nonregisteredmemory

locations. Note that on-demandmemoryregistration of userbu�ers might not always

be available or can be very costly (e.g. GM) [49, 14]. Second,bu�ers are useful

for packing/unpacking noncontiguous data transfers when the underlying network

has support only for contiguous data transfers (for example,GM) [49]. One of the
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designgoalsis to make most of the handlemanagement code and bu�er management

code platform-independent, thus making the architecture portable while avoid the

unnecessaryoverhead. This is accomplishedby switching to a direct protocol when

possibleat the very beginning of the request processing. Interaction between the

platform-independent layer and platform/net work-speci�c layer is only to either inject

the data into the network or check for the completion of an operation.

Handle Managemen t

Every nonblocking call is associated with a nonblocking requesthandle. For ex-

plicit handlenonblocking calls and aggregatehandlenonblocking calls, this handle is

passedby the useras a parameter. An implicit handle call is associated with a han-

dle from a static list of handles,maintained internally. The handle provided by the

user is internally mapped to a data structure that in turn carriesall the information

required to identify and complete,or test completionof a nonblocking operation. Be-

causea commonhandle is usedto represent a requeston all platforms, for portabilit y

reasonsit storesonly the most genericinformation, including unique identi�er of the

request,the type of operation, and the remoteprocessornumber. Other �elds include

completion information required by the underlying network for requestcompletion.

Comm unication Bu�ers

The communication bu�er is represented by a data structure that storesinforma-

tion about the associated request. In nonblocking operations, it alsocarriesa unique

request identi�er for the request.For the bu�ered implementation of the get opera-

tion, it storesthe destination addressfor the data. For strided and vector operations,

the destination information is represented by a more complex descriptor of variable
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size. The bu�er data structure has a �xed spaceallocated to store destination data

descriptors. For a larger descriptor,extra memoryis allocated,and the corresponding

addressis stored in the bu�er. That memory is freed when the operation associated

with this bu�er is completed. The \proto col" �eld in the bu�er structure carries

more detailed information. For example,the \proto col" �eld in the bu�er manage-

ment phasecarries the value \sdescr in p", which indicates that this bu�er is being

usedfor a strided data transfer and the destination data descriptor is in place (sde-

scr in p) inside the bu�er data structure. This information is neededto completea

request. ARMCI doesnot imposea limit on the number of outstanding operations.

Hence,when the bu�er management layer runs out of bu�ers, it completesan old

requestassociated with a bu�er currently in useto free a bu�er. Becausea request

can be usingmore than onebu�er, freeinga bu�er might completeonly a part of the

request. A communication bu�er is also freedas a part of the wait operation on the

requestusing that bu�er.

Waiting on a Request

The wait on a requesthandle completesthe request. Whether the requestused

bu�ers or not can be determinedby looking at the value stored in the bu�d �eld of

the requesthandle. For the direct protocol, the platform-speci�c layer veri�es request

completion basedon the information it stored in the \Req completion info" �eld. If

bu�ers were usedfor the request(bu�ered protocol or for storing a data descriptor),

then the bu�er management layer checks to seeif the bu�ers used for this request

were completed already as a part of freeing resources. If they have not yet been

completed, then the data from the bu�er is copied into the appropriate destination

basedon the destination descriptor information stored in the bu�er. To be able to
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verify if the data hasalready arrived in the bu�er, the bu�er management layer may

check for data arrival via the platform-speci�c layer.

Aggregation

The implicit aggregationof data transfers is implemented using the generalized

I/O vector operations available in ARMCI [47]. This interface enablesthe represen-

tation of a data transfer asa combination of multiple setsof equally sizedcontiguous

data segments. When the �rst call involving aggregatenonblocking handle is exe-

cuted, the library starts building a vector descriptor stored in oneof the preallocated

internal bu�ers. The actual data transfer takesplacewhen the usercalls wait opera-

tion or the bu�er storing the vector descriptor �lls up.

