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Abstract. This paper presents a new scheme, Send Gather Receive Scatter
(SGRS), to perform zero-copy datatype communication over InfiniBand. This
scheme leverages the gather/scatter feature provided by InfiniBand channel se-
mantics. It takes advantage of the capability of processing non-contiguity on
both send and receive sides in the Send Gather and Receive Scatter operations.
In this paper, we describe the design, implementation and evaluation of this
new scheme. Compared to the existing Multi-W zero-copy datatype scheme,
the SGRS scheme can overcome the drawbacks of low network utilization and
high startup costs. Our experimental results show significant improvement in
both point-to-point and collective datatype communication. The latency of a
vector datatype can be reduced by up to 62% and the bandwidth can be in-
creased by up to 400%. The Alltoall collective benchmark shows a performance
benefit of up to 23% reduction in latency.

1 Introduction

The MPI (Message Passing Interface) Standard [3] has evolved as a de facto parallel
programming model for distributed memory systems. As one of its most important
features, MPI provides a powerful and general way of describing arbitrary collections
of data in memory in a compact fashion. The MPI standard also provides run time
support to create and manage such MPI derived datatypes. MPI derived datatypes are
expected to become a key aid in application development.

In principle, there are two main goals in providing derived datatypes in MPI. First,
several MPI applications such as (de)composition of multi-dimensional data volumes [1,
4] and finite-element codes [2] often need to exchange data with algorithm-related
layouts between two processes. In the NAS benchmarks such as MG, LU, BT, and SP,
non-contiguous data communication has been found to be dominant [10]. Second, MPI
derived datatypes provide opportunities for MPI implementations to optimize datatype
communication. Therefore, applications developed with datatype can achieve portable
performance over different MPI applications with optimized datatype communication.

In practice, however, the poor performance of many MPI implementations with
derived datatypes [2,5] becomes a barrier to using derived datatypes. A programmer
often prefers packing and unpacking noncontiguous data manually even with consid-
erable effort. Recently, a significant amount of research work have concentrated on
improving datatype communication in MPI implementations, including 1) Improved
datatype processing system [5,13], 2) Optimized packing and unpacking procedures [2,
5], and 3) Taking advantage of network features to improve noncontiguous data com-
munication [17].
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In this paper, we focus on improving non-contiguous data communication by tak-
ing advantage of InfiniBand features. We focus on zero-copy datatype communication
over InfiniBand. Zero copy communication protocols are of increased importance be-
cause they improve memory performance and also have reduced host cpu involvement
in moving data. Our previous work [17] used multiple RDMA writes, Multi-W, as
an effective solution to achieve zero-copy datatype communication. In this paper we
look at an alternate way of achieving zero-copy datatype communication using the
send/receive semantics with the gather/scatter feature provided by InfiniBand. We call
this scheme SGRS (Send Gather Receive Scatter) in the rest of this paper. This scheme
can overcome two main drawbacks in the Multi-W scheme: low network utilization and
high startup cost. We have implemented and evaluated our proposed SGRS scheme in
MVAPICH, an MPI implementation over InfiniBand [12,9].

The rest of the paper is organized as follows. We first give a brief overview of
InfiniBand and MVAPICH in Section 2. Section 3 provides the motivation for the
SGRS scheme. Section 4 describes the basic approach, the design issues involved and the
implementation details. The performance results are presented in Section 5. Section 6
presents related work. We draw our conclusions and possible future work in Section 7.

2 Background
In this section we provide an overview of the Send Gather/Recv Scatter feature in
InfiniBand Architecture and MVAPICH.

2.1 Send Gather/Recv Scatter in InfiniBand

The InfiniBand Architecture (IBA) [6] defines a System Area Network (SAN) for in-
terconnecting processing nodes and I/O nodes. It supports both channel and memory
semantics. In channel semantics, send/receive operations are used for communication.
In memory semantics, RDMA write and RDMA read operations are used instead. In
channel semantics, the sender can gather data from multiple locations in one operation.
Similarly, the receiver can receive data into multiple locations. In memory semantics,
non-contiguity is allowed only in one side. RDMA write can gather multiple data seg-
ments together and write all data into a contiguous buffer on the remote node in
one single operation. RDMA read can scatter data into multiple local buffers from a
contiguous buffer on the remote node.