Optimizing Overhead and Overlap

The overheadintroduceddue to the additional processingand resourcemanage-

ment incurred by a nonblocking call should be minimized. In our implementation,

this goal is achieved in multiple ways: Before returning, all nonblocking operations

always initiate data transfer so that the network interface card (NIC) can process

a request while the host CPU is available to carry out the computations. When a

nonblocking GET operation returns, either the bu�ered or direct protocols ensure

that all the requesteddata will be received without explicit involvement of the host

CPU. In the bu�ered protocol, the requestis broken into piecesthat �t the available

bu�er space.For very large bu�ered requests,someinitial portion of the data might

be received beforethe nonblocking operation returns. The direct protocol is switched

to when possible,as described earlier. The platform-speci�c protocols that involve

extensive blocking time are avoided.
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9.3 Performance Evaluation

The experiments were run on a Linux cluster with dual 2.4GHzPentium-4 nodes

and Myrinet-2000 (M3F-PCI64C-2 Myrinet interface). Experiments discussedin the

current section have been conducted for the nonblocking get operation since they

explicitly demonstratethe overheadand overlap factors.

9.3.1 Overhead Test

The �rst experiment demonstratesthe e�ciency of the implementation as com-

pared with a basecaseGM implementation. For this purpose, a nonblocking op-

eration is simulated at the GM level in the following fashion. The client issuesa

gm sendwith callback (with the details of the requireddata) and then polls on a 
ag

set whenthe data reachesthis node. On the other end, the server doesa GM receive,

processesthe request,and issuesthe RDMA put operation with the data using the

gm directed sendwith callback function. The ARMCI layer is actually built on this

basic scheme to implement the nonblocking get. This experiment tries to evaluate

the e�ciency of the implementation. Fig. 9.4 shows the latency at the baseGM and

ARMCI levels. The timings have beenaveragedover 1000iterations. They show that

the ARMCI layer addsvery little overheadto the baselevel and thus providesa very

e�cien t interface to the applications.

9.3.2 Overlap Test

The secondexperiment dealswith overlapping communication with computation,

and it was performed in the context of ARMCI and MPICH-GM. In the ARMCI
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version, the computation is incorporated in the program in the form of a delay. In-

creasingcomputation is gradually insertedbetweenthe initiating nonblocking get call

and the wait completion call. As we keepincreasingthe computation, at somepoint

the sum of the nonblocking call issueoverheadand computation would exceedthe

idle CPU time, sothe total benchmark running time would increase.This point gives

us the maximum possibleoverlap. We performedthis experiment on two nodes,with

onenode issuingthe nonblocking get for data located on the other and then waiting

for the transfer to be completedin the ARMCI Wait call. The timings wereaveraged

over 1000iterations. We have developed versionsof this microbenchmark for direct

and bu�ered protocols. We also implemented an MPI version of the above bench-

mark becauseour motivation was to comparethe overlap in ARMCI and in the MPI

nonblocking send/receive operations. In MPI, if the node needsa portion of data

from another node, it sendsa requestand waits on a nonblocking receive for the re-

sponse.We can overlap the time duration betweenthesetwo calls with computation.

We measuredthe computation overlap for both the ARMCI and MPI versionsof the

benchmark, and results are plotted in Fig. 9.5. The percentage overlap is measured

as the amount of time of a nonblocking (data transfer) call that can be overlapped

with useful computation without increasingthe overall benchmark time.

We observe that ARMCI o�ers a higher level of overlap than MPICH-GM. The

bu�ered protocol is able to achieve about 90% overlap. For large messages,this

percentagedropsbecauseof time involved in copying to the destination bu�er. In the

direct protocol, we areableto overlap almost the entire time (greater than 99%). The

exception (1%) was the time involved in issuing the nonblocking get. The MPICH-

GM versiondoesreasonablywell up to messagesize16kb. At 16kb and beyond, the
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Figure 9.4: Latency of ARMCI Get vs GM Get

MPICH-GM implementation switchesto the rendezvousprotocol. This hasa serious

impact on the computation overlap becausethe handshake involved in the protocol

occurs in MPI Wait. Consequently, the only part that can be overlapped is till the

receipt of `requestto send' and not until the actual data transfer is completed.

9.3.3 NAS benchmarks

The Numerical Aerodynamic Simulation (NAS) parallel benchmarks (NPB) are a

set of programsdesignedat NASA. Our starting point was NPB 2.3 [11] implemen-

tation written in MPI and distributed by NASA. We modi�ed two of the �v e NAS

kernels, MultiGrid (MG) and Conjugate Gradient (CG), to replace point-to-p oint

blocking and nonblocking message-passingcommunication calls with �rst blocking

and then nonblocking RMA communication. This is just a mere replacement of the

point-to-p oint messagepassingcommunications part of the current message-passing
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Figure 9.5: Percentage of Computation Overlap

Figure 9.6: PerformanceImprovement in NAS MG for ClassB
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Figure 9.7: PerformanceImprovement in NAS CG for ClassB

version of CG and MG NAS kernelsusing ARMCI RMA blocking and nonblocking

operations [62].

We show the results for NAS MG for class A and B. For Class A, a smaller

problem sizewith the fewest iterations, the ARMCI blocking code outperforms the

referenceMPI implementation by 7% to 30%. ARMCI nonblocking versionachieves

an additional improvement of 10%to 23%over the ARMCI blocking implementation

and a 28% to 46%improvement over the MPICH-GM implementation. Most of the

improvement achieved over the blocking implementation is just by mere issueof the

update in the next dimensionwhile working on the current one. For ClassB, with the

sameproblem sizeas classA but more iterations, ARMCI blocking implementation

outperformsMPI by 10%to 37%(seeFig. 9.6). The ARMCI nonblocking implemen-

tation achieves an additional improvement of 5% to 20% over the blocking version

and shows a 30% to 45% improvement over the MPICH-GM implementation. Due

to the synchronous nature of data transfers in the CG algorithm, the performance
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improvement over MPICH-GM, although consistent is rather limited (seeFig. 9.7).

However, the nonblocking RMA o�ers an additional performanceimprovement. For

example,for 128processors,it exceeds10%over MPICH-GM.
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CHAPTER 10

SCHEDULING ONE-SIDED OPERA TIONS

The MPI-2 semantics does not impose any restrictions on when and in what

order the RMA operations should occur within an accessepoch. However both the

current implementations (Point to Point Based and Direct One Sided) for active

synchronization always maintain the order of the RMA operations. This might not

always lead to the best or optimum usageof the underlying network capability. In

this work, shown in the highlighted part of Figure 10.1 of the proposed research

framework, we want to exploit this 
exibilit y to explore di�erent ways to reorder

theseRMA operations basedon the communication pattern to improve the latency,

bandwidth and throughput.

Messageaggregationcan reducethe latency for small RMA opearationsbecause

it can potentially reduce the number of messages.The Point to Point Based im-

plementation can give this abilit y becauseof its two sided nature. With the Point

to Point Basedimplementation several RMA operations can be reorderedand com-

bined/aggregatedinto a singlemessageand the remotesidecanreceive this combined

messageand scatter them. Aggregation of a RMA communication operation and a

synchronization messageis alsofeasible.Thus the Point to Point Basedimplementa-

tion can be leveragedto improve the performanceof small messages.
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Figure 10.1: Overview

As described above, the MPI-2 semantics potentially allow the implementation to

reorderthe actual completionof the RMA operations,such asMPI Put and MPI Get,

issuedduring a window accessepoch. Our main motivation is to utilize this 
exibilit y

to schedule theseoperations so that we can achieve better communication overlap,

reducedlatency and improved throughput on our In�niBand implementation.