2.2 Overview of MVAPICH

MVAPICH is a high performance implementation of MPI over InfiniBand. Its design
is based on MPICH [15] and MVICH [8]. The Eager protocol is used to transfer small
and control messages. The Rendezvous protocol is used to transfer large messages.
Datatype communication in the current MVAPICH is directly derived from MPICH
and MVICH without any change. Basically, the generic packing and unpacking scheme
is used inside the MPI implementation. When sending a datatype message, the sender
first packs the data into a contiguous buffer and follows the contiguous path. On the
receiver side, it first receives data into a contiguous buffer and then unpacks data into
the user buffers. In the rest of this paper, we refer to this scheme as Generic scheme.

3 Motivating Case Study for the Proposed SGRS Scheme

Consider a case study involving the transfer of multiple columns in a two dimensional
M x N integer array from one process to another. There are two possible zero-copy
schemes. The first one uses multiple RDMA writes, one per row. The second one uses
Send Gather/Receive Scatter. We compare these two schemes over the VAPI layer,
which is an InfiniBand API provided by Mellanox [11]. The first scheme posts a list of



RDMA write descriptors. Each descriptor writes one contiguous block in each row. The
second scheme posts multiple Send Gather descriptors and Receiver Scatter descriptors.
Each descriptor has 50 blocks from 50 different rows (50 is the maximum number of
segments supported in one descriptor in the current version of Mellnox SDK). We will
henceforth refer to these two schemes as “Multi-W” and “SGRS” in the plots. In the
first test, we consider a 64 x 4096 integer array. The number of columns varies from
8 to 2048. The total message size varies from 2 KBytes to 512 KBytes accordingly.
The bandwidth test is used for evaluation. As shown in Figure 1, the SGRS scheme
consistently outperforms the Multi-W scheme.
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In the second test, the number of blocks varies from 4 to 64. The total message size
we studied is 128 KBytes, 256 KBytes, and 512 KBytes. Figure 2 shows the bandwidth
results with different number of blocks and different message sizes. When the number of
blocks is small, both Multi-W and SGRS schemes perform comparably. This is because
the block size is relatively large. The network utilization in the Multi-W is still high.
As the number of segments increase we observe a significant fall in bandwidth for
the Multi-W scheme whereas the fall in bandwidth is negligible for the SGRS scheme.
There are two reasons. First, the network utilization becomes lower when the block size
decreases (i.e. the number of blocks increases) in the Multi-W scheme. However, in the
SGRS scheme, the multiple blocks in one send or receive descriptor are considered as
one message. Second, the total startup costs in the Multi-W scheme increases with the
increase of the number of blocks because each block is treated as an individual message
in the Multi-W scheme and hence the startup cost is associated with each block. From
these two examples, it can be observed that the SGRS scheme can overcome the two
drawbacks in the Multi-W by increasing network utilization and reducing startup costs.
These potential benefits motivate us to design MPI datatype communication using the
SGRS scheme described in detail in Section 4.

4 Proposed SGRS (Send Gather/Recv Scatter) Approach

In this section we first describe the SGRS scheme. Then we discuss the design and
implementation issues and finally look at some optimizations to this scheme.

4.1 Basic Idea

The basic idea behind the SGRS scheme is to use the scatter/gather feature associated
with the send receive mechanism to achieve zero copy communication. Using this fea-
ture we can send/receive multiple data blocks as a single message by posting a send
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gather descriptor at source and a receive scatter descriptor at destination. Figure 3
illustrates this approach. The SGRS scheme can handle non-contiguity on both sides.
As mentioned in Section 2, RDMA Write Gather or RDMA Read Scatter handles non-
contiguity only on one side. Hence, to achieve zero-copy datatype communication based
on RDMA operations, the Multi-W scheme is needed [17].

4.2 Design and Implementation Issues

Communication Protocol: The SGRS scheme is deployed in Rendezvous protocol
to transfer large datatype messages. For small datatype messages, the Generic scheme
is used. As shown in Figure 4, the sender first sends the Rendezvous start message with
the data layout information out. Second, the receiver receives the above message and
figures out how to match the sender’s layout with its own layout. Then, the receiver
sends the layout matching decision to the sender. After receiving the reply message, the
sender posts send gather descriptors. It is possible that the sender may break one block
into multiple blocks to meet the layout matching decision.There are four main design
issues: Secondary connection, Layout exchange, Posting descriptors and Registration.