We propose two possibleapproaches for scheduling the RMA operations. The

reordering approach focuseson reorganizingthe MPI Put and MPI Get operations

issuedduring a window accessepoch to allow more e�cien t usageof network band-

width. The aggregationapproach tries to combine RMA operations to give better

throughput.
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10.1 Reordering approac h

SinceMPI-2 standard allows the actual communication for RMA operations to

happen at synchronization time, we can hold all the RMA operations issuedduring a

window accessepoch until synchronization time. At this stage,we will have enough

information of the communication pattern during this accessperiod. Basedon this

information, we may re-order the issuing of these RMA operations to utilize the

underlying In�niBand network more e�cien tly.

10.1.1 In terlea ving

The bidirectional bandwidth is always higher than the unidirectional bandwidth.

This is becauseof the full usageof the link bandwidth of both directions. For exam-

ple, with MVAPICH2 point to point communication, we areable to achieve 874MB/s

peak unidirectional bandwidth while we can achieve 934MB/s in bidirectional band-

width test. (The unit of bandwidth MB/s refers to Million bytes/sec). This trend

is more obvious on PCI-Express systemsbecausethe bus contention is no longer

the bottleneck in this scenario. The peak bandwidth number for unidirectional and

bidirectional tests are 964MB/s and 1905MB/s on the PCI-Expresssystem.

However, in a typical one-sidedcommunication scenario,only onedirection of the

link bandwidth is fully used, since the target side is not explicitly involved in the

communication. But this does not mean that we can only stick with the highest

possibleunidirectional bandwidth provided by the link. For MPI Put operations,we

issueRDMA write operations at VAPI level to push the data out. The actual data


o w is from the origin processto the target. But for MPI Get operation, we issue

RDMA readoperation at VAPI level to fetch data from the remoteside. Sothe actual
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data 
o w, especially for large sizeoperations, is from the target processto the origin

process.

During Synchronization Stage
VAPI Level Communication PatternOrigin Process

MPI_Win_start()

MPI_Get()

MPI_Get()

MPI_Put()

MPI_Put()

MPI_Win_complete()

RDMA Write

RDMA Read

RDMA Read

RDMA Write

Target Process

MPI_Win_post

MPI_Win_wait

Figure 10.2: Sequential Issueof MPI Get and MPI Put

During Synchronization Stage 
VAPI Level Communication Pattern Target Process

RDMA Write

RDMA Read

RDMA Write

RDMA ReadMPI_Get()

MPI_Put()

MPI_Get()

MPI_Put()

MPI_Win_start()

Origin Process

MPI_Win_complete()

MPI_Win_post

MPI_Win_wait

Figure 10.3: Interleaved Issueof MPI Get and MPI Put

Let us considerthe following one-sidedcommunication patterns. In Fig. 10.2,the

origin processissuesseveral MPI Get operationsand then several MPI Put operations
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during a RMA accessepoch. In Fig. 10.3, the origin processissuesthe samenumber

of MPI Get and MPI Put operations,but in an interleaved way. As we can observe,

the secondcommunication pattern in Fig. 10.3can usethe link bandwidth in a much

more e�cien t way than the �rst communication pattern.

Though we know that the link bandwidth will be usedmore e�cien tly if the issu-

ing of MPI Put and MPI Get is interleaved, we can not require the MPI programmer

to understand this and always write the optimized program. But since the RMA

operation can actually start during synchronization time, we can schedulethe opera-

tions sothat the corresponding VAPI level RDMA read and RDMA write operations

are issuedin a interleaved manner.

10.1.2 Prioritizing

One of the conclusionsof our previous research is that the Direct One Sided

implementation o�ers better latency than Point to Point Basedimplementation for

large RMA operations. But it is still possibleto further optimize the Direct One

Sidedimplementation.

During the synchronization stageof direct one-sidedimplementation, the origin

processwill issuea RDMA write to set a 
ag at the target processto indicate the

end of the accessepoch. Beforethat, if a MPI Get operation was issuedprior to the

synchronization call, we needto wait for local completion of Get to ensurethat the

data hasactually beenfetchedand ready for useby the endof synchronization phase.

During the accessepoch, if the origin processcalls several MPI Put and MPI Get

operations,wewant to givepriorit y to MPI Get operationsin order to reducethe time

involved in waiting for the local completion. Thereforewe give priorit y to MPI Get

144



operationsover MPI Put operations. We�rst issueRDMA readrequiredby MPI Get

and then issueRDMA write required by MPI Put. Fig. 10.4 illustrates the potential

bene�ts of our prioritizing scheme. It is to be noted that this prioritizing scheme

doesnot necessarilycontradict with the interleaving schemewe proposedin the last

section. Wecanstill interleave the operationsbut wecanissueRDMA readoperations

�rst.

VAPI level Communication pattern
During Synchronization stage

Without scheduling

Synchronization

RDMA Read

RDMA Write

Priority to Get operations

RDMA Write

RDMA Read

Synchronization

MPI_Win_start()
Origin Process:

MPI_Win_wait()

MPI_Win_post()

Target Process
MPI_Win_complete()

MPI Program

MPI_Put()

MPI_Get()

Figure 10.4: Potential Bene�t by Giving Priorit y to MPI Get

10.2 Aggregation

As describedearlier, our goalhereis to better utilize the network bandwidth. If we

have multiple small RMA messageswithin an accessepoch, the network utilization

would be suboptimal. Because,for small messages,the overhead associated with

initiation and completion of RMA operations is relatively high. Hencea natural and

obvious choicewould be to try and seeif we can aggregateseveral of thesemessages
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VAPI level Communication pattern
During Synchronization stage
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Figure 10.5: Aggregationof RMA Operation and Synchronization
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Figure 10.6: Aggregationof Multiple Small SizeRMA Operations
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together. The userscan use MPI user de�ned datatypes to aggregateseveral one-

sidedand two sidedoperationsto improve network utilization. However, our aim is to

provide optimizations insidethe MPI library sothat we candeliver good performance

even if there is no optimization at the user level. Also, asdescribed in Section10, no

order needsto be guaranteed amongthe MPI Put/MPI Get operationsbetweentwo

synchronization calls. So we are not violating any MPI-2 semantics by aggregating

someof theseoperations, as long as all the data �nally reachesthe target side. We

can considerthe following two aggregationschemes:

� Aggregationbetweenan RMA operation and a synchronization operation

� Aggregationbetweenmultiple RMA operations

These schemesare illustrated in Figs. 10.5 and 10.6. By utilizing Point to Point

Basedapproach, we can aggregatemultiple RMA operations or an RMA operation

and a synchronization operation. In contrast, Direct One Sided approach cannot

provide aggregationbecausethe target is not involved in communication and hence

cannot scatter aggregatedmessagesinto target bu�ers. To maximizeaggregation,we

defersmall RMA messagesuntil we have su�cien tly large number of them. Then we

can trigger deferredRMA messagesasan aggregatedoperation and sendit by Point

to Point Basedapproach. Meanwhile, large sizeRMA operations are still issuedby

Direct One Sided approach. We can also hold back one small RMA operation and

combine it with the synchronization operation. In this work, we mainly focuson the

aggregationbetweena RMA operation and a synchronization operation.
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10.3 Performance Evaluation

In this section,we useseveral micro benchmarks to evaluate the performanceof

our di�erent schemes.

Due to the lack of publicly available applications using MPI-2 one-sidedcalls,

we cameup with our own benchmarks to evaluate our scheduling schemes. We use

somespeci�c throughput and latency tests to measurethe impact of our re-ordering

scheme. In addition to this, weuseping-ponglatency testsfor MPI Put and MPI Get

to show the bene�t of the aggregationscheme.
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Figure 10.7: Impact of scheduling on throughput on EM64T and IA32

Exp erimen tal Testb ed

We evaluated our schemeson two di�erent testbeds. The �rst testbed is equipped

with PCI-X interfaceand the secondis equipped with PCI-Expressinterface.