Secondary connection: The SGRS scheme needs a second connection to transmit the
non-contiguous data. This need arises because it is possible in the existing MVAPICH
design to prepost some receive descriptors on the main connection as a part of its
flow control mechanism. These descriptors could unwittingly match with the gather-
scatter descriptors associated with the non-contiguous transfer. One possible issue with
the extra connection is scalability. In our design, there are no buffers/resources for the
second connection. The HCA usually can support a large number of connections. Hence
the extra connection does not hurt the scalability.

Layout exchange: The MPI datatype has only local semantics. To enable zero-copy
communication, both sides should have an agreement on how to send and receive
data. In our design, the sender first sends its layout information to the receiver in
the Rendezvous start message as shown in Figure 4. Then the receiver finds a solution
to match these layouts. This decision information is also sent back to the sender for
posting send gather descriptors. To reduce the overhead for transferring datatype layout
information, a layout caching mechanism is desirable [7]. Implementation details of this
cache mechanism in MVAPICH can be found in [17]. In Section 5, we evaluate the
effectiveness of this cache mechanism.

Posting Descriptors: There are three issues in posting descriptors. First, if the
number of blocks in the datatype message is larger than the maximum allowable
gather/scatter limit, the message has to be chopped into multiple gather/scatter de-
scriptors. Second, the number of posted send descriptors and the number of posted
receive descriptors must be equal. Third, for each pair of matched send and receive



descriptors, the data length must be same. This basically needs a negotiation phase.
Both these issues can be handled by taking advantage of the Rendezvous start and re-
ply message in the Rendezvous protocol. In our design, the receiver makes the matching
decision taking into account the layouts as well as scatter-gather limit. Both the sender
and the receiver post their descriptors with the guidance of the matching decision.

User Buffer Registration: To send data from and receive data into user buffer
directly, the user buffers need to be registered. Given a non-contiguous datatype we can
register each contiguous block one by one. We could also register the whole region which
covers all blocks and gaps between blocks. Both attempts have their drawbacks [16].
In [16],Optimistic Group Registration(OGR) has been proposed to make a tradeoff
between the number of registration and deregistration operations and the total size of
registered space to achieve efficient memory registration on datatype message buffers.

5 Performance Evaluation

In this section we evaluate the performance of our SGRS scheme with the Multi-W zero
copy scheme as well as the generic scheme in MVAPICH. We do latency, bandwidth
and CPU overhead tests using a vector datatype to demonstrate the effectiveness of our
scheme. Then we show the potential benefits that can be observed for collective com-
munication such as MPI_Alltoall that are built on top of point to point communication.
Further we investigate the impact of layout caching for our design.

5.1 Experimental Testbed
A cluster of 8 SuperMicro SUPER X5DL&8-GG nodes, each with dual Intel Xeon 3.0

GHz processors, 512 KB L2 cache, PCI-X 64-bit 133 MHz bus, and connected to
Mellanox InfiniHost MT23108 DualPort 4x HCAs. The nodes are connected using
the Mellanox InfiniScale 24 port switch MTS 2400. The kernel version used is Linux
2.4.22smp. The InfiniHost SDK version is 3.0.1 and HCA firmware version is 3.0.1.
The Front Side Bus (FSB) runs at 533MHz. The physical memory is 1 GB of PC2100
DDR-SDRAM memory.

5.2 Vector Latency and Bandwidth Tests

In this benchmark, increasing number of columns in a two dimensional M*4096 integer
array are transferred between two processes. These columns can be represented by a
vector datatype. Figure 5 compares the ping-pong latency in the MPI implementation
using the two zero-copy schemes. We set up two cases for the number of rows (M) in
this array: one is 64 and one is 128. The number of columns varies from 4 to 2048,
the corresponding message size varies from 2 KBytes to 512 KBytes. We also compare
it with the latency of the contiguous transfer which serves as the lower bound. We
observe that the SGRS scheme reduces the latency by up to 61% compared to that of
the Multi-W scheme. Figure 6 shows the bandwidth results. The improvement factor
over the Multi-W scheme varies from 1.12 to 4.0.