Our PCI-X testbed cluster consistsof 8 SuperMicro SUPER X5DL8-GG nodes

with ServerWorks GC LE chipsets, Intel Xeon 3.0 GHz processorsbasedon IA32

architecture, and PCI-X 64-bit 133MHz bus. The PCI-Expressnode of our testbed
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hasa 3.4 GHz Intel Xeon processorbasedon EM64T architecture and runs in 64 bit

mode with 8x PCI-Expressinterfaces.They are equipped with MT25208HCAs with

PCI-Express interfaces. On both platforms In�niScale MTS2400 switch is used to

connectall the nodes. The versionsof In�niBand SDK and �rm ware are 3.2 RC17

and 4.5.2RC4-BUILD-001 respectively. The operating systemusedis RedHat Linux.

Impact of Re-ordering Scheme on di�eren t Comm unication Patterns

We created two communication patterns at microbenchmark level to study the

impact of the re-orderingschemewe proposedin the previoussection.

Comm unication Pattern 1

We created a throughput test which involves two processes. The �rst process

starts a window accessepoch and then issues16 MPI Put and 16 MPI Get oper-

ations of the same size. The secondprocessjust starts an exposure epoch. The

samesequenceof operations are repeated for several iterations and we measurethe

maximum throughput we can achieve (in terms of MillionBytes/sec).

We comparedthe performanceof re-orderingschemeand the original Direct One

Sidedimplementation. On PCI-Expresssystems,aswecanseefrom Fig. 10.7(a),with

re-orderingschemewe are able to attain maximum throughput of 1788MB/s, which

is much closerto the peak bidirectional bandwidth. We observe an improvement in

throughput up to 76% comparedwith the original design. This trend is also there

on IA32 systemswhere the maximum improvement of throughput is about 8%, as

shown in Fig. 10.7(b). However, we do not get as much improvement as on EM64T

testbed becauseon IA32 system,the PCI-X bus becomesthe bottleneck.
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Comm unication Pattern 2

The test consistsof multiple iterations involving two processes.In each iteration,

the �rst processcalls MPI Win start to start a window accessepoch, issuesone

MPI Put and one MPI Get, and then calls MPI Win complete to end the epoch.

After that it starts and endsa window exposureepoch by calling MPI Win post and

MPI Win wait. The secondprocessdoesthe samejob, but in a reversedorder, �rst

it starts the exposureepoch then the accessepoch. We measurethe averagelatency

for each iteration.

Our Scheduling scheme switches the order of these two operations when it is

actually issuing the corresponding RDMA read or RDMA write during the access

epoch. We canseethat especially for largemessages,we canshow signi�cant bene�ts

by scheduling the operations internally. We can reduce the latency up to 40% on

EM64T testbed and 20%on IA32 testbed, asshown in Fig. 10.8.
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Figure 10.8: Impact of scheduling on latency on EM64T and IA32
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Impact of Aggregation Scheme on Latency

In this sectionwe measurethe impact of our aggregationschemeon MPI Put and

MPI Get latency. The test consistsof multiple iterations involving two processes.

In each iteration, the �rst processstarts a window access,issuesa RMA operation

(MPI Put or MPI Get) and then endsthe epoch. Then it starts and endsa window

exposure epoch. The secondprocessdoes the same job, but in a reversed order.
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We measurethe time neededfor each iteration and de�ne half of its value as the

ping-pong latency for the RMA operation.

Fig. 10.9(a)comparesthe ping-ponglatency for MPI Put operation andFig. 10.10(a)

comparesthe ping-pong latency for MPI Get operations on EM64T testbed. The

aggregationschemedid noticeably better than our original Direct One Sided imple-

mentation for small sizeRMA operation. We seean improvement of up to 44% for

MPI Put latency and 42% for MPI Get latency. For larger sizes,the aggregation

scheme actually falls back to Direct One Sided implementation so that these two

schemesdelivers the samelatency. We can observe the similar trends on IA32 plat-

form, as shown in Fig. 10.9(b) and Fig. 10.10(b). The maximum improvement is

around 38%and 42%for MPI Put and MPI Get latency respectively.

10.4 Related Work

Although we are aware of MPICH2 performing aggregationbetweenthe last one

sided operation with a synchronization, to the best of our knowledge, there is no

literature study on scheduling RMA operations to improve the performanceof one

sided implementation.

One distinguishing feature of MPI as comparedto these is that MPI supports

both one sided and two sided communications, which we use to our advantage in

implementing our schemes.It is to be noted that ARMCI performsaggregation[48].
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CHAPTER 11

SIGNIFICANCE AND IMP A CT

In this thesis we have designedand developed a high performanceand scalable

one-sidedmiddleware that would be bene�cial to a wide range of scienti�c commu-

nity. Speci�cally, we have demonstrated how we can use the features of modern

interconnectsto improve the performanceof one-sidedmiddleware for current and

next generationHigh End Computing systems.

The expectedcontributions of the research are as follows:

� Our research demonstratesthe feasibility of developing high performanceand

scalableone-sidedcommunication subsystemsbasedon the capability of modern

interconnectsbasedon the capability of modern interconnects.

� Speci�cally, we have demonstratedhow we can leveragethe advancedfeatures

like di�erent communication semantics, remote atomic operations, completion

and event mechanisms,scatter-gathersupport to improve performance,scala-

bilit y and overlap capability for one-sidedcommunication.
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� Although we mainly concentrate on MPI one-sidedcommunication in this work,

many of our research contributions are also directly applicable to communica-

tion subsystemdesignin other areassuch as PGAS programming models and

languages.

Many of these proposeddesignsare being used in MVAPICH2 software which

is usedby more than 900 organizationsworldwide and are also incorporated into a

number of di�erent vendordistributions. The MVAPICH2 software is alsodistributed

in the OpenFabrics Enterprise Distribution (OFED). The re-ordering designsthat

usesprioritizing and interleaving has beenintegrated into MVAPICH2. The passive

synchronization designsand optimizations are being integrated and will be released

in the future.
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CHAPTER 12

CONCLUSIONS AND FUTURE W ORK

In this thesis, we have addressedthe problem of providing a Scalableand High

PerformanceCommunication Middleware for one-sidedcommunication over modern

interconnects.As clustersincreasein size,the performanceand scalability of the com-

munication subsystembecomesthe key requirement for achieving overall scalability

of the system. In this context, the e�ciency of one-sidedoperations is especially

important as they are the widely used communication operations in di�erent pro-

gramming models like MPI-2, UPC, etc. and have to be designedwhile harnessing

the capabilities and features exposed by the underlying networks. Modern inter-

connectslike In�niBand provide RDMA capabilities for read/write, remote atomics,

etc. Thesemechanismsprovide good match for one-sidedcommunication. The main

issuesaddressedare improving computation/communication overlap, reduceremote

processinvolvement, latency hiding mechanisms,zero-copy communication protocols,

intra-node optimizations, e�cien t non-contiguous communication, e�cien t protocols

for read-modify-write operations. The designsproposedin this thesis leveragethe

hardware primitiv esof modern interconnectslike In�niBand to provide good perfor-

manceand scalability. The summaryof the research contributions is explainedin the

following sectionsof the chapter.
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12.1 Summary of Research Con tributions

Improving Overlap: We investigatedthe designsfor passive synchronization. The

two-sided approaches leads to poor overlap capability. We came up with a new

designusing In�niBand RDMA atomic operationsto perform lock/unlo ck operations

neededfor passive synchronization. We also improved the capability of the one-

sidedoperationsto achieve faster communication progress.This work is described in

Chapter 4.

Intra-node Optimizations: In this work, we designedpassive synchronization

mechanism for Intra-node operations using the native fast CPU based locks. We

developed a hybrid designthat can migrate betweenCPU basedlocks and network

basedlocks (based on In�niBand atomic operations). We demonstrated the bene-

�ts of the hybrid designswith various micro-benchmarks. This work is described in

Chapter 5.

Synchronization optimizations: In this work, we evaluated di�erent designalter-

nativesfor implementing fencesynchronization on RDMA capableinterconnects.We

proposeda novel fencemechanism that usesRDMA basedImmediate capability of

In�niBand to notify remotecompletions.This approach provideslow synchronization

overheadas well as good overlap capability as described in Chapter 6.