In both latency and bandwidth tests, it can also be observed that when the block
size is smaller, the improvement of the SGRS scheme over the Multi-W scheme is
higher. This is because the improved network utilization in the SGRS scheme is more
significant when the block size is small. When the block size is large enough, RDMA
operations on each block can achieve good network utilization as well. Both schemes
perform comparably.Compared to the Generic scheme, the latency results of the SGRS
scheme are better in cases when the block size is larger than 512 bytes. When the
message size is small and the block size is small, the Generic scheme performs the
best. This is because the memory copy cost is not substantial and the Generic scheme
can achieve better network utilization. The bandwidth results of the SGRS scheme are
always better than the Generic scheme.
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5.3 CPU overhead tests
In this section we measure the CPU overhead involved for the two schemes. Figures

7 and 8 compare the CPU overheads associated at the sender side and receiver side,
respectively. The SGRS scheme has lower CPU involvement on the sender side as
compared to Multi-W scheme. However on the receiver side the SGRS scheme has an
additional overhead as compared to practically close to zero overhead incase of Multi-W
scheme.
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5.4 Performance of MPI_Alltoall
Collective datatype communication can benefit from high performance point-to-point
datatype communication provided in our implementation. We designed a test to evalu-
ate MPI_Alltoall performance with derived datatypes. We use the same vector datatype
we had used for our earlier evaluation.

Figure 9 shows the MPI_Alltoall latency performance of the various schemes on 8
nodes. We study the Alltoall latency over the message range 4K-512K. We ran these
experiments for two different numbers of blocks: 64 and 128. We observe that the SGRS
scheme outperforms the Multi-W scheme consistently. The gap widens as the number
of blocks increases. This is because the startup costs in the Multi-W scheme increase
with the increase of the number of blocks. In addition, given a message size, the network
utilization decreases with the increase of the number of blocks in the Multi-W scheme.

5.5 Impact of Layout Caching
In both the Multi-W and SGRS schemes, the layout has to be exchanged between the

sender and receiver before data communication. In this test, we studied the overhead
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of transferring the layout information. We consider a synthetic benchmark where this
effect might be prominent. In our benchmark, we need to transfer the two leading diag-
onals of a square matrix between two processes. These diagonal elements are actually
small blocks rather than single elements. Hence, the layout information is complex and
we need considerable layout size to describe it. As the size of the matrix increases,
the number of non-contiguous blocks correspondingly increases as well as the layout
description. Figure 10 shows the percentage of overhead that is incurred in transferring
this layout information when there is no layout cache as compared with the case that
has a layout cache. For smaller message sizes, we can see a benefit of 10 percent and
this keeps diminishing as the message size increases. Another aspect here is that even
though for small messages the layout size is comparable with message size, since the
layout is transferred in a contiguous manner, it takes a lesser fraction of time to trans-
fer this as compared to the non-contiguous message of comparable size. Since the cost
associated in maintaining this cache is virtually zero, for message sizes in this range
we can benefit from layout caching.

6 Related Work

Many researchers have been working on improving MPI datatype communication. Re-
search in datatype processing system includes [5,13]. Research in optimizing packing
and unpacking procedures includes [2,5]. The closest work to ours is the work [17,14]
to take advantage of network features to improve noncontiguous data communication.
In [14], the use of InfiniBand features to transfer non-contiguous data is discussed in the
context of ARMCI which is a one sided communication library. In [17], Wu et al. have
systematically studied two main types of approach for MPI datatype communication
(Pack/Unpack-based approaches and Copy-Reduced approaches) over InfiniBand. The
Multi-W scheme has been proposed to achieve zero-copy datatype communication.

7 Conclusions and Future Work

In this paper we presented a new zero-copy scheme to efficiently implement datatype
communication over InfiniBand. The proposed scheme, SGRS, leverages the Send
Gather /Recv Scatter feature of InfiniBand to improve the datatype communication
performance. The experimental results we achieved show that this scheme outperforms
the existing Multi-W zero-copy scheme in all cases for both point to point as well as
collective operations. Compared to the Generic scheme, for many cases, the SGRS re-
duces the latency by 62%, and increases the bandwidth by 400%. In the cases where
the total datatype message size is small and the contiguous block sizes are relatively
small, packing/unpacking based schemes [17] perform better. But beyond a particular
“cutoft” point, the zero-copy scheme performs better. The SGRS scheme pushes this



cutoff point to a relatively smaller value compared to the Multi-W scheme. As part of
future work, we would like to compare this scheme with other schemes and evaluate
this scheme at the application level.A combination of this scheme with other schemes
can be incorporated to choose the best scheme for a given datatype message adaptively.
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