Read Modify Write Mechanisms: In this work, we studied the HPCC Random

Accessbenchmark which predominantly usesread modify write operations. We de-

veloped one-sidedversions of the random accessbenchmark to evaluate the read

modify write capability of the MPI one-sidedoperations. Di�eren t optimizations like

SoftwareAggregationand HardwareBasedAccumulate wereproposedto improve the

GUPs rating of the HPCC benchmark. This work is described in detail in Chapter 7.
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Zero-copy non-contiguous data transfer: Non-contiguous data communication

posesadditional challengessince it involves overhead of additional copies on the

senderand receiver side. In this work, we designedzero-copy protocols using the

In�niBand hardware scatter/gather capabilities. The zero copy designsshowed bet-

ter performancein terms of latency and bandwidth, as well as reducedhost CPU

utilization. This work is described in Chapter 8.

Non-blocking Semantics: Non-blocking operations are very important to achieve

latency hiding and good computation/communication overlap. In this work, we stud-

ied the issuesin designingnon-blocking one-sidedoperationsin the context of ARMCI

one-sidedcommunication library. Further optimizations like capabilities for implicit

and explicit aggregationswere developed and the bene�ts of theseapproacheswere

demonstratedin Chapter 9.

Re-orderingone-sidedoperations: The MPI one-sidedsemantics allow re-ordering

of the one-sidedoperations within an accessepoch. Maintaining the order of opera-

tions doesnot always lead to the best or optimum usageof the underlying network

capability. In this work we exploited this 
exibilit y to explore di�erent techniques

like interleaving, prioritizing and aggregationto reorder theseRMA operationsbased

on the communication pattern to improve the latency, bandwidth and throughput.

This work is described in Chapter 10.

157



12.2 Future work

� In tra-No de Optimizations for Reducing Copy Costs: With the advent

of multicore processortechnology, a largenumber of processingcorescan reside

within one node, increasingthe number of MPI processesinside a node, thus

increasingthe volume of communication within the node. Therefore,designing

an one-sidedlibrary with optimized intra-nodecommunication support is crucial

to overall performance. The current shared memory approach for inter-node

communication needstwo copies. One optimization is to usethe kernel (using

approacheslike LIMIC [38]) to copy directly into the target window to reduce

the copy overhead. Another approach could be to useIOAT o�oad enginesto

o�oad the copy operations.

� Application level Evaluation: As part of future work, applications needto

be written with one-sidedsemantics. Speci�cally we would like to target some

of the communication patterns of petascaleapplications like AWM-Olsen [68]

(earthquake simulation) and MPCUGLES [58] (Computational Fluid Dynamics

Code). Theseapplications needsupport from the middleware in terms of rich

interfaceto expressparallelism, good computation/communication overlap and

dynamic load balancing. Currently these applications are written using two-

sidedcommunication. Theseapplicationshavethe potential to exploit one-sided

communication to attain petascaleperformanceand scalability.

� Prop ose Extensions to MPI One-sided Semantics: In order to handle

some of the requirements from these petascaleapplications, additional sup-

port and enhancements might be neededfrom the communication subsystemor
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middleware. We have identi�ed somelimitations of existing MPI-2 one-sided

semantics. Extensionsto one-sidedsemantics can be proposedto addresssome

of theseissues.Someof theseextensionscould be aimedat providing improved

and more 
exible/(less restrictive) synchronization semantics for both active

and passive synchronization. In caseof Passive synchronization, applications

could bene�t from �ner grain locking semantics. In caseof Active synchroniza-

tion, fencesynchronization that are targeted towards speci�c communication

patterns would be bene�cial as that can result in lower overheads. Further-

more,non-blocking synchronization primitiv escan allow applications to exploit

computation and communication overlap. Additional interfacescanalsobepro-

vided that canaid dynamic load balancingand fault tolerancewhich arecritical

for applications to scale.
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